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Abstract

The application of Artificial Neural Networks (ANNs) on rainfall-runoff modelling needs
to be researched more extensively in order to appreciate and fulfil the potential of this
modelling approach. This paper reports on the application of multi-layer feedforward
ANN:Ss for rainfall-runoff modelling in the Geer catchment (Belgium) using both daily and
hourly data. The good daily forecast results indicate that ANNs can be considered al-
ternatives for traditional rainfall-runoff modelling approaches. However, investigation of
the forecasts based on hourly data reveal a constraint that has hitherto been neglected
by hydrologists. A timing error occurs due to a dominating autoregressive component
that is introduced by using previous runoff values as ANN model input. The reason for
the popular practice of using these previous runoff data is that this information indirectly
represents the hydrological state of the catchment. Two possible solutions to this timing
problem are discussed. Firstly, several alternatives for representation of the hydrolog-
ical state are presented: moving averages over the previous discharge and over the
previous rainfall, and the output of the simple GR4J model component for soil moisture.
A combination of these various hydrological state representators produces good results
in terms of timing, but the overall goodness of fit is not as good as the simulations with
previous runoff data. Secondly, the use of a combination of multiple measures of model
performance during ANN training is suggested, since not all differences between mod-
elled and observed hydrograph characteristics such as timing, volume, and absolute
values can be adequately expressed by a single performance measure. The possible
undervaluation of timing errors by the commonly-used squared-error-based functions
is a clear example of this inability.

1. Introduction

One of the main research challenges in hydrology is the development of computational
models that are able to accurately simulate a catchment’s response to rainfall. Such
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models are capable of forecasting future river discharge values, which are needed for
hydrologic and hydraulic engineering design and water management purposes. How-
ever, simulating the real-world relationships using these Rainfall-Runoff (R-R) models is
far from a trivial task since the various interacting processes that involve the transforma-
tion of rainfall into discharge are complex and variable. Hydrologists have attempted to
address this modelling issue from two different points of view: using knowledge-driven
modelling and data-driven modelling.

Knowledge-driven R-R modelling aims to reproduce the real-world hydrological sys-
tem and its behaviour in a physically realistic manner. This way of R-R modelling is
therefore based on detailed descriptions of the system and the processes involved
in producing runoff. The best examples of knowledge-driven modelling are so-called
physically-based model approaches, which generally use a mathematical framework
based on mass, momentum and energy conservation equations in a spatially dis-
tributed model domain, and parameter values that are directly related to catchment
characteristics. These models require input of initial and boundary conditions since
flow processes are described by differential equations (Rientjes, 2004). Examples of
physically-based R-R modelling are the Systeme Hydrologique Européen (SHE) (Ab-
bott et al., 1986a, b) and the Representative Elementary Watershed (REW) (Reggiani
et al., 2000; Reggiani and Rientjes, 2005) model approaches. Physically-based mod-
elling suffers from drawbacks due to the complexity of the R-R transformation process
in combination with limitations in representing the small-scale spatial variability of me-
teorological inputs, physiographic characteristics, and initial conditions in the model.
Examples of drawbacks are excessive data requirements, large computational de-
mands, overparameterisation effects, and parameter redundancy effects. This is what
causes modellers to look for more parsimonious and simple model approaches that
incorporate a higher degree of empiricism, but it is (still) not clear how far this empirical
approach should be taken (cf. Nash and Sutcliffe, 1970; Beven, 2001a). Conceptual
model approaches are a first step from physically-based model approaches in a more
empirical direction. These model approaches use the principal of mass conservation in
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combination with simplified descriptions of the momentum and energy equations. Con-
ceptual modelling commonly implies that the model domain is represented by storage
elements, either in a spatially lumped or semi-distributed manner. Well-studied exam-
ples of conceptual modelling are the HBV (Lindstrom et al., 1997), the TOPMODEL
(Beven et al., 1995), and the Sacramento soil moisture accounting (Burnash, 1995)
model approaches.

The data-driven approach to forecasting runoff from a catchment is based on ex-
tracting and re-using information that is implicitly contained in hydrological data without
directly taking into account the physical laws that underlie the R-R processes (the most
important of which is the principle of mass conservation). The field of data-driven
modelling comprises a plethora of techniques (e.g. time series, empirical regression,
fuzzy rule-based systems and Artificial Neural Networks modelling), mostly originating
from statistics and artificial intelligence. Data-driven R-R models are generally quickly
and easily developed and implemented and do not suffer from most the drawbacks of
knowledge-driven models, but they have other disadvantages. Because of their low
transparency, which results from the inability to interpret their internal workings in a
physically meaningful way, they generally fail to give useful insights into the system un-
der investigation. Furthermore, the range of application is limited because data-driven
models only have validity over the range of the specific sample of the hydrological
records that is used for model calibration.

