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Abstract

Characterising the development of evapotranspiration through time is a difficult task,
particularly when utilising remote sensing data, because retrieved information is of-
ten spatially dense, but temporally sparse. Techniques to expand these essentially
instantaneous measures are not only limited, they are restricted by the general paucity
of information describing the spatial distribution and temporal evolution of evaporative
patterns. In a novel approach, temporal changes in land surface temperatures, derived
from NOAA-AVHRR imagery and a generalised split-window algorithm, are used as
a calibration variable in a simple land surface scheme (TOPUP) and combined within
the Generalised Likelihood Uncertainty Estimation (GLUE) methodology, to provide
estimates of areal evapotranspiration at the pixel scale. Such an approach offers an in-
novative means of transcending the patch or landscape scale of SVAT type models, to
spatially distributed estimates of model output. The resulting spatial and temporal pat-
terns of land surface fluxes and surface resistance are used to more fully understand
the hydro-ecological trends observed across a study catchment in eastern Australia.
The modelling approach is assessed by comparing predicted cumulative evapotran-
spiration values with surface fluxes determined from Bowen ratio systems and using
auxiliary information such as in-situ soil moisture measurements and depth to ground-
water to corroborate observed responses.

1. Introduction

Early attempts at determining spatial distributions of evapotranspiration at regional
scales were based largely on geostatistical techniques and interpolation procedures,
using data from sparsely distributed meteorological stations. Alternatively, regional
water balance closure was attempted, determining the evapotranspiration as the dif-
ference between long-term rainfall and runoff. In more recent times, various modelling
approaches have been developed to estimate evapotranspiration at both field and re-
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gional scales (Zhang et al., 1995; Li and Lyons, 1999; Braun et al., 2001), with these
types of approaches generally relying on the broad application of effective parameter
values to large homogeneous units of the land surface. Parameter uncertainty or sen-
sitivity (Beven and Binley, 1992; Franks and Beven, 1997; Gupta et al., 1999) is rarely
considered meaning that the accuracy of predicted values cannot be fully assessed.

There is a general belief that remote sensing offers the most amenable means to-
wards obtaining spatial evapotranspiration patterns, although there exists little agree-
ment on how best to realise this. While numerous schemes and methodologies have
been proposed to provide estimates of land surface fluxes using surface temperatures
obtained from remote sensors (Diak and Whipple, 1995; Anderson et al., 1997; Nor-
man et al., 2000), estimation of evapotranspiration in this way has achieved varied
levels of success. Whether this is due to the disparity between the aerodynamic and
radiometric temperatures, to conceptual misrepresentations or to the inevitable scale
issues that plague hydrological modelling, heat fluxes estimated in this way are often
subject to significant uncertainty. Undoubtedly, successful measurement of surface
fluxes with remote sensing techniques would provide a valuable information source,
and much progress is being made towards achieving this (e.g. Norman et al., 2003;
Su et al., 2005). The ability to calibrate land surface models and hence refine model
predictions at larger spatial scales using such measurements would see an immediate
improvement over existing techniques.

Humes et al. (2000) investigated a technique to provide maps of surface energy
fluxes for two small watersheds located in different climatic conditions. A novel aspect
of their approach was the use of spatial maps to identify the dominant factors controlling
the energy fluxes for time periods shortly after precipitation events. The authors found
that in the semi-arid environment studied, the patterns of sensible heat across the
watershed were similar to that of the spatially variable cumulative precipitation. In
contrast, sensible heat flux patterns in the sub-humid watershed tended to be more
uniform and were influenced by a combination of precipitation and land cover type. The
use of data in a qualitative way can often be as informative as techniques designed to
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quantitatively examine spatial patterns, particularly given the uncertainties evident in
model structure and input data and inconsistencies between observed and modeled
variables. McCabe et al. (2005b) presented an intuitive example of the qualitative use
of hydrological data sets by evaluating satellite soil moisture estimates using distributed
precipitation patterns. The pattern rich information present in remote sensing data
offers much potential for such application, but relatively little effort has been directed
towards examining this. Qualitative evaluation of models is one aspect of a move
towards approaches that incorporate remote sensing as an alternative or proxy source
of calibration information. The attraction of such a temporally consistent and spatially
dense source of data is evident, given the paucity of ground based evaluation data
available over much of the Earth.

Franks and Beven (1997) presented a methodology for the representation of spatial
variability in land surface fluxes using LANDSAT data and a simple SVAT model. Us-
ing multiple realisations of the TOPUP model (Beven and Quinn, 1994), they classified
the numerous model outputs into a number of functional types with different surface
behaviour. Pixel scale flux estimates calculated from the satellite platform were then
used to map surface fluxes across the landscape using a fuzzy-disaggregation scheme
— in effect mapping the landscape space of the satellite estimates into the model space
of the TOPUP functional types. Such an approach represents a novel way in which
a patch based model can be used to spatially disaggregate the modelled distribution
of surface fluxes across a landscape, whilst incorporating both model and image un-
certainty. The TOPUP model was particularly well suited to this style of spatial disag-
gregation, as it accounts for a range of possible landscape responses by producing
multiple model realisations. Information from satellite platforms or other ground based
sources can then be used to identify the likely landscape responses from the many
possible model outputs using traditional calibration techniques.

