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Abstract

Even in physically based distributed hydrological models, various remaining parame-
ters must be estimated for each sub-catchment. This can involve tremendous effort,
especially when the number of sub-catchments is large and the applied hydrological
model is computationally expensive. Automatic parameter estimation tools can signifi-
cantly facilitate the calibration process. Hence, we combined the nonlinear parameter
estimation tool PEST with the distributed hydrological model WaSiM. PEST is based
on the Gauss-Marquardt-Levenberg method, a gradient-based nonlinear parameter es-
timation algorithm. WaSiM is a fully distributed hydrological model using physically
based algorithms for most of the process descriptions.

WaSiM was applied to the alpine/prealpine Ammer River catchment (southern Ger-
many, 71Okm2) in a 100x100m? horizontal resolution. The catchment is heteroge-
neous in terms of geology, pedology and land use and shows a complex orography
(the difference of elevation is around 1600 m). Using the developed PEST-WaSiM in-
terface, the hydrological model was calibrated by comparing simulated and observed
runoff at eight gauges for the hydrologic year 1997 and validated for the hydrologic
year 1993. For each sub-catchment four parameters had to be calibrated: the reces-
sion constants of direct runoff and interflow, the drainage density, and the hydraulic
conductivity of the uppermost aquifer. Additionally, five snowmelt specific parameters
were adjusted for the entire catchment. Altogether, 37 parameters had to be calibrated.
Additional a priori information (e.g. from flood hydrograph analysis) narrowed the pa-
rameter space of the solutions and improved the non-uniqueness of the fitted values. A
reasonable quality of fit was achieved. Discrepancies between modelled and observed
runoff were also due to the small number of meteorological stations and corresponding
interpolation artefacts in the orographically complex terrain.

A detailed covariance analysis was performed allowing to derive confidence bounds
for all estimated parameters. The correlation between the estimated parameters was
in most cases negligible, showing that parameters were estimated independently from
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each other.

1. Motivation

Efficient parameter estimation techniques are a basic prerequisite for the successful
application of distributed hydrological models to questions of sustainable water man-
agement. Parameter estimation must be performed before final assessments on water
availability, flood risk or hydrological impact analysis of regional climate change can be
addressed.

Even in physically based hydrological models, a set of parameters generally remains
that must be calibrated. Lumped parameters (such as recession constants) must even
be calibrated for each sub-catchment, which may involve considerable effort. Dis-
tributed and physically based hydrological models are usually much more CPU-time
demanding than pure lumped models. This is particularly true for hydrological models
that solve nonlinear equations (such as the Richards equation for infiltration in the un-
saturated zone) and that couple to 2- or 3-dimensional groundwater models (like the
hydrological model applied in this work, WaSiM). Here, systems of equations must be
solved numerically and the effort increases with the number of horizontal grid points
and the vertical resolution. Often, calibration and parameter estimation are performed
by the usual “trial and error” method. Parameters are adjusted manually until simu-
lated and observed river runoffs correspond well. Parameter estimation algorithms can
facilitate this effort. When large, nonlinear and CPU time demanding models have to
be calibrated, the number of model runs must be as small as possible. The Gauss-
Marquardt-Levenberg method has the advantage that it can generally estimate param-
eters using fewer model runs than any other estimation method for nonlinear models.
The model-independent Parameter Estimation Tool PEST (Doherty, 2002) is a public
domain code that applies the Gauss-Marquardt-Levenberg algorithm. PEST is suc-
cessfully applied in many fields of geophysical sciences, in particular in groundwater
modelling. It has proved to be a powerful and robust tool and was therefore applied in
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this study.

Alpine catchments carry specific challenges. Response times of runoff peaks after
precipitation events can be extremely short owing to steep gradients. Moreover, climate
zones change over short distances as temperatures decrease with higher elevations.
Snow dynamics significantly influences runoff behaviour. Often, only very little informa-
tion on groundwater and hydrogeology is available. All these constraints hold true for
the Ammer catchment.

Both the Ammer catchment and the setup of WaSiM is described in Kunstmann et
al. (2004) who investigated the impact of climate change on the hydrology of the Ammer
catchment. It is repeated for reasons of completeness in the following two sections.

2. The Ammer catchment (following Kunstmann et al., 2004)

The Ammer catchment drains into Lake Ammersee, located around 50 km south-west
of the city of Munich (Germany). The catchment covers an area of around 710 km? in
southern Bavaria (Fig. 1). The landscape of the alpine and prealpine drainage basin
is characterised by high spatial geological and pedological differentiation, a complex
orography and corresponding specific climatological conditions. The highest elevation
within the catchment is 2185 m (Kreuzspitze), and the outflow into Lake Ammersee is
at 533 m above sea level.

The catchment can be divided into two landscape units: the prealpine hill country and
moorland and the Swabian-Upper Bavarian foothills of the Alps. The main geological
units are the limestone-alpine zone in the southern part, the flysch zone bordering in
the north, the folded molasses and the unfolded molasses in the northern part of the
catchment.

Soils have formed since the late glacial and post glacial (e.g. Ludwig, 2000); soil type
distribution is shown in Fig. 2. An overview of recent vegetation types is given in the
land use map shown in Fig. 3. It is based on the interpretation of Landsat-TM images
for which a fuzzy logic algorithm was applied. Around 50% of the area is (mostly
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coniferous) forest, which constitutes the major vegetation unit. Digital elevation, soil
and vegetation data were obtained from public data sources derived in the EU funded
RAPHAEL project (Runoff and Atmospheric Processes for Flood Hazard Forecasting
and Control, Bacchi and Ranzi, 2000) in which the catchment of the Ammer River
(among other European alpine catchments) was investigated.