A data-driven technique that has gained significant attention in recent years is Artifi-
cial Neural Network (ANN) modelling. In many fields, ANNs have proven to be good in
simulating complex, non-linear systems. This awareness inspired hydrologists to carry
out the earliest experiments using ANNSs in the first half of the 1990s. Their promising
results lead to the first studies specifically on ANNs in R-R modelling (e.g. Halff et al.,
1993; Hjemfelt and Wang, 1993; Karunanithi et al., 1994; Hsu et al., 1995; Smith and
Eli, 1995; Minns and Hall, 1996). The ASCE Task Committee on Application of Artifi-
cial Neural Networks in Hydrology (ASCE, 2000) and Dawson and Wilby (2001) give
good state-of-the-art reviews on ANN modelling in hydrology. The majority of studies
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have proven that ANNs are able to outperform traditional statistical R-R techniques
(e.g. Hsu et al., 1995; Shamseldin, 1997; Sajikumar and Thandaveswara, 1999; Tokar
and Johnson, 1999; Thirumalaiah and Deo, 2000; Toth et al., 2000) and produce com-
parable results to conceptual R-R models (e.g. Hsu et al., 1995; Tokar and Markus,
2000; Dibike and Solomatine, 2001). The field of R-R modelling by means of ANNSs is
nevertheless still in an early stage of development and remains a topic of continuing
interest (see Anctil et al., 2004; Jain and Srinivasulu, 2004; Rajurkar et al., 2004, for
example). More research is needed to support the discussion on the value of these
techniques in this field, and to help realise its full potential.

In order to add to the knowledge about the relatively young field of ANN R-R mod-
elling, we investigated several ANN design aspects through a case study. Multi-layer
feedforward ANN models were developed for forecasting short-term streamflow. Both
hourly and daily data sets from the Geer catchment (Belgium) were used to develop
and to test these ANN models. We have particularly focused on the representation of
the hydrological state (i.e. the amount and distribution of stored water in a catchment) in
ANN models. Since the hydrological state for a great part determines the catchment’s
response to a rainfall event, it is critical as input to an ANN model. Previous discharge
values are often used as ANN inputs, since these are indirectly indicative for the hy-
drological state. In this paper, we discuss the negative consequences of this approach
and test several alternatives for state representation. Moreover, we discuss the evalu-
ation of ANN models during the calibration phase and consequently the importance of
a good choice of performance measures.

2. Artificial Neural Networks

2.1. History

The first theories on ANN techniques were conceived in the 1940s, and various rela-
tively successful neural computers were built during the following two decades. After a
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period of little development, interest in ANNs increased significantly in the late 1980s
due to improvements on existing techniques in combination with the increase of compu-
tational resources. Since then, the field of ANNs has grown quickly, and the widespread
applications of ANNSs prove that their potential has been recognised in many fields such
as earth sciences, economics, and health sciences.

2.2. Model description

An ANN is a mathematical model that consists of simple, densely interconnected ele-
ments known as neurons. These neurons are typically arranged in layers (see Fig. 1).
An ANN receives signals through the input units and these signals are consequently
propagated and transformed through the network towards the output neuron(s). In
some ANNSs, information always travels in the direction of the ANN output without de-
lay. These so-called feedforward networks are also used in this study. One of the
transformations performed by an ANN is multiplication with weights that express the
strength of the connections between neurons. During a calibration procedure known
as training, the internal pattern of connectivity between neurons — meaning the weights
and biases, and therefore the model’s response — is adapted to information that is pre-
sented to the network.

Figure 2 explains the transformations that data undergo in an ANN. The inputs of a
neuron (either network inputs or output values from a preceding neuron) are multiplied
with the weight that accompanies their connection (w). The results are summed and an
additional value, a so-called bias (b), is commonly added to this value. The resulting
net input (net) is transformed by a transfer function f into an activation value of the
neuron, denoted in the diagram as Y. This activation value is then propagated to
subsequent neurons.
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2.3. Training

ANNSs are trained by applying an optimisation algorithm, which attempts to reduce the
error in network output by adjusting the matrix of network weights W and (optionally)
the neuron biases. A common approach to ANN training in function approximation
applications such as R-R modelling is to use supervised training algorithms. These
algorithms are used in combination with sample input and output data of the system
that is to be simulated. The weights are changed according to the optimisation of some
performance measure, which is a measure for the degree of fit (or difference) between
the network estimates and the sample output values. The alteration of network param-
eters in the training phase is commonly stopped before the training optimum is found,
because the network will start learning the noise in the training data and lose its gen-
eralisation capability (overtraining). However, stopping too early means the ANN has
not yet learnt all the information from the training data (undertraining). Both situations
are likely to result in sub-optimal operational performance of an ANN model. It is for
this reason that the available data are often split in three separate data sets: (1) the
training set, (2) the cross-validation set, and (3) the validation set. The first provides
the data on which an ANN is trained. The second is used during the training phase
to reduce the chance of overtraining of the network. The minimisation of the training
error is stopped as soon as the cross-validation error starts to increase. This point
is considered to lie between undertraining and overtraining an ANN. Stopping earlier
means that a network does not take full advantage of the information content of the in-
put signals, and stopping later means that the networks fixates on the training data and
loses its capability to generalise. The latter of the three data sets is used to validate
the performance of a trained ANN. This so-called split-sampling method is also applied
in this study.
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2.4. Advantages and disadvantages

ANNSs have advantages over many other techniques since they are able to simulate
non-linearity in a system. They can also effectively distinguish relevant from irrelevant
data characteristics. Moreover, they are non-parametric techniques, which means that
ANN models do not necessarily require the assumption or enforcement of constraints
or a priori solution structures (French et al., 1992). This, in combination with the fact
that ANNSs are able to self-adjust to information, makes that little expertise of the prob-
lem under consideration is needed for applying them successfully. Lastly, because
of their compact and flexible model structure, ANNs have relatively low computational
demands and can easily be integrated with other techniques.