The information content that is present in a temporal record of surface temperature
has been largely ignored in calibration and modelling studies, with most techniques
preferring instantaneous remotely sensed temperatures in energy balance equations to

572

HESSD
2, 569-603, 2005

Spatial and temporal
patterns of land
surface fluxes

M. F. McCabe et al.

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
] >
Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU


http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/2/569/hessd-2-569_p.pdf
http://www.copernicus.org/EGU/hess/hessd/2/569/comments.php
http://www.copernicus.org/EGU/EGU.html

10

15

20

25

determine surface flux predictions. Recent work (McCabe et al., 2005a), illustrated that
the temporal change in surface temperature can provide a useful tool for the calibration
of a simple land surface model and hence for improved prediction of surface fluxes.
The work presented in this paper extends this concept using surface temperatures
derived from the NOAA-AVHRR platform as a means to identify land surface behaviour
throughout a study catchment.

Many practically based models of evaporation rely on estimates of the potential evap-
oration, from which the actual evaporation can be derived using a variety of correction
factors. Wallace (1995) commented that evapotranspiration studies should employ
techniques that calculate the evaporation using the surface resistance directly — such
as the physiological resistance to water vapour transport used in the Penman-Monteith
equation. This surface resistance describes the physiological controls that plants have
on water vapour transport on its route from inside the leaf, through the stomatal open-
ings and ultimately into the bulk atmosphere. The difficulty in modelling such controls
is obvious, as stomatal response is a function of the moisture demand of the plant, the
moisture conditions of the soil and atmosphere, as well as the time of day and seasonal
influences. Given the difficulty in measuring this variable and the important role it plays
in evaporation studies, empirical relationships have been sought between the surface
resistance and leaf cover, soil water status or a number of other environmental vari-
ables (Nemani and Running, 1989; Shuttleworth and Gurney, 1990; Jiang and Islam,
1999).

This paper addresses the use of remotely sensed surface temperature differences
within an uncertainty modelling framework to predict spatial patterns of evapotranspira-
tion across the study catchment. Further, through undertaking a calibration of the land
surface model with observations of the surface temperature, an assessment of the
spatial distribution and temporal response of the surface resistance to variable hydro-
climatic forcings is achieved. The results obtained from this calibration exercise are
compared using traditional flux data obtained from a number of in situ measurements
in a relatively small catchment (275 km2) in eastern Australia.
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2. Methodology
2.1. The TOPUP land surface model

The TOPUP model (Beven and Quinn, 1994; Franks et al., 1999) was developed to
counter a trend towards more complex Soil Vegetation Atmosphere Transfer (SVAT)
descriptions. The underlying rationale behind models of increased complexity is that
improved process representation will yield parameters that are easier to measure or
estimate and provide predictions that are more accurate. However, this is not neces-
sarily the case for a number of reasons including (a) model parameters may not be
equivalent to observed variables; (b) parameters that are physically represented may
be difficult or impossible to measure (SVAT models aim to produce effective values for
the various parameters at patch, regional or larger scales and these cannot be easily
estimated); and (c) issues of parameter inequality when moving between spatial and
temporal scales remain unresolved.

The philosophy behind TOPUP details a move towards striking a balance between
representing the key physical processes affecting land surface interactions while doing
so in a parametrically parsimonious manner. The rationale for developing a simplified
model structure is that simplicity is necessary to validate the use of SVAT models in
the field. Limited calibration data is available for such purposes, again highlighting the
significant parametric and predictive uncertainty which exists in the general calibration,
or more precisely, in the evaluation of SVAT models. This problem is compounded for
more complex model structures that are grossly over-parameterised with respect to the
available calibration-evaluation data sets (Jakeman and Hornberger, 1993).

Further details on the model and a more comprehensive review of the underlying
physics and rationale can be found in Franks and Beven (1997). A list of the required
model parameters and the values used in this study is shown in Table 1.

574

HESSD
2, 569-603, 2005

Spatial and temporal
patterns of land
surface fluxes

M. F. McCabe et al.

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
] >
Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU


http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/2/569/hessd-2-569_p.pdf
http://www.copernicus.org/EGU/hess/hessd/2/569/comments.php
http://www.copernicus.org/EGU/EGU.html

10

15

20

25

2.2. Incorporating GLUE into a land surface model

While some land surface model parameters can be measured directly, many others
serve as conceptual representations of a physical process and are not known pre-
cisely. One approach that has been proposed to address the problem of ill-defined
process knowledge and model parameter uncertainty is the Generalised Likelihood
Uncertainty Estimation (GLUE) methodology (Beven and Binley, 1992). Whilst the aim
of deterministic modelling approaches is to identify an optimum parameter set, GLUE
recognises that many competing parameter combinations can adequately, if not equally
well, reproduce the time series of specific model output. Although there are a number
of subjective elements incorporated into the GLUE framework (such as the prior choice
of parameter ranges, selection of an appropriate likelihood measure and in the specifi-
cation of acceptability thresholds), GLUE does force these options to be made explicit.

