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Abstract

We present Top-kriging, or topological kriging, as a method for estimating streamflow-
related variables in ungauged catchments. It takes both the area and the nested nature
of catchments into account. The main appeal of the method is that it is a best linear
unbiased estimator (BLUE) adapted for the case of stream networks without any ad-5

ditional assumptions. The concept builds on the work of Sauquet et al. (2000) and
extends it in a number of ways. We test the method for the case of the specific 100-
year flood for two Austrian regions. The method provides more plausible and, indeed,
more accurate estimates than Ordinary Kriging. Top-kriging also provides estimates of
the uncertainty of the variable of interest. On the main stream the estimated uncertain-10

ties are smallest and they gradually increase as one moves towards the headwaters.
The method as presented here is able to exploit the information contained in short
records by accounting for the uncertainty of each gauge. We suggest that Top-kriging
can be used for spatially interpolating a range of streamflow-related variables including
mean annual discharge, flood characteristics, low flow characteristics, concentrations,15

turbidity and stream temperature.

1. Introduction

The Problem of Ungauged Basins (PUB) (Sivapalan et al., 2003) is one of the cen-
tral problems in hydrology and related sciences. The problem consists of estimating
streamflow-related variables at locations where no measurements are available. Es-20

timates can be obtained by a range of methods (e.g. Blöschl, 2005). A particularly
appealing set of methods are geostatistics, which allow estimation of a variable in-
cluding its uncertainty at locations where no measurements are available (Journel and
Huijbregts, 1978). The main advantage of geostatistical methods is that they are best
linear unbiased estimators (BLUE); best meaning that the mean squared error is a min-25

imum, linear meaning that the estimate is a weighted mean of the data in the area, and

2254

http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/2/2253/hessd-2-2253_p.pdf
http://www.copernicus.org/EGU/hess/hessd/2/2253/comments.php
http://www.copernicus.org/EGU/EGU.html


HESSD
2, 2253–2286, 2005

Top-kriging –
geostatistics on
stream networks

J. O. Skøien et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

unbiased meaning that the mean expected error is zero. Geostatistical methods have
evolved in the mining industry. The main problem consisted of estimating the expected
ore grade (and its uncertainty) of a block using point samples of the ore grade in the
area. To this end the spatial correlations of pairs of points are plotted versus their Eu-
clidian distance. From this, the variogram is estimated which is then used to estimate5

the variable at the location of interest for a given block size from the point samples.
The problem in catchment hydrology is quite different. The main difference is that

catchments are organised into subcatchments. Unlike mining blocks, catchments are
nested. Water follows a stream network. It is therefore clear that upstream and down-
stream catchments would have to be treated differently from neighbouring catchments10

that do not share a subcatchment. Therefore Euclidian distances between catchments
are not the natural way of measuring the spatial distance of catchments. Estimation of
variables on stream networks needs to use a topology that is different from the usual
Euclidian topology.

Most applications of geostatistics to catchment hydrology, so far, have indeed used15

Euclidian distance between catchments, usually measured as the Euclidian distance
between the gauges or the catchment centroids (e.g. Daviau et al., 2000; Adamowski
and Bocci, 2001; Eaton et al., 2002; Skøien et al., 2003; Merz and Blöschl, 2005).
Given the obvious nested structure of catchments it is surprising that very little re-
search has been done on extending geostatistical concepts to catchments. There is20

one notable exception. Gottschalk and co-workers (Gottschalk, 1993a, b; Sauquet et
al., 2000) have addressed this very issue. Gottschalk (1993a) first developed a method
for calculating covariance along a river network and used this for interpolation along the
network (Gottschalk, 1993b). Sauquet et al. (2000) further developed this method for
mapping annual runoff along the river network using water balance constraints in the25

estimation procedure.
In this paper we propose a method of geostatistical estimation on stream networks

that builds on the work of Sauquet et al. (2000). It extends the original work in a number
of ways. First, we suggest that the interpolation method can be used, in an approxi-
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mate way, for a range of streamflow-related variables including variables that are not
fully mass conserving. Sauquet et al. (2000) interpolated mean annual runoff which is
a mass conserving variable. Second, we use variograms while Sauquet et al. (2000)
used covariances. This allows us to deal with variables that are non-stationary. Third,
we account for local uncertainties of the measurements that may differ between loca-5

tions. This allows us to exploit short records. Last, we illustrate the potential of the
approach for estimating the uncertainty of the variable of interest in ungauged catch-
ments.