A disadvantage of ANNs, however, is that the optimal form or value of most network
design parameters (such as the number of neurons in the hidden layer) can differ for
each application and cannot be theoretically defined, which is why they are commonly
found using trial-and-error approaches. Another important drawback is that the training
of the network parameters tends to be problematic, which is due to the following rea-
sons: (1) optimisation algorithms are often unable to find global optima in complex and
high-dimensional parameter spaces, (2) overparameterisation effects may occur, and
(3) error minimisation in the training phase does not necessarily imply good operational
performance. The latter pertains to the representativeness of the training data for the
operational phase. For example, the training data should ideally reflect the distribution
of variables in the operational situation, and should not contain too many errors.

2.5. Model evaluation

The most important measures for evaluating model performance that are used in this
paper are the Root Mean Square Error (RMSE) and the Nash-Sutcliffe coefficient of
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efficiency (Fn’z) (Nash and Sutcliffe, 1970). The latter is formulated as:

F
R%2=1-— 1
- (1)
where

K A\ 2 K _
F=3 (-0 o= 2 (0-0)"

k=1

()

Fo is the initial variance for discharges and F is the residual model variance. In these
equations, K is the total number of data elements, @, and Q, are the observed and
the computed runoffs at the k' time interval, respectively and Q is the mean value of
the runoff over time. R? values of 1 therefore indicate perfect fits.

Another performance measure that is used is the Persistence Index, P/, defined by
Kitanidis and Bras (1980) as:

PI=1-F. (3)
where
K
Fo= D (Qu-04r)®. (4)
k=1

The difference with the A2 is that the scaling of F for the P/ involves the last known
discharge value (at time k minus the lead time L) instead of the mean flow. This
basically means that the model variance is compared with the variance of a very simple
model that takes the last observation as a prediction.

At the start of each training trial, ANN weights and biases have to be initialised. The
most-often applied method is random initialisation (Zijderveld, 2003). The goal of this
randomisation is to force the training algorithm to search other parts of the parameter
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space, thereby enabling a more robust overall optimisation procedure and increasing
the overall chances of finding a global error minimum. A result of this approach is that
the performance of an ANN is often different for each training trial, even if it is trained
using the same algorithm. There are three reasons why training algorithms do not find
the same parameter set for each training trial when training starts in a different part of
the parameter space. First of all, there may be more than one global optima for the
training set. Secondly, a training algorithm may not be able to find a global optimum and
get stuck in local optima, on flat areas or in ridges on the error surface. Lastly, in case
of applying cross-validation to prevent overtraining, the optimum in terms of the training
data will probably not coincide with the optimum for the cross-validation set. Therefore,
an algorithm might be stopped before finding a global optimum due to increasing cross-
validation errors. In the case of random initialisation, the performances of the various
training trials yield information on the parameter uncertainty of an ANN model type
in combination with a certain training algorithm. Presenting this uncertainty allows
for a more reliable and accurate comparison between combinations of ANN model
types and training algorithms. Performing and presenting only a single training trial
would be based on the assumption that this one trial represents a reliable indicator
for the average performance, but our experience teaches us that this assumption is a
risky one since ANN performance can be considerably variable between training trials.
Gaume and Gosset (2003) were aware of this issue and addressed it by presenting
ANN performance using Box-and-Whisker plots of the RMSE over an ensemble of
20 training trials. In our study, we present the mean and standard deviations of the
performance measures over an ensemble of 10 training trials. This ensemble size was
found to be appropriate for quantifying parameter uncertainty of our ANN models while
keeping calculation times acceptable. Time series plots and scatter plots are presented
for the median of the ensemble.
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3. Application
3.1. Site of study and data

The Geer river (Fig. 3) is located in the north of Belgium, North West Europe, and
contributes to the river Meuse. The river's catchment size is 494 km?. The mean annual
rainfall is approximately 810 mm, and the perennial river has discharges ranging from
1.8m%/s in dry periods to peaks of roughly 10 m®/s.

Daily time series of rainfall at stations Waremme, Bierset and Visé, evaporation at
Bierset, and streamflow at the catchment outlet at Kanne were available for the pe-
riods 1980-1991 and 1993-1997. For each variable, the time series over these two
periods were connected into one time series. Except for evaporation, the continuity of
the time series was largely preserved because the first period ended and the second
period started with a period of low discharge and rainfall. Hourly time series of rainfall
at station Bierset and streamflow at Kanne were available for the period 1993—-1997.
Figure 4 shows the daily catchment discharge in combination with the rainfall at loca-
tion Bierset for the period 1980-1991. Figure 5 shows the hourly data for the period
1993-1997.

Both the daily and hourly time series were divided into 55% for training, 25% for
cross-validation and 20% for validation (see Figs. 4 and 5). All three fragments of the
time series start with a period of constant low discharge and rainfall.

3.2.  ANN design

The ANN type that we used in this study is the static multi-layer feedforward network.
Static networks do not have the dimension of time incorporated in the network archi-
tecture, as opposed to dynamic networks, which use feedback connections or local
memories in neurons. These static ANNs are nevertheless able to integrate the time
dimension in the network by using so-called “tapped delay lines”. This method presents
a sequence of time series values (e.g. P(t),P(t -1),..., P (t — m)) as separate net-
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work input signals. P (t) represents an input variable in time and m the size of the
window in time. The number of input units thus increases with the size of this window
in time.