When parameters cannot be measured directly, which is the rule rather than the
exception, broad ranges encompassing expected parameter values can be identified,
hence characterising the relative uncertainty in parameter measurements. The specifi-
cation of feasible ranges for each model parameter recognizes the uncertainty inherent
in land surface representations across a variety of scales. From within these ranges,
multiple parameter sets can be constructed using Monte-Carlo sampling to randomly
extract parameter sets from the pre-defined ranges to run the model. Once parameter
sets have been constructed (typically tens of thousands), the model is run with each
set in turn. Assuming that some confidence in the model exists, it is reasonable to
assume that within these multiple simulations are a number of model realisations that
reflect the actual land surface observations. The issue then becomes one of how to
distinguish those model outcomes that reflect what is actually occurring, from those
that do not.

GLUE uses a simple likelihood measure to subjectively discriminate those model
predictions and parameter sets that most closely reproduce observed variables. In
essence, this process describes an evaluation of modelled data against available ob-
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servations, employing a simple least squares error analysis as the likelihood estima-
tor. The specification of a priori likelihood weights can be incorporated for particular
parameterisations or model predictions, allowing the rejection of a parameter set if it
falls below a certain likelihood threshold or if it is classed as non-behavioural. More de-
tailed descriptions of the GLUE methodology are provided in Franks and Beven (1997),
Beven and Freer (2001) and McCabe et al. (2005a).

2.3. Study area, ground based measurements and remote sensing data

The study area in this investigation is located within the Tomago sand beds, a series of
unconfined groundwater aquifers located on the mid-north coast of New South Wales,
Australia, and encompassing an area of approximately 275 km?. Figure 1 details the
aquifer extent, and identifies adjacent water bodies. Vegetation communities within the
Tomago region are varied and range from open forests and woodlands, to scrub, heath
and mangrove communities. There are also a number of wetlands and extensive areas
of grasslands, making this both an ecologically diverse and water sensitive environ-
ment. While many plant species in the area rely predominantly on the local water table
for moisture supply, the ecology, environmental dynamics and continued viability of the
system demands that the vegetation be both resilient and tolerant to periods of drought.
There have been few investigations into the effect that prolonged lowering of the water
table would have on plant communities, an issue made pertinent by planned commer-
cial groundwater exploitation. Following the Koeppen classification system, the climate
of the region is characterised as warm-humid-temperate, with rainfall spread evenly
throughout the year and a mean annual precipitation varying between 1089 mm and
1257 mm. As is typical of much of Australia, pan evaporation exceeds rainfall for most
of the year.

In order to gather information on the catchment for modelling purposes, an intensive
data collection campaign was undertaken between December 2000 and March 2001.
This collection period was preceded by an extended dry spell, with the first significant
rainfall in a number of months occurring in late January. Following this, the remainder
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of the field campaign was characterised by sporadic rainfall events of varying intensity,
interspersed with clear sky conditions, creating a hydrologically informative wetting-
up/drying-down dynamic. Additional data required for model forcing such as wind
speed, net radiation, dry and wet-bulb temperature and rainfall, were obtained from
measurements at a field site in the centre of the study region combined with regional
monitoring at a nearby Australian Bureau of Meteorology climate station. To determine
model agreement after calibration against observed variables, estimates of the latent
heat flux were collected using a Bowen ratio system, located in a central location within
the study region (see Fig. 1). These data provide an independent means of assessing
the level of consistency between model results.

Remotely sensed surface temperatures were obtained from NOAA-12 and NOAA-14
AVHRR brightness temperature data at a resolution of 1 km, supplied by the Com-
monwealth Scientific and Industrial Research Organization (CSIRO) Division of Marine
Research. Following techniques documented by Prata and Cechet (1999), surface
temperatures in the Tomago region were calculated from this imagery using a simple
split-window equation (McMillin and Crosby, 1984) and coefficients derived from multi-
ple linear regressions of the AVHRR data against a ground based infrared thermometer
located within the study region. The infrared thermometer samples radiation in a single
window in the region 8—12 um. Due to the limited field of view of these types of instru-
ments (0.15 rad), the thermometer was mounted on a tower approximately 10 m above
the ground surface, increasing the field of view to a diameter of 1.5m at nadir con-
figuration. As the thermometer was installed to allow comparison with diurnal trends
extracted from a geostationary satellite, the instrument housing was aligned to a view-
ing angle of 50°. Land surface temperatures calculated in this way were observed to
have root mean square accuracies within 3 K. Further details of this analysis are offered
in Sect. 2.4.
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2.4. Developing a calibration record using surface temperatures

Land surface model predictions are more commonly evaluated against observations
of surface heat fluxes. At regional and larger scales however, such data are rarely
available at the pixel, let alone the regional scale, making model evaluation a difficult
process. Calibration (or evaluation) of predictions with hon-commensurate, or non-
equivalent data, facilitates the use of alternative sources of information such as land
surface temperatures into the model assessment framework. Surface temperature
measurements have the potential to yield significant insight into the surface dynam-
ics when included within a modelling framework (e.g. Crow et al., 2004; McCabe et al.,
2005a) as they are strongly coupled with a number of hydro-ecological processes. The
use of temperature differences to gain insight into the surface condition has its origins
in thermal inertia studies, in which the time rate of change in the surface temperature
is used to infer variations in surface energy storage and to soil moisture status. The
thermal inertia concept has been used in a deterministic manner to derive surface flux
predictions (Wetzel et al., 1984; Diak and Whipple, 1995; Norman et al., 2000) and
also to offer insight into soil moisture dynamics (McVicar and Jupp, 2002).