In Sect. 2 we first review the basic concepts, and then present the methodology in
detail. In Sect. 3 we illustrate the approach for the case of estimating the 100 year10

specific flood in ungauged catchments in Austria. This includes a comparison of the
estimates with Ordinary Kriging as well as an analysis of the estimation uncertainties
in ungauged catchments. Section 4 summarises the main implications for hydrological
regionalisation.

2. Method of Top-kriging15

2.1. Concepts of Top-kriging

There are two main groups of variables that control streamflow (Fig. 1). The first group
consists of variables that are continuous in space. These variables include rainfall,
evapotranspiration and soil characteristics. They are related to local runoff generation.
In this context, runoff generation is conceptualised as a point process, i.e. runoff gen-20

eration is assumed to exist at any point in the landscape. This concept is discussed
in Woods and Sivapalan (1999). In a similar way, other streamflow-related variables
can be conceptualized locally as a point process. For characterising these variables,
Euclidian distances are appropriate. The spatial statistical characteristics of the point
variables can be represented by the variogram (Skøien et al., 2003).25

The second group of variables is related to routing in the stream network. These vari-
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ables are affected by the catchment organisation of nested catchments where runoff
accumulates along the stream network. Variables of this type include mean annual
discharge, flood characteristics, low flow characteristics, concentrations, turbidity and
stream temperature. These variables are only defined for points on the stream net-
work. They cannot be represented by Euclidian distances. Rather they need to be5

represented by methods that reflect the tree structure of the stream network.
We propose a method that combines these two groups of variables in a geostatistical

framework. We term the method topological kriging or Top-kriging, as it takes into
account the topology of stream networks and nested catchments. The continuous
process in space defined for point variables is represented by a variogram. The channel10

network structure and the similarity between upstream and downstream neighbours are
represented by the catchment area that drains to a particular location on the stream
network. The catchment areas are defined by their boundaries in space.

2.2. Kriging basics

In Euclidian kriging methods (such as Ordinary Kriging), the variable of interest is rep-15

resented as a random field of values z(x). Spatial similarity is represented by the vari-
ance between pairs of points as a function of their Euclidian distance. Kriging is then
the best linear unbiased estimator, i.e. an interpolation method where the expected
bias is zero and the expected kriging error is minimised. An unknown value ẑ(x0) of
the variable at position x0 (i.e. the target position) can be estimated as a weighted20

average of the variable measured in the neighbourhood:

ẑ(x0) =
n∑

i=1

λiz(xi ) (1)

λi is the interpolation weight of the measurement at position xi and n is the number
of neighbouring measurements used for interpolation. The weights λi can be found by

2257

http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/2/2253/hessd-2-2253_p.pdf
http://www.copernicus.org/EGU/hess/hessd/2/2253/comments.php
http://www.copernicus.org/EGU/EGU.html


HESSD
2, 2253–2286, 2005

Top-kriging –
geostatistics on
stream networks

J. O. Skøien et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

solving the kriging system:

n∑
j=1

λjγi j − λiσ
2
i + µ = γ0i i = 1, . . . , n

n∑
j=1

λj = 1
(2)

The γi j refers to the gamma value or the expected semivariance between two measure-
ments i and j , as found from a theoretical semivariogram model. µ is the Lagrange
parameter. σ2

i represents the measurement error or uncertainty of measurement i .5

The use of measurement errors in the kriging equations is termed kriging with uncer-
tain data (KUD) (de Marsily, 1986, p. 300; Merz and Blöschl, 2005).

2.3. Interpolation and regularisation on catchment boundaries

In Top-kriging, the measurements are not point values but are defined over a non-zero
catchment area A. In geostatistical terminology, A is the support. A point variable z(x)10

can be averaged over an area A as:

z̄(A) =
1
A

∫
A

w(x)z(x)dx (3)

where z̄ is the spatially averaged variable and w(x) is a weighting function. If there is
reason to assume the variable is conservative, or approximately conservative, as we
do in this paper, the aggregation is linear, and w(x)=1. If a non-zero support A is ac-15

counted for, the kriging system remains the same, but the gamma values between the
measurements need to be obtained by regularisation (Cressie, 1991, p. 66). Assuming
the existence of a point variogram γp, the gamma value or the semivariance between
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two measurements with catchment areas A1 and A2, respectively, is:

γ12 = 0.5 × Var(z(A1) − z(A2)) = 1
A1A2

∫
A1

∫
A2

γp(|x1 − x2|)dx1dx2−

0.5 ×
[

1
A2

1

∫
A1

∫
A1

γp(|x1 − x2|)dx1dx2 +
1
A2

2

∫
A2

∫
A2

γp(|x1 − x2|)dx1dx2

]
(4)

x1 and x2 are position vectors within each catchment used for the integration. The
first part of this expression integrates all the variance between the two catchments,
while the second part subtracts the averaged variance within the catchments. The5

second part is the smoothing effect of the support, which indicates that the variance
of the averaged variable decreases as the support area increases. Equation (4) can
be used to estimate the variogram of the averaged variable from the point variogram.
This procedure is termed regularisation although most textbooks use the term only for
the case when A1=A2. The gamma values are inserted into the kriging matrix Eq. (2)10

and the kriging system can be solved in the normal way to calculate the weights λi for
the interpolation scheme. The important thing in Top-kriging is that the integration is
performed over the catchment area that drains to a particular location on the stream
network. The location on the stream network is the outlet of the target catchment. It is
hence possible to perform geo-statistics on stream networks.15

In most cases Eq. (4) cannot be solved analytically. The integrals have to be re-
placed by sums and the catchment area is discretised by a grid. It is important to note
that the grid has to be the same for each catchment every time it is discretised (Isaaks
and Srivastava, 1989, p. 326). In fact, even slight differences of the grids or randomly
chosen points will cause numerical problems that are likely to flaw the results as test20

simulations with the examples shown later have indicated. Figure 2 shows a schematic
of two nested catchments, their discretisation by a square grid, and the distances be-
tween the discretised points within the catchments.

Many variables are likely to have a nugget effect that represents variability at scales
much smaller than the distance between measurements. In the variogram the nugget25
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appears as a discontinuity close to the origin. A point variogram with nugget variance
C0p can be expressed as:

γp(h) =
{

0 if h = 0
f (h) + C0p otherwise

(5)

where h is spatial distance and f (h) is the variogram without nugget. If we regularise
Eq. (5) with Eq. (4) directly, the nugget will vanish even for small catchments. We5

therefore propose to regularise the nugget separately. The nugget variance can be
seen as the variance of a spatially independent random variable. Following Journel
and Huijbregts (1978, p. 154–156), the regularised nugget variance for two catchments
of different size C0(A1, A2), overlapping or not, can be generalised as:

C0(A1, A2) = 0.5

(
C0p

A1
+

C0p

A2
−

2C0p · Meas(A1 ∩ A2)

A1A2

)
(6)

10

where Meas(A1 ∩A2) represents the area shared by the two catchments with areas A1
and A2. If the catchments are nested this will be min(A1, A2), if they are not this will
be zero. The regularised nugget effect is then added to the regularised variogram of
Eq. (4).

An advantage of kriging over some other interpolation methods is that it provides an15

estimate of the kriging variance of the estimate at any location. The kriging variance
σ2
R represents the uncertainty of the estimates and is given by:

σ2
R =

n∑
i=1

λiγi0 + µ (7)

γi0 is the gamma value between the target catchment and the neighbouring catch-
ments.20

Figure 3 illustrates the merits of Top-kriging over Euclidian kriging methods such
as Ordinary Kriging. In all three examples, the neighbouring catchments have the
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same centre-to-centre distance to the target catchment (20 km in the left panel, 10 km
in the centre and right panels). In Ordinary Kriging this would imply that the same
weights λi are assigned to all the neighbouring catchments (0.25 in the case of four
neighbours, 0.5 in the case of two neighbours). In Top-Kriging the weights are different.
The example on the left shows the catchment size effect. The largest catchment has5

the largest weight, because this is regarded as the most certain, or having the least
biased measurement in comparison to the mean. Although the 49 km2 catchment on
the right is larger than the 25 km2 catchment at the bottom, their weights are similar
which is because the 49 km2 catchment is closer to the 400 km2 catchment. This is
related to the de-clustering effect of kriging.10

The centre and right panels in Fig. 3 show the effect of nesting. The sizes of the
two neighbouring catchments are the same in each case (100 km2 in the centre panel,
300 km2 in the right panel). The centre panel indicates that the catchment that forms
a subcatchment of the target catchment gets a larger weight even though size and
distance are the same as those of the other catchment. The right panel shows the15

reverse case. Although the neighbours have the same areas and the same centre-to-
centre distances to the target catchment, more weight is attached to the catchment into
which the target catchment drains.