Increasing the number of parameters of an ANN by adding hidden neurons or layers,
complicates network training. Moreover, a large number of parameters increases the
chance of overtraining occurring. ANNs with one hidden layer are commonly used in
rainfall-runoff modelling (see review by Dawson and Wilby, 2001), since these networks
are considered to offer enough complexity to accurately simulate the dynamic and non-
linear properties of the rainfall-runoff transformation. Preliminary test results showed
that these ANNs indeed outperformed the networks with two hidden layers. The op-
timal size of the hidden layer was found by systematically increasing the number of
hidden neurons until the trained network performance no longer improved significantly.
Figure 6 shows the performance of various ANN architectures in terms of the Nash-
Sutcliffe coefficient. The ANN input for these simulations consisted of daily data with
a total of 17 signals, concerning evaporation at one station, rainfall at three stations,
and previous discharges. The results show that there is indeed a point at which the
performance no longer increased (4 hidden neurons). Note that the 95% confidence
bounds widen as the number of hidden neurons increases. This implies that the train-
ing algorithm is less likely to find optima as the dimensionality of the parameter space
increases. We observed that the number of hidden neurons that resulted in parsimo-
nious but well-performing ANN architectures was usually around the square root of the
number of input neurons.

ANN architectures with one output neuron were consistently used throughout this
study. The output signal from this neuron was the discharge prediction for a certain lead
time. In order to make multi-step-ahead predictions (i.e. predictions with a lead time
larger than one time step), two methods were available: (1) re-inputting a one-step-
ahead prediction into the network, after which it predicts the two-step-ahead prediction,
and so forth, and (2) by directly outputting the multi-step-ahead prediction. The first
method uses the ANN’s own preliminary estimations as a source of information for
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further predictions, the latter uses only the original data. Our test results showed that
for both the daily and hourly data the two methods performed nearly similar up to a
lead time of respectively 4 days and 12 h. Because of its simplicity, we have used the
direct multi-step-ahead method.

Sigmoid functions are commonly used as transfer functions in hidden layers. We
chose the popular hyperbolic tangent function, a=tanh (net). The identity function,
a=net, was used as transfer function in the output neuron.

3.3. Input signals

The input signals to an ANN model should comprise all relevant information on the
target output, and on the other hand, they should contain as less irrelevant information
as possible (Zijderveld, 2003). However, in order to facilitate the training algorithm,
largely overlapping information content of input signals should be avoided. Because
an increased number of input signals leads to a more complex network structure, the
task of training algorithms is complicated, which is likely to have a negative effect on
network performance.

The number of input units increases with the memory length of a tapped delay line
(as mentioned above). In order to make a parsimonious selection of ANN inputs, we
examined the linear correlations between the input and output time series. This simple
linear method does not reveal all information content that a non-linear technique such
as an ANN is able to make use of, but from experience we know that it is adequate.
Figures 7 and 8 show the correlation coefficients between various variables and the
daily and hourly time series of runoff at Kanne for various time lags. The minimum
and maximum delays were chosen in such a way as to enclose high values of the
correlation for each variable, thereby ensuring high information content for each of the
signals.

Because the hyperbolic tangent transfer function becomes saturated at a certain
range, all input data are linearly scaled to a range of —1 to 1. The output of this transfer
function is bounded to the range of —1 to 1, which is why the output data was scaled to
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arange of —0.8t0 0.7. The reason for setting these ranges narrow is to enable the ANN
to extrapolate beyond the training data range. The output data range is asymmetrical
because it is more likely that the upper bound of the training data range is exceeded
than the lower bound.

3.4. Training algorithms

The ANNSs were trained using supervised training algorithms that tried to minimise an
performance measure (often termed objective function from the point of view of cali-
bration), namely the Mean Squared Error (MSE). Some popular algorithms were used
for training, such as gradient descent techniques (e.g. backpropagation algorithm) and
Newtonian optimisation techniques (e.g. Levenberg-Marquardt algorithm). For details
on these and other popular training algorithms, see (Haykin, 1999) or (De Vos, 2003).
A so-called batch training approach was used for training the ANNSs: the whole training
data set is presented once, after which the weights and biases are updated according
to the average error.

The algorithms that were tested in this research are the backpropagation (BP),
backpropagation with variable learning rate and momentum (BPvm), resilient back-
propagation (RBP), Polak-Ribiere, Fletcher-Reeves, and Powell-Beale conjugate gradi-
ent (CG-P, CG-F, CG-B), Broyden-Fletcher-Goldfarb-Shanno (BFGS), and Levenberg-
Marquardt (L-M) algorithms. Table 1 shows the performance of these algorithms in
terms of the mean RMSE and RZ, and the number of epochs. The latter gives an
indication of the convergence speed of the algorithm.

The L-M algorithm outperformed the other algorithms in terms of accuracy and con-
vergence speed in all test cases. Moreover, the standard deviation of the L-M algorithm
was very low: 0.012 for daily data and 0.001 for hourly data. The other algorithms show
much more spread in their performance measures (around 5 to 50 times more, depend-
ing on the algorithm), which indicates that the L-M algorithm is much more robust.

The above results show that ANN model performance can be be very dependent
on the ability of optimisation algorithms to find a good set of weights and biases (also
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pointed out by, for example, Hsu et al., 1995). However, many studies on ANN R-R
models have relied on training algorithms such as the classic backpropagation algo-
rithm, backpropagation variants with momentum and/or variable learning rate, or con-
jugate gradient-based algorithms (see review by Dawson and Wilby, 2001). In our opin-
ion, many studies using multi-layer feedforward ANNs for R-R modelling would benefit
from using more sophisticated algorithms, such as L-M. Other alternatives, which were
not tested here, are the LLSSIM algorithm (Hsu et al., 1995) and algorithms based
on global optimisation, such as simulated annealing (see Kirkpatrick et al., 1983) and
genetic algorithms (see Goldberg, 2000). The merits of using a good algorithm are
threefold: (1) better accuracy leads to better ANN performance, (2) faster convergence
leads to smaller calculation times, and (3) lower spread in the performance makes it
easier and more honest to evaluate and compare ANNs. Unfortunately, few algorithms
are able to combine these three merits.