In order to implement a temperature difference approach to examine the spatial pat-
terns of evapotranspiration across the study region, discrete temperature signatures
were required. McCabe et al. (2005a) used the difference between temperature obser-
vations at 1.5 and 5.5 h after sunrise, as suggested by Kustas and Humes (1996), who
observed that this combination offers significant predictive insight into flux behaviour.
The present study utilises NOAA-AVHRR data, limiting the capacity to calculate tem-
perature differences to the 05:30 a.m. and 03:30 p.m. overpasses. While these are
perhaps not the most ideal temperature pairs, it is expected that they should still of-
fer some insight into flux behaviour. AVHRR temperature pairs at these times were
discriminated for useable imagery. After careful quality control for surface and atmo-
spheric influences, low sensor angles and cloud affected imagery, ten brightness tem-
perature pairs throughout January and February were identified and extracted. Surface
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temperature estimates were then calculated using regressions to in situ measurements
to parameterise the split-window equation. These techniques use combinations of a
number of infrared channels to determine surface temperatures from space, but require
physically based coefficients in order to transform the satellite brightness temperature
to a surface skin temperature. Given the level of data availability in the study area, the
theoretically derived split-window approach represents the most suitable technique to
determine the land surface temperature.

Although there were a number of afternoon overpasses throughout the field cam-
paign which were cloud free, some difficulties were encountered in obtaining early
morning cloud free observations on the relevant days. The problem of morning cloud
contamination was the primary limitation to using a greater number of image pairs. For
larger scale applications, not affected by land-surface/ocean boundaries as present
here, the possibility of using geostationary platforms, such as in the work of Norman et
al. (2003), should offer a more extensive and continuous source of calibration data.

2.5. Predictions of evapotranspiration and calculation of surface resistance

The NOAA derived temperature pairs represent precisely 300 1 km? land surface pixels
distributed across the spatial domain of the study region (see Fig. 1). In effect, this pro-
cedure generates three hundred unique calibration records, each containing ten clear
sky surface temperature differences against which model output can be compared. In-
stead of analysing a single record of temperature differences, as would be done for a
traditional point-scale evaluation exercise, all pixel responses derived from the AVHRR
temperature records were used as unique evaluation data sources to enable process
regionalisation. In this way, a distributed temporal record of observations (i.e. surface
temperatures) is used to disaggregate a patch based land surface model to determine
the regional response.

In order to capture the range of hydrological behaviour expected at the regional
scale, the TOPUP model was run numerous times using available meteorological forc-
ings, with required model parameters sourced from the ranges specified as part of the
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GLUE process. In this application, 20 000 unique parameter sets were constructed us-
ing Monte-Carlo random sampling from within the pre-defined parameter ranges (see
Table 1) for the 51 days (or 2448 half-hourly time steps) of the field experiment. In order
to compare model predictions with observation data, TOPUP-based temperature dif-
ferences were calculated for each of the 20 000 model runs corresponding to the times
of the NOAA-AVHRR overpass. While the modelled aerodynamic temperature and the
observed radiometric temperature are not the same variable, the difference between
the two is expected to maintain some temporal consistency (Huband and Monteith,
1986; Bastiaanssen et al., 1998). Moran et al. (1997) indicate that these differences
tend to be non-linear for non-vegetated surface. Over the region studied here, there
are comparatively few such areas, increasing the confidence in the correlation of these
variables.

After producing a temporally coincident series of model and observation outcomes,
each of the 300 individual NOAA-AVHRR based evaluation records were compared
to the 20000 modelled simulations. A least squares likelihood function was used to
discriminate those parameter sets that best reproduced the observed temperature dif-
ferences from all possible outcomes. From these likelihood values, the best 200 (or
1%) of parameter sets were identified. This process was repeated for each of the
300 evaluation responses, thereby associating each pixel throughout the catchment
with the best 200 parameter sets identified from the calibration process. From these
sets, the mean cumulative ET and standard deviations for each pixel over both the en-
tire study period and for individual weeks throughout the campaign were determined.
The following section presents the results of the spatial patterns of cumulative evapo-
transpiration derived from the temperature difference records, extending the analysis
to include an examination of another model output — the surface resistance patterns
observed throughout the study region.
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3. Results
3.1. Spatial patterns of time changes in land surface temperature

The spatial variation of clear sky temperature differences across the region for the ten
clear days discriminated during the experimental period (Fig. 2) illustrate that there is
a level of spatial structure evident throughout the region which is related to the un-
derlying surface vegetative conditions or land use. For instance, the regions towards
the bottom-middle of the catchment (indicated by pixel coordinates x, y=5, 10) exhibit
greater surface temperatures than surrounding areas in the Jan 15 image. These pixels
correspond to the relatively limited urban (built up) areas located within the catchment.
The urban effects can be compared with the relatively lower temperature responses at
the top end of the catchment (x, y=35, 13), where the surface is dominated by more
established vegetation communities. The coastline, following the lower edge of the
study region, is generally warmer than surrounding pixels due to the influence of sand
dunes, which in some areas extend hundreds of metres from the shoreline.

The influence of variations in the moisture status of the catchment can also be ob-
served. The images from the predominantly hotter and drier January period contrast
well with the generally cooler and wetter conditions prevalent during much of Febru-
ary. For instance, the images for 4, 18 and 22 February correspond to periods after
significant precipitation events across the catchment (17 mm, 13mm and 27 mm, re-
spectively). It is this feedback between the surface moisture status and the surface
temperature response which forms much of the basis for the concept of thermal iner-
tia.