The weights have been obtained by the variogram shown later in this paper with
the measurement errors set to zero. The relative effects of size and nesting would be20

similar for other variograms.

3. Example application

3.1. Data

The concept of Top-kriging is illustrated by an Austrian data set of 7000 catchments in
this paper. For all of these catchments the stream network and the catchment bound-25

aries were available. About 600 of these catchments were gauged. For these flood
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data were used with record lengths ranging from 5 to 110 years, most of them from 10
to 50 years. From these data, the specific 100 year flood, Q100, was estimated using
a Gumbel distribution. To be able to compare smaller and larger catchments, the Q100

values were normalised to a catchment size of 100 km2, following Merz and Blöschl
(2005):5

Q100N = (A · α−1)βQ100 (8)

where A is the catchment area, α is the catchment area used for normalisation
(100 km2) and β was set to −0.33. Although the kriging theory does not require the
data to be normally distributed it is an advantage to reduce skewness. Because of this,
the Q100N values were logarithmically transformed before using them for interpolation:10

z = ln(Q100N ) (9)

The expected variance of the estimate of a Gumbel distribution is (e.g. Plate, 1993,
p. 418):

σ2
QT =

s2
Q

n

[
1 + 1.1396KT + 1.100K 2

T

]
(10)

where T refers to the return period of the flood, s2
Q is the variance of the annual flood15

series, n is the number of annual floods in the series and KT is a constant dependent
on the return period of the estimate:

KT = −
√

6
π

(ln(− ln(1 − 1/T )) + 0.5772) (11)

T=100 in the present case. The variance was also logarithmically transformed by

σ2
i = σ2

z = ln(1 + CV 2
Q100N ) (12)20

where the coefficient of variation is expressed as CVQ100N=σQ100N/µQ100N . µQ100N is
the mean of the data series. Before presentation, all values were back transformed.
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The Q100N values of the gauged catchments are referred to as measurements in
this paper to illustrate the characteristics of Top-kriging. Their variances σ2

Q100 are
referred to as measurement errors to illustrate how Top-kriging estimates uncertainties
in ungauged catchments.

3.2. Estimation of point variogram5

In order to apply Top-Kriging a point variogram is needed which we back-calculated
from the ln(Q100N ) values at the gauged catchments. Kyriakidis (2004), Mockus (1998)
and Skøien et al. (2003) provide methods for back-calculation. As there are too many
stations for using the variogram cloud for fitting, we estimated a sample variogram,
similar to Matheron’s (1965) traditional estimator, but with two more dimensions, the10

areas of the two catchments of a pair:

γobs(A1, A2, h) =
1

2n(A1, A2, h)

n(A1,A2,h)∑
i=1

[z(xi ) − z(xi + h)]2 (13)

where h= |h| is the distance between the centroids of the catchments, n(A1,A2,h) is
the number of catchment pairs with areas A1 and A2, and distance h between the
centroids. The bins were logarithmically distributed in all three dimensions. To increase15

the number of pairs in each bin, A1 was always chosen as the smaller area of the two
pairs.

Following Skøien et al. (2003) a point variogram with a nugget effect of the following
shape was assumed:

γp(h) = ahb(1 − e−(h/c)d ) + C0p (14)20

a, b, c and d are parameters. The parameters can be interpreted as following: a is
related to the sill of the variogram, c is a correlation length, while b and d define the
long and short distance slope of the variogram in a log-log plot, respectively. For a
given bin, we calculated the regularised gamma values and nugget variance according
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to Eqs. (4) and (6) using average areas and distances within each bin and a square
catchment area shape as an approximation. For each bin, we calculated a weighted rel-
ative difference between the observed gamma value γobs and the regularised gamma
value including nugget effect γmod, according to the Weighted Least Squares method
of Cressie (1985):5

Err(A1, A2, h) = n(A1, A2, h)
(
γobs

γmod
− 1
)2

(15)

By minimising Err we found the parameters of the point variogram Eq. (14) as a=2.99,
b=0.0812, c=9690, d=0.2568, C0p=1.9668.