4. Results and discussion
4.1. Main results

Figure 9 shows a scatter plot of the results of a one-day-ahead (£+1) prediction of an
ANN model using the daily data from the Geer catchment. The input to the network
consisted of three previous rainfall values (f to #-2) at the three available measurement
stations, the evaporation from ¢-1 to ¢-5, and discharge values at the catchment outlet
from t to £-2. The ANN architecture was: 17-5-1 (17 input units, 5 hidden neurons, 1
output neuron). A detail of the observed and predicted time series of the daily data
is presented in Fig. 10. The ANN model shows to be able to make one-step-ahead
forecasts with reasonable accuracy, considering the large ratio between lead time and
catchment mean lag time (which is 8h, see Fig. 8). The biggest drawback is that
the model underestimates quite a number of moderate peak flows by up to —40%.
Nevertheless, Fig. 10 also shows that the model’s timing of the peaks is quite good.
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Low flows are mostly well simulated, even though the model’s low flow forecasts show
more fluctuations than the observed flow pattern. This is most likely due to the model
overestimating the effect of small rainfall events.

Scatter plots of simulation results of the ANN models based on hourly data are pre-
sented in Figs. 11 and 12. The first shows the results of a one-hour-ahead discharge
forecast using an 18-5-1 ANN model with rainfall inputs from ¢-5 to £-19 and discharge
from t to £-2. The latter presents the results of a six-hour-ahead forecast using a similar
model and similar input signals (only the rainfall window of time is shifted to ¢ to t-14).
Figure 13 shows the mean R? for different lead times over an ensemble of ANN mod-
els, along with the 95% confidence bounds. The results show that the ANN models
are able to make reasonably good forecasts (in terms of the Nash-Sutcliffe coefficient)
for several hours ahead. When forecasting 9 or more hours ahead, the performance
rapidly deteriorates. This is due to the fact that rainfall up to time ¢, which are used as
input signals, no longer contains significant information on the forecasted discharge,
because the catchment’s mean lag time is exceeded (cf. Fig. 8).

The scatter plot with low spread, the low RMSE, and the high R? coefficient of the
one-hour-ahead forecast indicate excellent model performance, but the P/ does not
(see Fig. 11). Moreover, the multi-step-ahead forecasts are disappointing, especially
when compared with the forecast based on daily data. A visual interpretation of the
simulation results, a detail of which is presented in Fig. 14, shows why: the prediction
of the ANN model is lagged in comparison with the observed time series. This pre-
diction lag effect is the result of using previous discharge values as ANN inputs. The
high autocorrelation of the hourly discharge time series makes that the autoregres-
sive model component, which is implicitly contained in ANN models that use previous
discharge values, becomes dominant. The ANNs give the most weight to the latest
discharge input (usually, @ at t) for calculating the forecast (Q at t+L). In other words,
the ANN models say that the best forecast for the discharge over a certain lead time is
around the value of the current discharge. In terms of most performance measures, this
is indeed true for this case. As a consequence, the models underrate the information
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contained in other input signals.

The prediction lag effect is especially significant in forecasts with small lead times, but
more practically relevant forecasts with longer lead times are also noticeably influenced
by this effect. However, the longer the lead time L becomes, the lower the correlation
between Q at t and Q at t+L will be. As a result, the ANN model will give more weight
to the rainfall information, which causes the prediction lags to decrease. Naturally, the
overall performance in terms of squared errors also decreases with longer lead times.
All this is depicted in Fig. 15, where forecast results for various lead times are evaluated
in terms of A2 (shown on the y-axis), for various shifts in time (shown on the x-axis).
The ANN models that were used for these simulations are similar to the ones used to
produce Figs. 11 to 13. The R? at zero shift corresponds to the actual performance
of the forecast. The predicted time series is subsequently shifted in time against the
observed time series, after which R? is recalculated. The time shift at which the R?
coefficient is maximised, is an expression for the mean lag in the model forecast. This
is done for a number of different lead times (the different lines). The idea for this method
of timing evaluation is taken from Conway et al. (1998).

To the authors’ knowledge, no previous researchers have appreciated prediction lags
in ANN model forecasts and related this effect to the introduction of an autoregressive
component by using previous discharge values. The issue has been remarkably over-
looked even though various research results indicate that lags indeed occur in the ANN
model forecasts (e.g. Campolo et al., 1999; Dawson and Wilby, 1999; Zealand et al.,
1999; Thirumalaiah and Deo, 2000; Jain and Srinivasulu, 2004).

The one-day-ahead forecast of the previously discussed daily-data models outper-
forms the forecasts of the hourly-data models with a lead time of 6 h and more (both
in terms of timing and Hz)_ The reason for this difference in performance is that the
cross-correlations between daily rainfalls and discharge series are higher than those
of the hourly series, while the autocorrelation of the daily discharge series is lower than
that of the hourly series (shown in Figs. 7 and 8). As a result, the information content
of the daily input data is more evenly spread over the various input signals and the
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autoregressive component of the ANN R-R model does not become so dominant that
a large number of lagged forecasts occur. It is important to realise that the importance
of the prediction lag effect is thus not always significant.