The degree of spatial variation in the surface temperature differences on any one day
is revealing, especially when spatial variability in model forcing data of air temperature
(e.g. Prihodko and Goward, 1997) or net radiation (see Anthoni et al., 2000) is not
routinely considered in land surface schemes. Clearly, there are correlations between
the surface temperature and the underlying surface condition, which also impact on air
temperature and net radiation. Even at the catchment scale studied here, it would be
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expected that through feedbacks within the surface temperature results alone, these
forcing variables should also vary. Unfortunately, while assumptions of constant forc-
ing data may increase uncertainty in predictions, there is generally little information
available to spatially interpolate these variables from regionally sparse meteorological
networks.

3.2. Spatial patterns of evapotranspiration

Spatially distributed cumulative evapotranspiration maps are presented in Fig. 3, illus-
trating the patterns of the mean evapotranspiration over the two months of measure-
ments and the individual weeks comprising this period. It is important to realise that ac-
tual pixel values represent the mean of the two hundred cumulative ET values identified
as a result of the calibration process, based in this instance, on comparing modelled
temperature differences with the satellite retrieved surface temperature differences. To
understand the variability within the pixel responses, Fig. 4 presents the correspond-
ing standard deviations. The cumulative evapotranspiration for the entire study period
encompasses the range 107-185mm. During particular periods evaporative patterns
are more closely linked to the underlying surface conditions, with the lowest evapora-
tive rates occurring in the urban area. Such a result is entirely a function of the higher
surface temperatures produced in this region, as no unique parameterisation of urban
surface types was incorporated into the TOPUP model.

The weekly evapotranspiration totals offer useful insight into the spatial and tempo-
ral variations across the watershed. As can be seen, the first three weeks indicate
a degree of spatial variation that is not evident in the latter portion of the field cam-
paign. In fact, the cumulative weekly evapotranspiration in Week 1 is perhaps higher
than would be expected given it is in the middle of a dry spell. The most likely ex-
planation for this is the effect of a model parameter (INSR) that defines the fractional
moisture of the initial root zone storage (SRMAX). INSR varies between zero for de-
pleted root zone soil moisture and 1.0 for root zone soil moisture at capacity. Analysis
of parameter sensitivity to various calibration records indicated that when calibrating
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model predictions to temperature differences, INSR shows some bias towards the up-
per range of the a priori parameter distribution. Thus, model runs would be initialised
with an INSR value approaching unity, resulting in the higher evapotranspiration values
evidenced in the results for Week 1. Knowledge of the antecedent conditions, such as
soil moisture distribution from a satellite, could potentially be used to condition model
outcomes. Alternatively, such information could be used in a multi-objective framework
to co-condition model responses (see McCabe et al., 2005a).

Overall, results during the first three weeks reflect the hydrometeorological condi-
tions characteristic for this hot and dry period, with weekly evaporative totals ranging
between 20-26 mm/week (generally less than 3 mm/day). Figure 3 indicates that there
is a reduction in the average weekly evaporative totals between Week 1 and Week 3
of approximately 6—10 mm/week (or 0.85—-1.45 mm/day), identifying the expected dry-
down occurring during this period, confirmed through comparison with in situ measured
groundwater records (Fig. 5a). The average daily cumulative evapotranspiration esti-
mated from Fig. 3 in the area encompassing the location of the central field site (marked
by the circle in Fig. 1) varies between 2.8 mm/day in Week 1 to 4 mm/day in Week 6.
Measurements from the Bowen ratio system installed here offer some intermittent com-
parisons with these weekly values. Data collected from the system offered 21 days with
which to compare model responses, with an average of 3 measurements per week. No
in situ flux data was available for the first week and a half due to equipment related
problems.

Independently measured flux data for Weeks 2 and 3 reflect the low levels of evap-
otranspiration occurring during this period, with measurements indicating a high of
1.48 mm/day (25 January) and an average of 1.14 mm/day over this 2 week period.
These values compare relatively well with results in Fig. 3, which indicate weekly
evapotranspiration estimates in the range 10—-15mm (1.4-2.2 mm/day) at the field site.
These results should be considered in light of accuracies typical of the Bowen ratio
technique, which are often in the range of 20% (Kanemasu et al., 1992) depending on
field conditions. Field based measurements during February reflect the increased rates
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of evapotranspiration occurring in this period. Of the nine in situ measurements during
Weeks 4 to 6, only 2 have values less than 3 mm/day, with the majority indicating totals
greater than 4mm. These correspond well to the TOPUP results, with estimates in
the range 24-29 mm/week (3.4—4.2 mm/day). The drying down of the moisture stores
is reflected in the data for Week 7, with an average value of 2.6 mm/day from the
Bowen ratio measurements. This suggest a drop of nearly 10 mm/week compared to
preceding weeks — a value which is supported by comparison with the overall spatial
distributions evident in Fig. 3.