Figure 4 shows the back-calculated point variogram together with a number of reg-
ularised variograms for different catchment areas, as examples. In all cases a square10

catchment shape was assumed. As the catchment area increases, the gamma values
decrease because of the smoothing effect of regularisation. Catchments of different
size will always have a variance between them, also when the centre-to-centre dis-
tance is zero. This is the reason why all variograms between catchments of different
size start with an apparent nugget effect. The effect of the point nugget effect C0p15

is dependent on the catchment size and degree of overlapping. There may be some
uncertainty with estimating the point variogram as different point variograms can give
similar regularised variograms. However, Top-Kriging is not very sensitive to this as
regularised variograms are used for catchment sizes that are of the same order of
magnitude as those on which the observed variogram is based (Skøien and Blöschl,20

2005b).
Figure 5 shows a comparison of the observed gamma values γobs and the gamma

values γmod regularised from the point variogram. For the presentation, the observed
gamma values were grouped and the mean and standard deviations of the modelled
gamma values for each group are shown. The model has a tendency of overestimating25

the gamma values for small observed gamma values and the standard deviations of
the modelled gamma values are relatively large. This is partly because the observed
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variogram Eq. (13) is more complex than the regularised version of Eq. (14) and partly
because in some of the bins there are only few pairs. For the purpose of demonstrating
the characteristics of Top-Kriging, however, the fit was considered acceptable.

To assess the merit of Top-Kriging relative to Ordinary Kriging we also interpolated
the Q100N values by Ordinary Kriging using a variogram of the type of Eq. (14) with the5

parameters a=0.58, b=0.0010, c=29.8, d=0.667, C0p=0.0236

3.3. Results

The Top-kriging results are shown here for two regions, to illustrate two characteristics
of the method. The first region is the river Mur and tributaries in Styria, southern
Austria. In this region the focus is on the estimates on the tributaries. The second10

region is the river Inn and tributaries in Tyrol, western Austria, where the focus is on the
main stream. In both examples, the Top-Kriging estimates are compared with Ordinary
Kriging estimates that use the Euclidian distance between the catchment centres to
estimate the gamma values in the Kriging system.

Figure 6 shows the catchment areas of the Mur and tributaries as well as the stream15

gauges. Stream gauges 1–3 are situated directly on the river Mur, the other gauges
on the tributaries. The catchment area of the Mur almost doubles between stations 1
and 3, from 2300 km2 to 4400 km2. There are four tributaries entering the river on this
reach with catchment areas ranging from 200–500 km2.

Figure 7 presents the estimates of the normalised specific 100 year flood Q100N from20

Top-kriging (top) and Ordinary Kriging (bottom) colour coded on the stream network.
The measurements are shown as circles in both figures with the same colour coding.
For both methods, the estimates next to the stream gauges are almost equal to the
measurements of the stream gauge itself.

The Top-Kriging estimates on the main river are similar to the measurements on the25

main river (gauges 1–3) and they do not change much along the reach. The estimates
on the northern tributaries are much smaller than those on the main stream which is
consistent with the measurements on the same tributaries (gauges 5 and 7). This is
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also reflected in the estimates for the other northern tributaries. On the southern side,
the measurements are larger, so the Top-kriging estimates are generally much larger
than those on the northern side of the Mur.

The Ordinary Kriging estimates differ significantly from the Top-kriging estimates.
The main difference is that the estimates are not similar along the stream network as is5

the case of Top-Kriging but similar along Euclidian distance in space. Although gauge
7 has measurements of 0.4 (red colour), most of the Ordinary Kriging estimates along
this tributary are around 0.6 (yellow to green colours). This is because the estimates
along this tributary are too much influenced by the measurements along the main river
while they should be mainly influenced by the downstream gauge as is the case in10

Top-Kriging. On the other hand, the estimates on the main stream are somewhat un-
derestimated by Ordinary Kriging as they are too much affected by the measurements
on the tributaries.