Two sources of the prediction lag effect can be identified, each of which may be
able to suggest other possible solutions. Firstly, there is the matter of ANN model
input. If previous discharge values are used for hydrological state representation of
the system, pronounced negative effects may be introduced in the form of prediction
lags. Secondly, there is the difficulty of evaluating ANN model performance, especially
during the training phase. The squared-error-based performance measure that we
used for model training and validation is clearly not always strict enough to result in a
satisfactory R-R model, since it may undervalue correct timing of the forecast. Both
topics are discussed in the following two sections respectively.

4.2. Hydrological state representation

The hydrological state of a river basin prior to a rainfall event is important in governing
the processes by which a catchment responds to this rainfall and the proportion of the
input volume that appears in the stream as part of the hydrograph (Beven, 2001b).
The majority of studies on ANNs in R-R modelling have used input signals that are
merely indirectly related to the hydrological state. For example, previous values of dis-
charge or water levels can be considered indirect indicators of the hydrological state of
a catchment and are therefore often used as model inputs (e.g. Hsu et al., 1995; Minns
and Hall, 1996; Campolo et al., 1999). Our study proves that this may not be a good
solution, because the autoregressive model component that is thus introduced can be-
come too dominant, resulting in lagged model forecasts. Another possible source of
information for the hydrological state is the (weighted) cumulative rainfall over a pre-
ceding period of time (e.g. Shamseldin, 1997; Rajurkar et al., 2004). Air-temperature
or (potential) evaporation time series are also often used in combination with rainfall
time series (e.g. Zealand et al., 1999; Tokar and Markus, 2000). These evaporation
and temperature data can be considered to account for losses in the water balance of
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a catchment, thereby adding to the information on the hydrological state. More direct
indicators of the hydrological state are variables related to soil moisture and groundwa-
ter levels. Recent studies by Gautam et al. (2000) and Anctil (2004) have shown that
time series of soil moisture measurements and estimations can be successfully used
as ANN model input. De Vos (2003) and De Vos et al. (2005) have proved the value of
groundwater level time series as ANN inputs.

Three alternatives for hydrological state representation were tested, evaluated and
compared in terms of both squared error and timing. Tables 2 and 3, and Figs. 16
and 17 show the results of this. Firstly, a time series of the non-decaying moving
average of the discharge (Qma) was used as ANN input. A moving average time se-
ries of the discharge can also be considered to represent the hydrological state and
has the advantage over using discharge time series that the correlation with the ANN
output is lower. The near absence of lags in the daily-data model forecasts and the
decrease of the prediction lag effect with increased lead times (see Fig. 15) suggested
that this approach would improve timing accuracy. We used a memory length of 192 h
(eight days) for the moving average of the discharge. Secondly, time series of the non-
decaying moving average of the rainfall (Pma) were tested. By trial and error, we found
that using a memory length of 480 h produced the best results. Lastly, a number of
simulations using the simple soil moisture reservoir component of the GR4J lumped
conceptual rainfall-runoff model (Edijatno et al., 1999; Perrin et al., 2003) were per-
formed to produce a time series of estimated soil moisture (SM). The hourly rainfall
time series and temporally downscaled evaporation time series served as input to the
GR4J soil moisture model component. The only parameter that needed to be defined
is the reservoir's maximum capacity. Of the several values that were tested, a maxi-
mum capacity of 400 mm produced the best results. Anctil et al. (2004) have also used
the GR4J model component to create soil moisture time series, which too were sub-
sequently used as ANN input. The authors refer to their interesting paper, which gives
a more extensive and in-depth presentation on the topic of combining soil moisture
modelling with ANN R-R modelling.
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Tables 2 and 3 show that the simulations with Pma and the SM time series are
not affected by any prediction lags. The performance as indicated by the R? and PI,
however, is mediocre and only slightly better than using only the P time series as ANN
input. Using the @ma time series results in decreased (but still noticeable) prediction
lags compared to the simulations with @, but the R? and P/ also decrease. Similar R?
and P/ results are produced by a combination of Pma, @ma and SM, but the prediction
lag effect is almost eliminated. It is interesting to note that the test results show that any
combination of these variables with Q still results in prediction lags, showing that the
autoregressive component again dominates as a result of using @ as ANN input. In the
case of six-hour-ahead forecasts, however, the average prediction lag decreases from
-2 to -1 due to the additional information in the Pma, @ma and SM model inputs.
This proves that even strongly dominant autoregressive model components can be
corrected for timing errors by using additional input signals.

Figures 16 and 17 present details of the forecasted time series using the various
hydrological state representators. The simulations with Pma show a consistent over-
estimation of low flows and an inaccurate reproduction of the shape of the recession
curves. Moreover, most peak flows are underestimated, especially in the six-hour-
ahead forecast. The models with SM underestimate high peak flows, but reproduce
low flows and recession curves quite well (although there is a slight overestimation).
There are abrupt changes in the slope of the recession curve, however, where a more
gradual decrease of the discharge would be more accurate. This is a possible result of
using the simple GR4J model for creating the SM time series, and other soil moisture
models or soil moisture measurements might produce better results. The ANNs that
used @ma as input show good overall performance but contain some inaccuracy due
to fluctuations that occurred in periods of low flows. They were best at simulating peak
flows, even though more than half of the peaks were still underestimated significantly
(by 10% or more). Neither of the three alternatives can be considered very adequate
as a sole representator of hydrological state. However, the simulations with all three
alternatives for hydrological state representation (i.e. Pma, Q@ma, SM) show that the
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ANN model attempts to combine the best of each alternative. This can be concluded
from the good overall performance (resulting from the @ma input) and the correctly
timed forecasts (resulting from the Pma and SM inputs). For the one-hour-ahead fore-
cast, the information from all input signals is approximately equally weighted, and the
six-hour-ahead forecast is slightly dominated by the information contained in @ma. Fig-
ure 18 shows scatter plots of the one-hour-ahead and the six-hour-ahead forecasts for
this model type.