Overall, comparisons with available flux measurements indicate that the model is
correctly capturing the observed hydrological dynamics evident throughout the study
period. While Bowen ratio measurements were not available for Week 1, a trend
consistent with both the observed hydrometeorology and surface temperature maps
(Fig. 2) was evident in the variation of evaporative fraction (latent heat divided by the
available energy) over the course of the investigation. For most of January, the average
evaporative fraction did not exceed 0.2, highlighting the dominance of sensible heat flux
across the catchment, and the corresponding rise in observed surface temperatures.
After the rainfall events of late January, the EF reached a maximum value of 0.78. The
varying dynamics occurring during February were reflected in the changing EF, which
oscillated between 0.35 and 0.75 for the rest of the month, but generally exceeded 0.6.

Weeks 4-6 present a relatively uniform areal distribution of evapotranspiration as a
result of the sporadic rainfall events of varying intensity and the subsequent increase
in soil moisture status throughout the catchment. These trends are reflected in Fig. 5b
which illustrates both the rainfall events and soil moisture estimates determined from
a probe located at the central field site. The results are consistent with observed in-
creases in evaporative totals compared to earlier periods of the investigation, with areal
averages approaching 26—28 mm/week (approx. 4 mm/day). The spatial patterns illus-
trated in Week 5 and Week 7 reveal some insight into the drying dynamics of the
catchment. As expected, as moisture availability is increased, so too is the evapo-
transpiration rate. However, this increased rate rapidly returned to pre-rainfall levels,
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at least within the time scales examined here, indicating that incident rainfall is swiftly
evaporated from the surface, or infiltrates to the watertable.

The intermittent wetting and drying dynamics of the catchment, particularly through-
out February, are prevalent in Fig. 3. The degree of variation is demonstrated through
reference to the standard deviations about the means shown in Fig. 4. Interestingly, the
wetting and drying phases do not seem to significantly affect the variability in evapora-
tive predictions, at least in instances where the catchment moisture stores have been
replenished. The standard deviations are linked with the prevailing meteorological con-
ditions of the time, with dry periods exhibiting greater variability than occurs in wetter
conditions. This is highlighted by an increased amount of standard deviation (relative
to other periods) for Week 2. The range of the variation for this period is between
0 and 10 mm/week, as opposed to other periods which maintain deviations less than
5mm/week. February in general displays minimal variation about the mean values,
characteristic of the wetter catchment conditions, with standard deviations between
0.5-2mm/week. In contrast, the drier January periods produce standard deviations
approaching 4 mm/week. These results are consistent with the ability of land surface
models and remote sensing based approaches to predict evaporative response. In
general, the surface responses at limiting cases (i.e. soil controlled/atmospherically
controlled) are easier to simulate than transitional periods, due primarily to uncertain-
ties in partitioning the available energy.

Characterising prediction uncertainty is an often overlooked component of model
prediction. In remote sensing based approaches for flux estimation, 50 W/m? is often
cited as the useful accuracy limit for flux prediction (Kustas and Norman, 2000). An
uncertainty of 50 W/m? maintained over a 12h daylight period (as opposed to an in-
stantaneous remote sensing based prediction) is equivalent to approximately 0.9 mm
of evapotranspiration. Understanding the uncertainty inherent in model applications is
facilitated by considering the range of possible parameter realisations, as undertaken
here using the GLUE methodology. With appropriate calibration, it seems comparable
accuracy can still be achieved using uncertainty based modelling approaches as in
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using remote sensing techniques.
3.3. Temporal changes in regional evapotranspiration

The uncertainty of regional scale estimates can be assessed through examination of
the range of evaporative predictions throughout the catchment at an instant in time.
Intuitively, it should be expected that when the moisture status of a catchment is high,
the range of predicted evapotranspiration would be reduced, given that the surface
evaporation approaches the potential rate. In contrast, a drier period should exhibit a
greater degree of spatial variation and hence more areal uncertainty, as the influence
of soil properties and vegetation dynamics exert greater control.

In the following analysis, uncertainty bounds are produced to describe the catchment
response at each time step during the field campaign. At each of the 2448 half-hourly
time steps, the range of evaporative predictions throughout the catchment is examined
by considering the 200 model responses identified by the likelihood analysis, for all of
the 300 pixels defining the study region. The 5% and 95% quantiles are determined at
each of these, and mean responses for the entire region calculated by averaging the
300 pixels at these two intervals. As a result, the subsequent ranges of values for each
time step represent the 5% and 95% spatial quantiles of the areal mean evapotranspi-
ration. Figure 6 illustrates the results of this process for the 2448 half-hour time steps
of the TOPUP model run.

The greatest degree of spatial variation occurs in the period from 11 to 27 January.
The clear sky days from 20-27 January indicate an areal difference in evaporation
across the region of up to 300 W/m? at particular instances in time. This trend is con-
sistent with the weekly spatial patterns evident in Week 2 and Week 3 (Fig. 3). As
observed in Fig. 5, there was no rainfall before Jan 27. After that date, intermittent
precipitation occurred, replenishing the depleted moisture stores throughout the catch-
ment and reducing the spatial variability evident in the pre-rainfall evapotranspiration
maps of Fig. 3. During the wetter month of February, the range of evapotranspiration
predictions throughout the catchment is reduced, with the difference between the 5%
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and 95% quantiles rarely exceeding 200 W/m? at the diurnal peak, but less than this
at other times. Indeed, most days have a range approaching 100 W/m? which, con-
sidering the variability in land surface types and covers throughout the catchment, is
not particularly large. Comparisons with the weekly evaporative trends (Fig. 3) and the
standard deviations (Fig. 4), confirm the dynamics of the temporal patterns displayed
in Fig. 5. The spatial variability evident during drier periods is a function of the different
drying dynamics throughout the catchment, which in turn is related to soil properties
and vegetation characteristics.