The catchment’s climate is cool-temperate and humid. Precipitation maximum is
in summer. Owing to the relief all climate variables have latitude- and altitude-
dependent gradients. Long-term mean temperature is 7-8°C. In the southern moun-
tainous regions, the mean temperature drops to 4.5°C. Temperature distribution shows
an altitude-dependent gradient of around 0.6°C/100m in summer and 0.45°C/100m
in winter. Mean precipitation is around 1400 mm/year of which 67% falls in summer.
In the prealpine region maximum precipitation is 140—160 mm in June; in the alpine
region it is >200 mm in July. Days with snow cover (snow depth >10cm) in the catch-
ment are around 130 days/year. Radiation is less variable. In the prealpine part of the
catchment it is around 1100 kWh/m? and rises to 1200 kWh/m? in the alpine summit
regions (Ludwig, 2000).

The receiving water body of the Ammer is Lake Ammersee, which in turn drains (via
the River Amper) to the River Danube. Characteristic water discharges of the Ammer
catchment at its eight runoff gauges are given in Table 1. Specific discharges in the
catchment are comparatively high, which is typical for alpine and prealpine environ-
ments in humid climates.

3. The distributed hydrological model WaSiM (following Kunstmann et al., 2004)

The distributed hydrological model WaSiM was applied (Schulla and Jasper, 2000) to
simulate the hydrology of the Ammer catchment. WaSiM uses physically based algo-
rithms for the majority of the process descriptions, including an infiltration approach
after Green and Ampt (1911), estimation of saturation time after Peschke (1987), and
solving the Richards equation (Richards, 1931; Phillip, 1969) for the description of the
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soil water fluxes in the unsaturated zone (Jasper et al., 2002). The dependence of the
suction head and the hydraulic conductivity on soil moisture content is parameterized
according to van Genuchten (1976). Interflow is calculated in defined different soil lay-
ers, depending on suction, drainable water content (d), hydraulic conductivity (k), and
gradient. Surface runoff is routed to the subbasin outlet using a subdivision of the basin
into flow time zones. For considering retention, a single linear storage approach is ap-
plied to the surface runoff in the last flow time zone (with recession constant k). Trans-
lation and retention of interflow is treated accordingly (recession constant k;). Potential
and real evapotranspiration is calculated soil and vegetation specific using the Penman-
Monteith equation (Monteith, 1975; Brutsaert, 1982). Interception is accounted for by a
bucket approach. Snow accumulation and snowmelt are modelled according to Ander-
son (1973) and Braun (1985). Surface runoff is created for each grid cell as the sum of
infiltration excess and snowmelt along the topographic gradient towards the next river.
It is assumed that saturated hydraulic conductivity decreases (depending on soil tex-
ture) with depth according to a recession constant k... Discharge routing is performed
by a cinematic wave approach using different flow velocities for different water levels
in the channel. After the translation of the wave a single linear storage is applied to
the routed discharge considering diffusion and retention (Schulla and Jasper, 2000).
WaSiM was applied with an integrated 2-D groundwater flow model, which couples dy-
namically to the unsaturated zone. The uppermost (and in this study single) aquifer
is assumed to be unconfined. Infiltration from rivers into groundwater and exfiltration
(which is the base flow) from groundwater into rivers is calculated using the hydraulic
gradient and the colmation (in- and exfiltration resistance) at the river bed. WaSiM
does not solve the heat flux balance in the soil/subsurface and therefore it is not able
to account for frozen soil effects.
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4. Model setup for the Ammer catchment

The river courses were derived from a digital elevation model (DEM) with 100x 100 m?
resolution and presumed values on mean Manning roughness and specific discharge
for the channels. Flow direction correction algorithms were applied and flow orders
assigned according to Strahler (1964). For each stream link a flow velocity after Man-
ning’s equation as well as surface runoff velocity is estimated.

The unsaturated zone was parameterized with 30 layers of 0.33 m thickness. It is
especially the description of the flow through the unsaturated zone and the high number
of discretization layers that makes WaSiM computationally demanding: at each time
step the water balance in the unsaturated zone at 2.13 10° grid points is solved.

The groundwater model requires data on 1) saturated hydraulic conductivity in hor-
izontal direction, 2) aquifer thickness, 3) specific storage coefficients and 4) leakage
coefficients (or colmation resistances) to describe the exfiltration/infiltration of ground-
water and river water along the river bed. Additionally, in- and outflow across the
aquifer boundary must be specified, as well as constant heads for being able to solve
the partial differential equation for groundwater flow. Crude information on aquifer thick-
ness was available from a few pumping tests (Riekel, 1983). Values for storage coeffi-
cients were derived from porosity values of the soil map, as the uppermost (and single)
aquifer is assumed to be unconfined. Values for colmation resistances were based on
experience of similar alpine catchments such as the River Mangfall 50 km east of the
Ammer (Kunstmann and Stadler, 2003) and the River Thur in Switzerland (Schulla and
Jasper, 2000). Within the groundwater model, therefore, only the saturated hydraulic
conductivities remained for parameter estimation. Expertise gained in the RAPHAEL
project (LUDWIG, 2000) suggests the amount of groundwater outflow in the limestone-
alpine zone (south-eastern part of the basin): it is estimated that around 25% of the
entire runoff in sub-catchment 2 flows subterraneously to the bordering catchment of
the Loisach River owing to karstic conditions. Hence, an outflow in sub-catchment 2
of —9.75 10~ m/s was assumed for 120 grid cells along the south-eastern boundary.
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Additionally, the levels of Lake Riegsee and Lake Staffelsee were used to approximate
constant heads in the area of the two lakes. This was necessary since the partial differ-
ential equations for groundwater flow require at least one constant head to determine
a unique solution for piezometric heads. The choice of the level of these two lakes is
justified by the fact that both lakes are in full hydraulic contact to the aquifer and show
only slight fluctuations over the year.