In order to examine the merits of Top-kriging more quantitatively we performed a
cross validation procedure for both methods. A measurement was temporarily dis-15

carded from the sample data set and the Q100N was then estimated by both Top-kriging
and Ordinary Kriging for the same location from the remaining samples (Journel and
Huijbregts, 1978, p. 352). The difference between the estimate so obtained and the
measurement is a measure of the interpolation error. Figure 8 shows these differences
for the two methods. The figure indicates that the estimates from Top-kriging are sim-20

ilar or better than the estimates from Ordinary Kriging in all cases but one (gauge 6).
The Ordinary Kriging error for gauge 6 is smaller because it assigns more weights to
gauges left of the region shown that possess larger Q100N values. It is also worth noting
that the errors are generally small for estimates on the main river (gauges 1–3), while
they can be larger for the tributaries.25

The kriging variances of the estimates in the Mur region, Eq. (7), are shown in Fig. 9
colour coded on the stream network. The kriging variances are expressed as the
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coefficient of variation (CV) of the estimate:

CV =
σR

Q100N
(16)

The points represent the measurement error σ2
i at the stream gauges, again expressed

as a coefficient of variation. The measurements have CVs in the range 0.05–0.3. This
is rather large, and is related to relatively short record lengths for some of the gauges.5

Both procedures estimate the lowest uncertainties close to the measurements, equal
to or larger than the CV of the measurements. Note that the uncertainties on the
stream network have been plotted for stream reaches of finite lengths as for these the
catchment boundaries were available. The small uncertainties, strictly speaking, apply
to the immediate neighbourhood of the gauges.10

The uncertainties estimated by Top-Kriging and Ordinary Kriging are very different
for most of the stream network. Top-Kriging (Fig. 9 top) gives relatively small uncer-
tainties on the main river with CVs of around 0.2. This is only slightly larger than the
CV of the measurements. On the other hand, the uncertainties of some of the tribu-
taries are considerably larger. The uncertainties are small for those tributaries where15

measurements are available, but rather large for tributaries without any measurements.
It is interesting that the uncertainty increases substantially with decreasing catchment
area. For some of the smallest catchments, i.e. headwater catchments, CVs of more
than 1 are estimated. These point to very uncertain estimates, which is not surprising
as no measurements are near.20

The uncertainties estimated by Ordinary Kriging (Fig. 9 bottom) contradict what one
would intuitively expect. Most disturbing is that some of the smallest catchments have
uncertainties equal to or smaller than the uncertainty of the main river. This is of course
a result of the uncertainty being a function of Euclidian distance between catchment
centre and measurements only, and not a function of the size and nesting of the catch-25

ments.
The second example presented in this paper is the Inn region for which the catch-

ment areas are shown in Fig. 10. Stream gauges 1–3 are situated directly on the river
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Inn, the other gauges on the tributaries. Between gauges 1 and 3, the catchment area
increases from 5800 km2 to 8500 km2. There are only two tributaries with an area of
more than 100 km2 entering the Inn within this reach, but they are larger than the trib-
utaries of the Mur. The Sill is the tributary gauged by gauge 4 just before the junction
with the Inn, and has an area of 850 km2. The Ziller is the tributary gauged by gauges5

7–10, and has an area of 1135 km2.
The Top-kriging and Ordinary Kriging estimates of the normalised specific 100-year

flood Q100N are shown in Fig. 11 top and bottom, respectively. The Q100N measured at
the Sill (gauge 4) is similar to that measured at the Inn at gauge 1. The Q100N measured
at the Ziller (gauge 7) is larger than that measured at the Inn at gauge 1 but the Q100N10

at the smaller tributaries (gauges 5 and 6) are much smaller than those of the Inn.
Although the measurements on the tributaries show large variations, the Top-kriging
estimates on the Inn change very little, which is consistent with the measurements.

Similar to the Mur case, the Ordinary Kriging estimates deviate considerably from
Top-kriging but they deviate in a different way because of different gauge locations.15

For the Mur case, the main differences were the estimates of the tributaries, which
were too much affected by the main river. In the Inn case (Fig. 11), the estimates on
the tributaries are similar to those of Top-kriging, but the estimates on the main river
are obviously too much influenced by measurements on tributaries. The tributaries for
which the centres are close to the centre of the Inn lie outside the region shown in20

Fig. 11 and have small measured Q100N similar to the southern tributaries in Fig. 11.
The cross validation procedure confirms more quantitatively that the interpolation

errors of Top-kriging are much smaller than those of Ordinary Kriging (Fig. 12). The
difference between the two methods is largest along the main river (gauges 1–3). This
is because estimates from Ordinary Kriging have their largest errors along the main25

river, while Top-kriging only gives small errors on the main river. The difference is
smaller along the tributaries, but Top-kriging does give smaller errors than Ordinary
Kriging for the majority of the gauges.