3.4. Regional patterns in surface resistance to evapotranspiration

Following the same approach as for the evapotranspiration analysis described in Sec-
tion 3.2, spatial maps of the surface resistance, a TOPUP model output, were produced
for both the entire period and for weekly intervals throughout the field campaign. In or-
der to graphically present the spatial variation, mean values were calculated over each
time period examined. Because there were 200 associated responses for each pixel,
an average pixel surface resistance was first calculated from within these responses,
with results presented in Fig. 7.

While the response for the entire period is not particularly informative, the temporal
development throughout the campaign exhibits some interesting trends. As reflected
in the spatial evapotranspiration patterns, Week 1 shows a relatively even distribution
of surface resistances, with values approaching 150 s/m and greater — likely a prod-
uct of the calibrated models preference for an increased initial moisture storage (see
discussion in Sect. 3.2). It should be expected that the relationship between soil mois-
ture status and evapotranspiration would be strongly reflected in the surface resistance
patterns. The dry conditions prevalent during much of January rapidly deplete the
available soil moisture storage, allowing spatial patterns to become more evident dur-
ing Weeks 2 and 3. In some parts of the catchment, values for the surface resistance
approach 300 s/m during this drying period. The influence of the small amounts of
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precipitation that occurred at the end of January cause the spatial patterns displayed
in Week 3 to reflect those in Week 1. During these first three weeks, the standard
deviation of the modelled surface resistance — calculated from within the 200 samples
for each pixel location — is generally within the range 25-50s/m. Such a high value,
relative to the mean surface resistance estimate presented in Fig. 7, highlights the un-
certainty of determining the surface resistance during these water limited conditions.

In contrast, the responses for most of February demonstrate a more uniform dis-
tribution of resistance values, with an average of approximately 100 s/m, and varying
between 50 s/m and 200 s/m over the 4 week period. The effect of the intermittent dry-
ing and wetting phases of the surface is reflected in the variation throughout the weekly
spatial patterns. The impact on the standard deviation also reflects the influence of pre-
cipitation on the surface resistance pattern. Weeks 4—7 display a marked reduction in
the standard deviation across the catchment, with values approaching 10s/m. Con-
sidering the variability in the first three weeks of the field campaign, this represents
a significant reduction in the spatial and temporal uncertainty. The feedback between
the surface resistance and evapotranspiration is well represented in the corresponding
evapotranspiration maps of Fig. 3.

The temporal variation of surface resistances can be examined in greater detalil
through discrimination of individual pixel responses. Examination of these temporal
patterns also offers an opportunity to qualitatively assess the performance of the land
surface model. It is expected that the vegetative states of the surface should influ-
ence the temporal development of the surface resistance, especially where drying of
the moisture stores occurs. As such, the hydrometeorological conditions experienced
throughout the field campaign should be reflected in the temporal response of the sur-
face resistance. To examine this further, Fig. 8 displays the temporal trends of the 5%
and 95% quantiles of surface resistance computed for two different vegetated surfaces
within the study region. The procedure employed here is the same as that for Fig. 6.

These two pixels were selected from a detailed land surface map of the dominant
vegetation units throughout the region (Woolley et al., 1995) and correspond to a
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swamp woodland and heath and to a mixture of heath, swamp forest and open for-
est. As can be seen from Fig. 8, the more densely vegetated forested surface (bottom)
displays a slower rise towards the peak surface resistance over the drying period from
11-28 January compared to that of the swamp woodland/heath surface (top). Not only
is the gradient reduced for this response, but so too is the maximum surface resistance
value, which peaks at approximately 400 s/m compared to 500 s/m. These same trends
are reflected throughout the remainder of the study period, as the moisture status of
the area is increased through precipitation during February and reduced during clear
sky periods with strong surface drying between storm events.

Intuitively, these results are expected given the nature of the vegetation cover for
each surface. The forested surface is likely to have deeper rooting depths than the
swamp-heath land. As a consequence, the forest cover should be more tolerant to
a reduction in the moisture status, as occurs throughout January and for periods in
February. However, there is insufficient information to reach any definitive conclusions
on these patterns. Depth to the water table for instance, may bias results if one surface
has a shallower water table than the other. Also, without further information on the
vegetation characteristics of each of the surfaces, it is difficult to obtain more detailed
insight. From a qualitative perspective, the reduced bounds on the surface resistance
during February are also reflected in the spatial patterns of Fig. 3 and Fig. 4. During
February, the spatial variability of the evapotranspiration is lower when compared to
the drier January responses, which correspond to periods of greatest variability and
uncertainty, in the surface resistance. This result was observed by Dolman (1992) who
comments that: “areal evaporation from dry regions is more sensitive to the spatial
variability (in surface resistance) than evaporation from wet regions”.