Altogether, 8 gauges are available within the Ammer catchment (Fig. 4). Additional
“fictitious” gauges were set to separate in- and outflow to Lake Staffelsee (gauges
no. 9-11) and Lake Riegsee (gauge 12). To avoid error propagation down the stream
network, calculated routed discharge is replaced by the observed value at the gauging
station. This allows parameter estimation for downstream catchments independent of
potential model weaknesses upstream.

Meteorological input to WaSiM was obtained by interpolation of meteorological sta-
tion data (temperature, precipitation, wind velocity, humidity and sunshine duration) at
15 locations to every grid cell. The quality of interpolated precipitation is limited be-
cause none of the meteorological stations was located inside the catchment (Fig. 5).
Only one station (Hohenpeissenberg) was at the edge; the remaining 14 stations were
outside the catchment but within a radius of 50 km from the centre of the catchment.
Horizontal interpolation was performed by inverse distance weighting (IDW); in the case
of temperature, altitude dependent regression (ADR) was applied (with changing re-
gression parameters at every time step; derived from station data). In the case of
precipitation, combined IDW and ADR interpolation was applied (with weights of 70%
for IDW and 30% for ADW). Temporal resolution was 8 h.

5. Review: the Gauss-Marquardt-Levenberg algorithm as realized in PEST

PEST uses the Gauss-Marquardt-Levenberg algorithm for nonlinear parameter estima-
tion. For linear models, parameter estimation can be achieved in one step. However, for
non-linear problems (WaSiM falls into this category), parameter estimation can only be
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achieved by an iterative process. How this iterative estimation works is briefly reviewed
here (following Doherty’s, 2002, formulation).

The relationship between parameters and model-generated output can be repre-
sented by a function M which maps the n-dimensional parameter space into the m-
dimensional “observation” space. It is required that this function is continuously differ-
entiable with respect to all model parameters for which estimates are sought. Suppose
that for the set of parameters to be estimated in the hydrological model (comprising the
parameter vector p,) the corresponding set of model-calculated discharges is q, i.e.

qo = M(py). (1)

A parameter vector p that differs slightly from p, then produces a model output q that
can be approximated to (Taylor’s theorem)

q=qo+J-(p-po) (2)

Here, J indicates the Jacobian matrix of M, consisting of m rows (one for each observa-
tion of model output) and n columns. J;; indicates the derivative of the /th observation
with respect to the jth parameter.

Inverse hydrological modelling means that a set of model parameters is estimated for
which the model generated river runoff is as close as possible to the observed runoff.
In the least square sense this means that a set of parameters has to be found for which
the objective function ,1'2, defined as

X2 =(@-qo-Jd-(P-Po))-W-(q-go-J-(p-Ppo)) (3)
is a minimum (superscript “t” denotes the transposed matrix). Here, g now represents
the observed values. W is a mxm diagonal matrix whose entries w;; are the squares
of the weights attached to the ith observation. Introducing observation weights allows
higher contribution to the objective function for observations that have a higher reliabil-
ity. A new estimate for the parameter p can be obtained by

P=pPo+u (4)
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u=("-Q- )" J-W-(q-q) (5)

(superscript “—1” denotes the inverse matrix). Since Eq. (2) is only approximately cor-
rect, so also is Eq. (5). Hence, the vector p (defined by Eq. 4) adding the parameter
upgrade vector u to the current parameters values p, does not guarantee to yield the
minimum of the objective function. The new set of parameters contained in p must then
be used as a new starting point in determining a further parameter upgrade vector and
so forth.

Marquardt (1963) and Levenberg (1944) changed Eq. (5) to

u=-Q-J+al)'-J-W-(qg-qp (6)

(with I denoting the nxn identity matrix) thereby introducing a parameter a. When a is
zero, Eq. (6) is equivalent to Eq. (5). When a is high, the direction of u approaches that
of the negative gradient vector g, defined as

0,1'2
= 7
which can be expressed as
g=-2J""W-(q-qy) (8)

The advantage of this strategy is a faster convergence to the minimum of the objective
function ,1/2, in particular when parameters are correlated. Details on the strategy of
how PEST chooses the Marquardt parameter a can be found in Doherty (2002).
PEST uses a secant’s approximation for approximating the Jacobian matrix J. This
is achieved by perturbation of the parameters to be estimated (by 1% e.g.). In fact,
estimating n parameters requires n perturbed model runs and one unperturbed run,
i.e. n+1 model calls for every iteration within PEST. Usually, after 5 iterations no further
improvements in ,1'2 were reached in our case.
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Based on the Jacobian matrix the sensitivity of each parameter with respect to all
observations can be calculated by

s = W -W-9)%/m (9)

with m: number of observations and / indicating the number of the parameter. Relative
parameter sensitivity rs; is then defined as the product of s; and the parameter value

pj:
rs; =S8;-p;. (10)

6. Calibration strategy and results of inverse modelling

Calibration of the hydrological model required adjustment of the following parame-
ters: 1) recession constant of direct runoff k,, 2) recession constant of interflowk;, 3)
drainage density d, and 4) saturated hydraulic conductivities of the upper most aquifer
(ksat)- Additionally, five snowmelt parameters had to be adjusted for the entire catch-
ment in order to account for regional snow cover dynamics: 1) the temperature for
beginning snowmelt 7, 2) the temperature dependent melt factor C, 3) the wind de-
pendent melt factor C,, 4) the temperature at which 50% of precipitation falls as snow
Tr/s, and 5) the temperature transition range from snow to rain Tia.s.