Note that in neither of the above simulations extreme peak flows are well approxi-
mated. One of the reasons for this is that the ANN models have difficulties dealing with
the extremely nonlinear catchment response in the case of wet hydrological catchment
state in combination with rainfall events. Another reason is that our ANN models at-
tempt to simulate the complete range of the hydrograph and therefore may undervalue
the high peak flow errors, since these flows occur only incidentally. Finally, there are
only a few examples of extreme peak flows in the training data, and hence the model
has only little information on these types of events, to which it can adapt.

Finding better ways of representing hydrological state is only a first step towards
better ANN modelling of R-R processes. The various ANN input signals that serve as
state representators can complement each other in terms of information content, but
they are also likely to have some information overlap. The ability to exploit the total
information content depends strongly on the training algorithm and the performance
measure that this algorithm is trying to optimise. The following section will discuss the
choice of performance measures in ANN training for R-R modelling.

4.3. Performance measures for ANN training

An ANN can be trained by applying an optimisation algorithm that tries to find param-
eter values that minimise the distance between model output and target data. This
distance is commonly expressed by a single performance measure such as the MSE.
Any single performance measure, however, may not adequately measure the ways in
which the model fails to match the important characteristics of the target data (Yapo et
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al.,, 1998). For example, our results show that the MSE performance measure may
fail to penalise a time shift in time series, while correct timing is of utmost impor-
tance in forecasting discharge. Automated calibration algorithms exclude the use of
visual assessments of the performance, but using more than one performance mea-
sure for evaluating model quality during the calibration procedure (commonly termed
multi-objective calibration) may be a good alternative for this. In multi-objective model
calibration, a number of performance measures (that are ideally unrelated) are aggre-
gated into a single objective function that is to be minimised. Possible performance
measures that can be combined are, for example, measures based on squared error,
timing, and volume. An interesting study in relation to this is the one by Conway et
al. (1998), who recognised the problem of lagged predictions in solar activity time se-
ries forecasting using ANNs. They suggested to train the ANNs using a multi-objective
approach that aggregated a squared-error performance measure and a measure for
the average prediction lag. The prediction lag effect was successfully eliminated at the
cost of a significant increase of the RMSE.

The use of multiple performance measures for model evaluation in the calibration
phase has gained growing attention of hydrologists in recent years (e.g. Yapo et al.,
1998; Madsen, 2000; Seibert, 2000; Cheng et al., 2002). These applications have been
on knowledge-driven hydrological model approaches, but it is likely that data-driven
model approaches like ANNs will also benefit from such a calibration approach. The
lack of physical laws in data-driven modelling approaches and the fact that they have
many non-defined parameters that need calibration makes these models vulnerable
to errors. A discussion of the topic of multi-objective calibration of (data-driven) R-R
models, however, is outside the scope of this paper. For a thorough discussion on the
merits and difficulties of multi-objective calibration in hydrological modelling we refer to
Gupta et al. (1998).
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5. Summary and conclusions

The purpose of this study was to find whether multi-layer, feedforward ANNs can be
effectively used as R-R models, and to investigate the role of hydrological state rep-
resentation in ANN R-R modelling. The results of the one-day-ahead forecasts using
daily data were promising and in accordance with the consensus that (at least in some
cases) ANNs are alternatives for traditional R-R modelling approaches. However, the
simulations with hourly data were afflicted by a constraint of this modelling approach
that has hitherto been neglected by hydrologists: the possibility of lags in the fore-
casts. Since they are considered indicators of the hydrological state, previous values
of discharge are often used as ANN model inputs, which introduces an autoregressive
model component in the ANN model. Our results show that this is not necessarily a
good solution, because high autocorrelation of the discharge time series may result in
an uneven spread of the information content in network input. This leads to the au-
toregressive model component becoming too dominant and the ANN model producing
a forecast that is very similar to the last known discharge, effectively causing timing
errors in the predictions. The prediction lag effect is especially significant for short lead
times, but more practically relevant forecasts with longer lead times were also affected
by it. This issue was discussed from two points of view: (1) hydrological state repre-
sentation and (2) model performance measures for ANN training. Firstly, instead of
representing the hydrological state using previous discharge, we tested a number of
alternatives. The best results, in terms of timing and overall fit, were obtained using
a combination of multiple hydrological state representators: a moving average over
the previous discharge, a moving average over the previous rainfall, and the output of
the simple GR4J soil moisture model. The usefulness of the latter proves that com-
plementary conceptual models can be valuable additions to ANN model approaches.
Secondly, we conclude that not all differences between modelled and observed hydro-
graph characteristics such as timing, volume, and absolute values can be adequately
expressed by a single performance measure such as the MSE, which was used dur-
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ing the automatic training procedure of the ANN. It is therefore our opinion that using
multiple performance measures in the training phase is necessary to fully exploit the
capabilities of ANNs for R-R modelling. These multiple performance measures should
account for a more complete range of aspects on which R-R models are to be evalu-
ated. Another conclusion on ANN training we draw from this study is that the choice of
training algorithm greatly affects model performance in terms of accuracy, robustness,
and training speed. For this reason, we recommend the use of sophisticated algorithms
in hydrological ANN modelling.
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Table 1. ANN model performance using various training algorithms.
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Daily data Hourly data