4. Discussion and conclusion

Bastiaanssen et al. (1998) highlighted one of the major problems associated with re-
gional scale estimation techniques: how can regional evaporation predicted by simu-
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lation models be validated with limited field data? They proposed that model verifica-
tion can proceed through the use of in situ surface flux measurement, airborne flux
measurement, soil moisture profiles in the field or through conventional hydrological
modelling. However, the majority of these techniques are generally the result of inten-
sive field campaigns rather than through routine measurement. In most instances, the
paucity of distributed measurements means that required information is not generally
available to validate model responses and hence most techniques remain unverified
(e.g. Ottle et al., 1989; Smith and Choudhury, 1990), particularly at large spatial scales
where data is simply not available. Clearly, an alternative approach is required to allow
the assessment of large scale flux behaviour in a more operational, or routine, capacity.

A methodology that can be validated at the field scale and applied to the regional
scale would prove very useful for model assessment and evaluation purposes. An abil-
ity to assess surface flux predictions using remotely sensed temperatures offers much
potential in land surface and in general climate modelling, where the scales at which
processes are represented often preclude the actual measurement of surface fluxes for
their validation. The development of evapotranspiration patterns through time is of par-
ticular interest, given that there is generally a lack of information describing both spatial
and temporal evaporative patterns. While there are advances in providing increasingly
accurate predictions of evapotranspiration directly from remote sensing variables (Nor-
man et al., 2003; Su et al., 2005), one of the major shortcomings of such approaches
is that they are remain essentially instantaneous retrievals. An approach which makes
use of intermittent snapshots of the surface condition to expand knowledge of the sur-
face flux throughout time would prove particularly useful.

The results from this study provide some evidence for the utility of spatially distributed
satellite data in constraining predictions within an uncertainty modelling framework.
Distinct patterns of evapotranspiration were clearly observable throughout the study
period, and insight into the close relationship of the surface response to precipitation
events was identified. The drying and wetting patterns throughout the catchment, as
observed in the spatial plots, also offered some insight into the surface resistance
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patterns throughout the region. The dynamic response of the surface resistance to the
catchment moisture status was evident through examination of the temporal plots and
provided some corroboration for the model results throughout the duration of the field
campaign.

The TOPUP land surface model represents a simple patch based approach, broadly
parameterised to account for the range of responses expected from a heterogeneous
surface. Through calibration against an observed record of surface temperatures,
some insight into both the evapotranspiration patterns across the catchment, and
also the temporal development of the surface resistance to evapotranspiration was ob-
tained. The fact that TOPUP was able to characterise trends consistent with observed
vegetation distributions, without having been explicitly spatially parameterised for these
characteristics, is a significant result as it offers the possibility of parameterising mod-
els based on operationally available remote sensing information. Such an approach
facilitates an increased opportunity to calibrate land surface models using a variety of
remotely sensed hydrological variables, such as instantaneous evapotranspiration (e.g.
Su et al., 2005), near surface soil moisture (e.g. McCabe et al., 2005b) or details on
the land surface condition. Further investigations are in progress examining the utility
of incorporating such remotely sensed information into a simplified representation of
catchment processes to further our understanding of ungauged basins.
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Table 1. TOPUP model parameterisation for the Drop Zone field investigation.

HESSD

2, 569-603, 2005

Parameter Parameter description Range

Fy Fractional upslope area 0.1-1
TTANB Product of transmissivity and hydraulic gradient, m?/h 0.005-0.04
m Transmissivity profile and recession curve parameter 0.005-0.05
RSMIN Minimum surface resistance, s/m 50-150
RSMAX Maximum surface resistance, s/m 300-1000
SRMAX Root zone storage, m 0.02-0.2
INSR Initial fractional root zone store 0.01-1.0
MAXINT Interception store, m 0.005-0.01
VTD Vertical time delay through unsaturated zone, h m™ 0.05-20
DTH1 Gravity drainage effective storage coefficient 0.05-0.15
DTH2 Root zone effective storage coefficient 0.05-0.40
In(zo/25) log roughness length ratio for momentum and heat flux 1-10

Z Roughness length for momentum flux, m 0.01-0.25
d Zero displacement height, m 0.05-0.35
GHFP (@) Ground heat flux parameter 0.05-0.20
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Fig. 1. Map of the Tomago sandbeds, a series of unconfined aquifers on the mid-north coast
of New South Wales, Australia. The circled region identifies the location of the in-situ measure-

ments and the central field site.
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Fig. 4. Spatial distribution of the standard deviation for the mean cumulative evaporation (mm)
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Fig. 6. Mean values of the 5% and 95% quantiles of evapotranspiration across the study region
based on TOPUP simulations with 200 parameter sets at each pixel for each of the 2448 half-

hourly time steps.
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Fig. 8. Time series of the 5% and 95% quantiles of the surface resistance (s/m) for the duration
of the field campaign for distinct vegeation units characteriistic of the catchment.

400

300

200 4

400 +

300

200 o

Heath/Swamp Forest/Open Forest

Swamp Woodland/Heath

HESSD
2, 569-603, 2005

Spatial and temporal
patterns of land
surface fluxes

M. F. McCabe et al.

L e
15-Jan  22-Jan  29-Jan  05-Feb  12-Feb  19-Feb  26-Feb

Time Step

603

it

EG

c


http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/2/569/hessd-2-569_p.pdf
http://www.copernicus.org/EGU/hess/hessd/2/569/comments.php
http://www.copernicus.org/EGU/EGU.html