To evaluate the quality performance of the calibration, the Nash-Sutcliff criterion NS
was used (Nash and Sutcliff, 1970):

< 2
Z (qsim,i - qobs,i)

i=1

NS =1- (1 1)
n 2 1 n 2
Z qobs,i ~n (Z qobs,i)
i=1 i=1

(with n: number of river runoff measurements, /: index of gauge, g,: simulated runoff,

Gops: Observed runoff). The range of the NS values extends from 1 to —oo. In spite of
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being commonly used in performance analysis, the linear NS (hereafter referred to as
“lin NS”) has the disadvantage that it overstates the quality of flooding peaks against
the quality of low flow periods. The performance for simulating low flow periods is better
characterised by using logarithms of runoff values (indicated by log NS in this paper).

As explained in Sect. 5, PEST minimizes the objective function ,}/2 (Eq. 3) rather
than maximizing the Nash-Sutcliff criterion. While PEST in fact minimizes the numer-
ator of the second term in Eq. (11), the NS includes weights of this term through the
denominator. It is only this weighting which PEST does not account for.

For all 8 sub-catchments, 3 surface parameters and 1 groundwater parameter had
to be calibrated. Additionally, 5 parameters describing snow cover dynamics had to be
estimated for the entire catchment. Altogether, 8x3+8+5=37 parameters had to be
calibrated. The model was given a spin-up time of 10 months (from January 1996 till
October 1996) to allow the water contents in soil and rivers to be adjusted.

The calibration strategy is visualised and summarised in Fig. 6. In a first iteration
step, the three surface parameters (recession constant for direct runoff k,, recession
constant for interflow k;, drainage density d) were calibrated for each of the 8 sub-
catchments separately. For this task, the 2-D groundwater model was switched off and
base flow was calculated in a conceptual way (for details of the conceptual approach
see Schulla and Jasper, 2000).

The quality of the model to describe observed runoff using default values and no
a-priori information (i.e. fully uncalibrated state) for k,, k;, and d is shown in Table 2.
To get improved first guesses (“starting values”) for the order of magnitude of the re-
cession constants, a hydrograph analysis was performed by analysing the slope of the
falling limb after peak flow. Hydrograph analysis is a prerequisite to force the recession
constants in the proper region of the parameter space. According to the Maillet for-
mula (e.g. Dyck and Peschke, 1995) the falling limb after peak flow can be described
according to

Qf = Qoe% (12)
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with Q;: discharge after t days, Q,: peak discharge at t=0 days, ¢: time, k: recession
constant. A first guess of the recession constant k can be determined by evaluation of
the slope In(1/k) of the linear equation

INQ; =InQy — In(1/k) - t. (13)

Hydrograph analysis was applied for both k, (first part of the falling limb) and k; (sec-
ond part).

To force the Gauss-Marquardt-Levenberg algorithm into the correct physical param-
eter half space, boundaries for the parameter search are additionally provided. The
recession constant for interflow is restricted to be larger than the recession constant
for direct (“quick”) runoff. The results of the quality of fit after the first iteration are given
in Table 3. It can be seen that the NS values for all sub-catchments are all positive and
not lower than 0.29. However, some parameters reached the given boundary of the
parameter search (such as k; in subcatchments 3 and 4).

In iteration step 2, the 2-D groundwater model is switched on. Since crude numbers
for aquifer thicknesses were available, the hydraulic conductivities were calibrated.
In general, a hydrogeologically motivated zonation of hydraulic conductivities would
be appropriate. Since this information was not available for the Ammer catchment,
however, zones for the hydraulic conductivities that were identical to the surface sub-
catchments were defined. This simplification of real (but unknown) distribution of hy-
draulic conductivities was motivated by the result of a sensitivity analysis (Kunstmann
and Stadler, 2003) that showed that the base flow reacts rather sensitively in WaSiM
to perturbation in hydraulic conductivities. Since groundwater in the aquifer crosses
the “borders” of different (surface) sub-catchments, hydraulic conductivities in one sub-
catchment influence base flow (and therefore the hydrograph) of other gauges as well.
Calibration of the hydraulic conductivity in one sub-catchment therefore requires the
quality of fit at all gauges to be considered. This was achieved by compiling the objec-
tive function y? (Eqg. 3) from 8 terms, each term describing the deviation of modelled
and simulated runoff at a single gauge. No specific weighting of the 8 terms to the
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total ,1/2 was performed. The quality of fit after iteration 2 is given in Table 4 and the
estimated saturated hydraulic conductivities are shown in Table 5. Here, additionally
log NS is provided since it is a better measure for low flow conditions (and hence base
flow) than lin NS. It can be seen that application of the 2-D groundwater model yielded
a decline of lin NS for gauges 1, 2, 5 and 7 against the conceptual model as it was
applied in the first iteration. This shows that the application of the more sophisticated
sub-model does not necessarily lead to better reproduction of observed values. The
estimated values for the saturated hydraulic conductivity are within physical reasonable
ranges for the alpine/prealpine environment.

In iteration step 3, calibration of the surface parameters is repeated, but now applying
WaSiM with the 2-D groundwater model. The parameter limits were slightly adjusted.
The results for estimated recession constants k, and k;, and the drainage density d
are given in Table 6. In this iteration step, all 3x8=24 parameters had to be estimated
in one single PEST run. It should be noted again that each of the 8 hydrographs is
used to fit 3 parameters. In this iteration step, only NS values for sub-catchments 4
and 5 are improved significantly.