Algorithm RMSE R? Epochs  RMSE R? Epochs
BP 1.275 -1.868 1000 0.572 0.411 800
BPvm 0.926 —0.568 140 0.948 -0.502 20
RBP 0.690 0.223 30 0.279 0.871 80
CG-P 0.770 0.010 25 0.206 0.929 60
CG-F 0.519 0.519 60 0.185 0.941 80
CG-B 0.425 0.706 50 0.164 0.956 90
BFGS 0.567 0.427 30 0.182 0.942 100
L-M 0.339 0.815 20 0.151 0.963 40
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Table 2. ANN model performance for one-hour-ahead forecast using various methods of hy- Constraints of ANNs
drological state representation. for rainfall-runoff
modelling
Input Time Archi-  Mean St. Mean St. Avg.
window tecture R®* dev.R®> Pl  dev.Pl lag N. J. de Vos and
T. H. M. Rientjes

P -5t0-19 15-4-1 0.513 0.047 -10.676 1.134 0.1

P -51t0-19

Q 0to—2 18-5-1 0.963 0.001 0.121 0.020 -1.0

P ©1©-19 1551 0803 0020 -3557 0494 -10

Qma O0to-2

P -51t0-19

Pma Oto—2 18-5-1 0.479 0.057 -11.403 1.398 0.0

P -5to-19

SM 010 -2 18-5-1 0.560 0.022 -9.540 0.535 0.0

P -51t0-19

Qma 0102 5, 51 0656 0044 -7.238 1054 -0.1

Pma Oto-2

SM Oto-2

P -51t0-19

Q Oto-2

Qma Oto-2 27-5-1 0.964 0.002 0.133 0.035 -1.0

Pma Oto-2

SM Oto-2

EG

(@

393


http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/2/365/hessd-2-365_p.pdf
http://www.copernicus.org/EGU/hess/hessd/2/365/comments.php
http://www.copernicus.org/EGU/EGU.html

HESSD
2, 365-415, 2005

Constraints of ANNs

Table 3. ANN model performance for six-hour-ahead forecast using various methods of hydro- .
for rainfall-runoff

logical state representation.

modelling
Input Time Archi-  Mean St. Mean St. Avg. N. J. de Vi d
window tecture R? dev.R® Pl  dev.Pl lag T.H'Me Rci):n?'r;s
P  Oto-14 1541 0491 0032 0258 0079 00 - L LRfi,
P Oto-14
o  oOt2 1851 0791 0006 0482 0015 -20
P~ Q0-14 4551 0682 0012 0213 0029 -08
Qma O0to-2
P Q-4 4551 0521 0061 0185 0150 0.0
Pma Oto-2
P Oto-14
oM oty 18-5-1 0558 0054 -0092 0134 00
P Oto-14
Qma  0l0-2 " 5, 51 0688 0016 0229 0039 -0.1
Pma 0to-2
SM  0to-2
P  Oto-14
Q Oto-2
Qma 0to-2 27-5-1 0.806 0014 0518 0035 -1.0
Pma 0Oto-2
SM  0to-2
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Fig. 1. An exemplary feedforward ANN with one hidden layer. The input units are not consid-
ered neurons since they do not transform data and merely pass information to the network.
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Fig. 2. Schematic representation of the transformations inside artificial neurons.
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Fig. 3. Map of the Geer catchment, showing various measurement stations.
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Fig. 5. Hourly runoff (Kanne) and rainfall (Bierset) from 1993 to 1997.
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Fig. 6. ANN performance for various hidden layer sizes. The squares represent the mean
Nash-Sutcliffe coefficients A2, and the bars depict the 95% confidence bounds.
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Fig. 8. Correlation with the hourly runoff time series for rainfall and runoff and for various lags.
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Fig. 9. Scatter plot of predicted versus observed daily discharges for a one-day-ahead forecast.
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Fig. 11. Scatter plot of predicted versus observed hourly discharges for a one-hour-ahead
forecast based on historical rainfall and discharge values.
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Fig. 12. Scatter plot of predicted versus observed hourly discharges for a six-hour-ahead

forecast based on historical rainfall and discharge values.
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Fig. 13. ANN performance for multi-step-ahead predictions, in terms of the Nash-Sutcliffe

coefficient /2, with 95% confidence bounds.
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Fig. 17. (a) For the caption, please see next page.

412

HESSD
2, 365-415, 2005

Constraints of ANNs
for rainfall-runoff
modelling

N. J. de Vos and
T. H. M. Rientjes

EG

(@


http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/2/365/hessd-2-365_p.pdf
http://www.copernicus.org/EGU/hess/hessd/2/365/comments.php
http://www.copernicus.org/EGU/EGU.html

HESSD
2, 365-415, 2005

9 T T T

: Observed -

- — _ P+SM Constraints of ANNs
8[ —— P+Pma+SM+Qma K for rainfall-runoff

’ modelling
7 - -

N. J. de Vos and
T. H. M. Rientjes

Discharge (m3/s)

| | | | | | | | |
4400 4500 4600 4700 4800 4900 5000 5100 5200 5300
Time Points Test Set

Fig. 17. (b) Details of ANN model results for six-hour-ahead forecasted time series using
various methods of hydrological state representation.
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Fig. 18. (a) For the caption, please see next page.
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Fig. 18. Scatter plots of predicted versus observed hourly discharges for (a) a one-hour-ahead
and (b) a six-hour-ahead forecast based on P, Pma, SM, and Qma inputs.
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