In iteration step 4, the 5 snow model parameters are estimated. These parameters
significantly influence snow cover dynamics, and in particular the delayed transforma-
tion of winter precipitation into snowmelt dominated runoff in spring time. All five snow
model parameters are restricted to comparatively narrow physical limits. The results
of the calibration of the snow model parameters are given in Table 7. There is a slight
improvement of the Nash-Suitcliff values for the alpine-type sub-catchments 1 and 2,
but a decline in the NS values for lower sub-catchment 7, as Table 8 shows.

It must be stressed here that major improvements in the quality of fit were already
achieved by the first iteration step. In general, the following iteration steps provided only
slight further improvements of the quality of fit. Application of the physically based 2-D
groundwater model yielded a decline of the NS values that could not fully be compen-
sated in the further iteration steps. Application of the 2-D groundwater model, however,
has the advantage that water balance simulation comprises quantification of ground-
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water recharge and the interaction of groundwater and river water which is important
for further studies performed in the catchment.

Altogether, the Nash-Sutcliff values and the quality of fits are reasonable but not con-
vincing for some sub-catchments. Figures 7 and 8 show modelled and observed river
runoff at gauges 4 (Obernach) and 6 (Peissenberg) for the hydrologic year 1996/1997.
Model performance in the winter months is in general lower than in the summer months.
A general problem in this catchment is the fact that it contains no meteorological sta-
tion. Especially in complex terrain, the pure geometric interpolation (through inverse
distance weighting) of precipitation across narrow valleys and ridges leads to significant
errors in precipitation input to the model. The same applies for temperature interpola-
tion, which sensitively influences snow cover dynamics. Erroneous snow cover buildup
in the winter months inevitably leads to erroneous snowmelt and snowmelt-dominated
runoff in spring and early summer months.

7. Validation

The quality of the simulations for the validation period (hydrologic year 1992/1993)
can be seen from Table 9. Compared to the calibration period, the lin NS values are
lower for the Alpine sub-catchments 1, 2, 3 and 4, but higher for the sub-catchments
5, 7, and 8 of the downstream part of the Ammer catchment. The log NS values
are in general lower in the validation period, except for sub-catchment 7. Due to the
differences in changes of lin NS and log NS values from the calibration phase to the
validation phase, it can be concluded that the derived parameters are better designed
for capturing high-flow situations than low-flow conditions. This corresponds to the
fact that high discharge values receive more weight in the objective function (Eq. 3)
than low flow discharge values. Figures 9 and 10 show modelled and observed river
runoff exemplary at gauges 4 (Obernach) and 7 (Weilheim) for the validation period.
Likewise in the calibration period, the model performance in the winter months and in
the spring time is in general lower than in the summer months, due model deficiencies
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in describing snow accumulation and snow melt dynamics and corresponding impact
on surface runoff.

8. Confidence bounds of estimated parameters

Confidence bounds for all parameters estimated can be obtained by covariance analy-
sis. The covariance matrix of the estimated parameters can be approximated by

[Cov] = [a]™’ (14)
with

(15)

a =1ﬁ~ZN [aq(t/,p)aq(t;,p)]
ki 20pyp, i=1 opy op,

(Press et al., 1992).

The square roots of the diagonals of the parameter covariance matrix yield the stan-
dard deviations of the estimated parameters quantifying the uncertainty of the esti-
mated values.

Tables 5, 6 and 7 include values for the estimated uncertainty range (standard devi-
ation o) of all estimated parameters as derived from Eqgs. (14) and (15). It can be seen
that the uncertainty bounds are comparatively narrow, except in case of recession con-
stants for interflow which show comparatively high uncertainty ranges. This reflects a
small sensitivity of ,1/2 with respect to the recession constants for interflow which in turn
is more difficult to estimate.

The standard deviations describe the uncertainty range only in case of negligible cor-
relation between the estimated parameters. The correlation of the n estimated param-
eters makes the solution space an n-dimensional hyper-ellipsoid. If this hyper-ellipsoid
is projected into 2-dimensional sub spaces, confidence ellipses are obtained. The con-
fidence ellipses are defined by e.g. Press et al. (1992) (superscript “—1” indicates the
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inverse matrix, superscript “¢” the transposed matrix)

AZ2(p) = (P = Poestiit) - [COVI™" - (P = Ppestit)’ (16)
(Press et al., 1992). With Cov: 2x2-dimensional projection of the nxn parameter co-
variance matrix, A=? a tabulated function depending on confidence level (e.g. Press
et al., 1992), p the 2-D vector of parameters of interest, and p the 2-D vector of pa-
rameters of the mean values of the parameters of interest. Applying Eq. (16) to the
derived Hesse matrix a and the estimated parameters p.iit, confidence ellipses for
all combination of parameters can be delineated. If parameters are correlated, the
confidence ellipses show an axis against the coordinate axes (for more details on the
analysis of confidence regions see Carrera and Neumann, 1986). The isolines indicate
the confidence regions for the estimated parameters. In our examples, the isolines
indicate the probabilities of 68.3% (innermost ellipse, equivalent to 1 standard devia-
tion o), 95.4% (equivalent to 20) and 99.7% (outermost ellipse, equivalent to 30) to
find the real parameter within the corresponding confidence region. Figure 11 shows
confidence regions for the estimated recession constants for direct runoff and inter-
flow in sub-catchment 1. Figure 12 shows the confidence regions for drainage density
and recession constant of direct runoff for sub-catchment 4. As already revealed in
the pure correlation-neglecting covariance analysis, the uncertainty for recession con-
stants is comparatively large, while uncertainty of recession constants for direct runoff
and drainage density is smaller. A detailed analysis of parameter correlation showed
that correlation is in most cases negligible. It is therefore appropriate to provide the
standard deviation alone, as is done in Tables 5, 6 and 7.

Application of this methodology allows the detailed quantification of uncertainty of all
estimated parameters and of correlation among estimated parameters. It would exceed
the scope of this paper to show all combinations of confidence ellipses. Therefore, we
stress the potential of the applied parameter estimation method (as it is realized in the
tool PEST): the results of the confidence bounds could be used as input to stochastic
hydrological modelling, e.g. by means of Monte Carlo simulations. In this way, the
uncertainty propagation of input parameter uncertainty into the corresponding range
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of water balance variables (surface runoff, evapotranspiration, etc.) can be quantified.
Estimation of input parameter uncertainty is an essential prerequisite for this task.

In addition to confidence ellipses, parameter sensitivities are of particular interest as
they quantify the influence on model performance. Moreover, the higher the sensitivity
of a model parameter, the more reliable is the estimated value of the parameter. The
relative sensitivities of model parameters in the case of the best fit parameters are
shown in Table 10. The relative parameter sensitivity is in general one order of mag-
nitude higher for the drainage densities d than for the recession constants k, and k;.
This is in congruency with Fig. 12, which shows much smaller confidence bounds for d
than for k,. The relative sensitivities for the snow parameters are in the same order of
magnitude as the soil/surface parameters. The comparatively high relative sensitivity
of the hydraulic conductivities for specific sub-catchments stresses the importance of
fitting aquifer variables to improve modelled discharge.

9. Summary and conclusions

We combined the distributed hydrological model WaSiM (Schulla and Jasper, 2000)
and the parameter estimation tool PEST (Doherty, 2002) which applies the Gauss-
Marquardt-Levenberg algorithm for the nonlinear estimation of model parameters. Us-
ing PEST WaSiM was calibrated for the alpine catchment of the Ammer River in south-
ern Germany. For each of the 8 sub-catchments 3 surface parameters and one ground-
water parameter had to be calibrated, as well as 5 snow model parameters for the
entire catchment. Altogether, 37 parameters had to be calibrated. Owing to the com-
plexity and the high spatial resolution of the hydrological model the estimation of all
parameters was an extensive numerical experiment. Parameters were estimated by
a four-step iteration approach, in which lumped surface parameters were estimated
separately from aquifer parameters and snow-model parameters. Constraints on lower
and upper boundaries were added to the parameter estimation process to force the
algorithm towards the correct parameter half-space. Analysis of confidence bounds
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showed small uncertainties for most of the estimated parameters except for the re-
cession constants for interflow. Correlation between the estimated parameters was
negligible.

The quality of modelled discharges, both in the calibration period and the valida-
tion period, was reasonable but not always satisfactory. It proved difficult to reproduce
runoff periods that are influenced by snow cover dynamics. Discrepancies between
modelled and observed runoff were also due to the small number of meteorological
stations and corresponding interpolation artefacts in the orographically complex terrain.
Judging the comparatively overall low lin NS and log NS values, it must be considered
that a CPU intensive physically and grid based distributed hydrological model was ap-
plied rather than a conceptual, lumped model. Parameter estimation methods that are
applied successfully for conceptual models and that require large number of model
calls cannot be applied here (e.g. several thousands of model runs in case of simu-
lated annealing or genetic algorithms for one parameter). Considering additionally the
large number of parameters to be adjusted, it is obvious that the calibration of this type
of physically based hydrological model does not necessarily reach the quality of quick
lumped conceptual models. The complexity of the hydrological model (accounting for
high resolution distributed information on all aspects of the surface/subsurface water
balance) is required for understanding the physical water balance in the catchment. It
is assumed to be in particular suited for applications which require predictability ca-
pabilities, like e.g. requested in climate change impact studies (as e.g. presented in
Kunstmann et al., 2004, for the same Ammer catchment). However, the complexity
of the model has the trade-off that NS values are smaller than in case of conceptual
models. Lower quality of NS values may have to be accepted under this circumstance.

While not neglecting the above mentioned constraints, this work showed that the ap-
plied Gauss-Marquardt-Levenberg algorithm is well suited to calibrate a CPU intensive
distributed, physicall based hydrological model such as WaSiM. It is concluded that the
proposed parameter estimation methodology can advantageously be coupled to simi-
lar complex and CPU-time intensive hydrological models. Moreover, since the method
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provides covariances and uncertaintiy estimates on the estimated parameters it is a
prerequisite for stochastic hydrological modelling such as Monte Carlo simulations, for
which uncertainties (e.g. through standard deviations) on input parameter are required.
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Table 1. Characteristic water discharges of the 8 gauges in the Ammer catchment (NQ: lowest
observed discharge, MNQ: mean low water discharge, MQ: mean discharge, MHQ: mean high
water discharge, HQ: highest observed discharge, MNQ: mean low water specific discharge,

Mq: mean specific discharge, MHq: mean high water specific discharge).

HESSD
2, 2581-2623, 2005

Inverse alpine
catchments

H. Kunstmann et al.

Gauge Episode Elevv. NQ MNQ MQ MHQ HQ MNq Mq MHq
m]  [m%s] [m%s] [m%s] [m%s] [m%s] [Vsxkm?] [Usxkm?] [I/sxkm?]

1 Linderhof 1983-1998 964 0.002 0.009 0.094 15 3.78 3.9 41.0 638
2 Oberammergau 1961-1990 831 04 12 36 525 135 10.9 31.9 462
3 Unternogg 1974-1999 849 02 03 17 464 126 74 38.2 1070
4 Obernach 1961-1990 652 0.01 0.1 1.0 292 492 3.2 25.1 704
5 Oberhausen 1961-1990 585 0.1 07 26 215 517 6.0 22.4 184
6 PeiBenberg 1961-1990 592 13 29 89 114 286 10.0 30.1 387
7 Weilheim 1961-1990 550 26 57 147 156 338 9.4 245 260
8 Fischen 1961-1990 533 30 62 164 173 283.0 8.7 23.1 244
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Table 2. Model run based upon unadjusted parameters (k,=10, k;=100, d=10): quality of fit

for the year 1997 for each sub-catchment.
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1 2 3 4 5 6 7 8
inNS -1.02 -347 -117 0.38 -043 -0.02 -0.14 0.03
logNS 025 -253 -1.84 052 -1.74 -202 -240 -0.49
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Table 3. First calibration iteration: starting values, parameter limits, fit results and quality of fit

(calibration of soil/surface parameters, no 2-D groundwater model applied).

(* Starting values were obtained by hydrograph analysis and tangent approximations for peak

recessions.)

HESSD
2, 2581-2623, 2005

Catchment Start Limits Result Nash-Sutcliff
Start Result
kyh] 59.8 [5-100] 21.0
1 kih] 3297  [100-800] 3043 |n NS -0.15 lin NS 0.46
d[] 10 [1x10°-200] 115
k, 121.2 [5-170] 39.6
2 ki 5515  [170-800]  575.7  |inNS0.2 linNS0.37
d 10 [1x107°-200] 14.0
k, 1216 [5-170] 19.6
3 k; 373.7 [170-800] 170.0 lin NS 0.2 lin NS 0.45
d 10 [1x107%200] 8.4
k, 1380  [1.0-200] 17
4 ki 5872  [200-800] 10.0  |;nNS0.01  lin NS 0.51
d 10 [1x107%-200] 10.5
k, 1677 [5-170] 43.8
5 ki 4246  [170-800] 1728  |inNS0.5  Lin NS 0.69
d 10 [1x107-200] 14.6
ky, 139.9 [5-300] 9.0
6 ki 6989  [300-800] 380  |inNS0.24 lin NS 0.61
d 10.  [1x107%-200] 35.0
k, 137.4 [5-140] 17.8
7 ki 6595  [140-800] 1728 |inNS0.23 linNS0.55
d 10 [1x107-200] 200.0
k, 1658  [1.0-300] 18.0
8 ki 753.7  [300-800] 200 |;nNS-0.05 linNS0.29
d 10.  [1x107%-200] 8.2
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Table 4. Second calibration iteration: quality of fit after calibration of 2-D groundwater model
for each sub-catchment.

1 2 3 4 5 6 7 8

inNS 024 033 047 034 0.04 053 051 0.15
LogNS 046 0.19 034 062 0.39 030 047 0.16
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Table 5. Results for estimated hydraulic conductivities in groundwater model and their corre-
sponding uncertainties (standard deviations o, as described in Sect. 7) for each sub-catchment.

HESSD
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Hyd. Cond. 1 2 3 4 5 6 7 8
ks [m/s] 20E-5 33E-5 55E5 15E-8 12E-6 64E-7 21E-6 17E-5
+0 96E-7 62E-7 62E-7 32E-7 24E-7 28E-7 13E-7 43E-7
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Table 6. Third calibration iteration: starting values, parameter limits, fit results and quality of
fit (calibration of soil/surface parameters, 2-D groundwater model applied). The uncertainty
ranges (standard deviations o) according to covariance analysis are also provided (details see

Sect. 7).

HESSD
2, 2581-2623, 2005

Catchment Start Limits Results 0 Nash-Sutcliff
k,h] 21.0 [5-100] 245 1.0
1 k; [h] 304.3 [100-800] 420.9 471 |linNS 0.24 log NS 0.46
d[] 115 [1x10%-200] 105 0.1
k, 396 [5-100] 557 3.0
2 K; 575.7 [100-800] 676.3 87.8 |inNS0.35 log NS 0.19
d 141 [1x10%2000 145 041
k, 197 [0.5-10] 235 09
3 ki 1700  [100-800] 2239 275 |inNS0.48 logNS 0.32
d 8.4 [1x1078—200] 8.4 0.1
kg 1.7 [1.0-15] 100 1.0
4 ki 10.0 [10-800] 196 27  |inNS0.55 log NS 0.65
d 106 [1x10°-200] 114 0.1
k, 439 [5-100] 100.0 13.8
5 kj 1728  [100-800] ~ 509.7 108.0 |inNSO0.48 logNS 0.47
d 147 [1x107%-200) 148 0.15
k, 941 [1-15] 150 1.3
6 ki 380 [15-800] 958 78 |inNS0.62 logNS 0.49
d 350 [1x107%-200) 356 03
k, 178 [5-100] 139 46
7 ki 1728  [100-800] 1645 134 |inNS052 log NS 0.47
d 2000 [1x107%-200] 1948 17
k, 180 [1.0-20] 200 17
8 ki 200 [20-800] 1903 1113 |inNS0.32 log NS 0.25
d 82 [1x1078-200] 8.0 0.1
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Table 7. Results for estimated snow-model parameters, including uncertainty ranges (standard

deviations o).

HESSD

2, 2581-2623, 2005

Inverse alpine
catchments

H. Kunstmann et al.

Snowmelt parameter  Start Limits Result +o
To[°C] 0.6 [-0.5-0.8] 0.26 0.02
C,[mm/°C-d] 0.3 [0.001-1.75] 0.61 0.02
C,[mm/°C-m/s-d] 0.5 [0.001-1.5] 0.12 0.01
Trs[Cl 0.6  [0.001-1.0] 0.29 0.08
Tiansl Cl 1.5 [0.001-2.0] 0.79 0.09
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Table 8. Fourth calibration iteration: final quality of fit (calibration of snowmelt parameters
included) for each sub-catchment.

1 2 3 4 5 6 7 8

inNS 028 042 051 057 049 064 045 034
logNS 043 022 032 064 042 052 037 0.26
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Table 9. Period of validation: quality of fit for the hydrologic year 1992/1993 for each sub-

catchment.

HESSD

2, 2581-2623, 2005

Inverse alpine
catchments

H. Kunstmann et al.

1

2 3 4 5

6 7 8

lin NS
log NS

-0.33
-0.45

0.03 023 045 0.70
-0.35 0.05 0.28 0.06

0.44 066 0.60
-1.06 047 0.04
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Table 10. Relative parameter sensitivities for bestfit parameter set according to Eq. (10).

HESSD
2, 2581-2623, 2005

Inverse alpine
catchments

H. Kunstmann et al.

1 2 3 4 5 6 7 8
s(ky) [] 1.3E-03 9.8E-04 1.3E-03 b5.4E-04 3.8E-04 6.1E-04 1.6E-04 6.4E-04
s(k;) [.] 4.8E-04 4.1E-04 4.3E-04 4.0E-04 25E-04 6.6E-04 6.5E-04 9.2E-05
s(d) [] 7.8E-03 7.9E-03 7.4E-03 7.7E-03 7.3E-03 7.8E-03 7.6E-03 7.4E-03
s(ky) ] 1.8E-01 22E-02 4.7E-02 1.8E-05 2.2E-05 9.5E-04 2.9E-03 1.7E-02
s(To) [] 6.3E-04
s(Cy) [] 1.9E-03
s(Cy) [] 8.8E-04
S(Tass) L] 4.5E-04
$(Tirans) [] 1.8E-04
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Fig. 1. Location of the Ammer catchment in southern Germany and its 8 sub-catchments
(adapted from Kunstmann et al., 2004). 2612
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10 Kilometers

Fig. 2. Soil character distribution of the Ammer River catchment.
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Fig. 3. Classified land use distribution of the Ammer River catchment.
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1] i 10 Kilometers

Fig. 4. Relief Map of the Ammer River catchment — incl. location of 8 gauges (adapted from

Kunstmann et al., 2004).
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Fig. 5. Location of the meteorological stations.
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Soil/Surface Model:

- Recession constants for direct runoff kg and interflow k;, [h]
- Drainage density d [.] Each
subcatchment
2. Groundwater Model: separately
- Saturated horizontal hydraulic conductivity k: [ms™]
4y Snow Model:
- Temperature for beginning snow melt Ty [°C]
- Temperature-dependent melt factor C; [mm (°C d)] One set for
- Wind-dependent melt factor C, [mm (°C ms™ d)] total
- Temperature at which 50% of precipitation falls as snow Tgs [°C] catchment

- Temperature transition range from snow to rain Tians [°C]

Fig. 6. Calibration strategy.

2617

HESSD
2, 2581-2623, 2005

Inverse alpine
catchments

H. Kunstmann et al.

it

EG

(@


http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/2/2581/hessd-2-2581_p.pdf
http://www.copernicus.org/EGU/hess/hessd/2/2581/comments.php
http://www.copernicus.org/EGU/EGU.html

Gauge 4 (Obernach)

10 NWW [ r0

9 |' | L | I '||I|" |' ' | 5
— 8 10
&
E 7 15
E
o 6 20
2
©
.§ 5 25
o 4 30
L
=
'g 3 35
Q.
7

0 4
Nov-96 Dec-96 Jan-97 Feb-97 Mar-97 Apr-97 May-97 Jun-97 Jul-97 Aug-97 Sep-97 Oct-97

I precipitation — observed discharge — simulated discharge

40

- 45

L 50

Fig. 7. Modelled vs. observed discharge at gauge 4 (Obernach, calibration period).
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Fig. 8. Modelled vs. observed discharge at gauge 6 (PeiBenberg, calibration period).
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Fig. 9. Modelled vs. observed discharge at gauge 4 (Obernach, validation period).

2620

Precipitation [mm/8h]

it

HESSD
2, 2581-2623, 2005

Inverse alpine
catchments

H. Kunstmann et al.

EG

(@


http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/2/2581/hessd-2-2581_p.pdf
http://www.copernicus.org/EGU/hess/hessd/2/2581/comments.php
http://www.copernicus.org/EGU/EGU.html

Fig. 10.

Gauge 7 (Weilheim)
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Modelled vs. observed discharge at gauge 7 (Weilheim, validation period).
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Fig. 11. Confidence ellipses for estimated parameters k, (recession constant for direct runoff)
and k; (recession constant for interflow) for sub-catchment 1. The isolines indicate the confi-
dence regions 68.3% (innermost ellipse), 95.4% and 99.7% (outermost ellipse).
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Fig. 12. Confidence ellipses for estimated parameters k, (recession constant for direct runoff)
and d (drainage density) for sub-catchment 4. The isolines indicate the confidence regions
68.3% (innermost ellipse), 95.4% and 99.7% (outermost ellipse).
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