The estimated uncertainties of the estimates in the Inn region are shown in Fig. 13.
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Similar to Fig. 9, Fig. 13 shows that the uncertainties next to the stations are equal
to the measurement uncertainties. The Top-Kriging uncertainties along the main river
and along tributaries with measurements are lower than the uncertainties of tributaries
without measurements as would be expected. The uncertainties generally increase
with decreasing catchment size. For the tributaries that are gauged close to the con-5

fluence with the main river (gauges 5 and 6) the uncertainty gradually increases as
one moves away from the gauge towards the headwaters. However, if the tributary is
gauged (e.g. by gauges 5 and 6) the estimates of the headwater catchments are less
uncertain than the headwaters of ungauged tributaries (e.g. the tributaries close to
stream gauge 2). Overall, the Ordinary Kriging uncertainties indicate that the Euclidian10

distances do not reflect the intuitive distribution of estimation errors. The uncertain-
ties are far too uniform within the region as they do not take into account the amount
of information shared by gauged and ungauged catchments. In contrast, Top-kriging
captures exactly this information.

4. Conclusions15

We have presented Top-kriging as a spatial estimation method for streamflow-related
variables. It takes both the area and the nested nature of catchments into account. The
main appeal of the method is that it is a best linear unbiased estimator (BLUE) adapted
for the case of stream networks without any additional assumptions. Because of the
minimum number of assumptions we believe Top-kriging is the most natural method of20

estimating streamflow-related variables on stream networks.
The method provides more plausible and, indeed, more accurate estimates of the

specific 100-year flood than Ordinary Kriging in the regions examined here. In the
example of the Mur region we showed how the estimates of the tributaries are improved
over Ordinary Kriging. In the example of the Inn region we showed how the estimates25

on the main stream are improved. In general, both the estimates on the main stream
and the tributaries will be superior to Ordinary Kriging and the relative magnitude of the
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improvement will depend on the location of the gauges. In essence, Top-Kriging treats
upstream and downstream catchments differently from neighbouring catchments that
do not share a subcatchment. This is also what one would do in manual interpolation.

In addition to accounting for nested catchments, the method as presented here is
able to exploit the information contained in short records. Variables estimated from5

short records are less certain than those from longer records. By allowing the mea-
surement error to vary between gauges it was possible to use both short and long
records and attribute more confidence to the longer records.

Top-kriging not only provides estimates of the variable of interest in ungauged catch-
ments but also provides estimates of their uncertainty. The uncertainty patterns es-10

timated by Top-Kriging are very different from those of Ordinary Kriging. While the
Ordinary Kriging uncertainty only depends on the centroid distances of gauged and
ungauged catchments, the Top-Kriging uncertainties fully take into account the nested
nature of catchments. On the main stream, where most of the gauges are, the esti-
mated uncertainties are smallest. On tributaries that are gauged close to their conflu-15

ence with the main river, the uncertainty gradually increases as one moves away from
the gauge towards the headwaters. If a tributary is gauged, the estimates of the head-
water catchments are less uncertain than the estimates of headwater catchments of
similar size without a downstream gauge on the tributary. Locations between gauges
at large rivers can also be considered as ungauged. However, it is in the headwater20

catchments where most of the uncertainty resides. The IAHS Decade on Predictions
in Ungauged Basins (PUB) (Sivapalan et al., 2003) has predictive uncertainty of hy-
drological variables as its main focus. This is exactly what Top-kriging provides for the
most natural case of best linear unbiased estimators.

Top-kriging assumes linear aggregation as it is a linear estimator. This means that,25

strictly speaking, the method only applies to variables that are mass conserving over
nested catchments. We suggest that the method can also be profitably used, as an ap-
proximation, for variables that do not aggregate linearly but show a degree of averaging.
The example of the specific 100-year flood shown here is not mass conserving and it
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was demonstrated that the Top-Kriging estimates are much better than the Ordinary
Kriging estimates. In fact, although Top-kriging is based on linear aggregation it does
not necessarily reproduce the mass-balance of the variable of interest (Sauquet et al.,
2000). This is consistent with our suggestion of the approximate use of Top-kriging for
a range of streamflow-related variables. Such variables of interest in hydrology include5

mean annual discharge, flood characteristics, low flow characteristics, concentrations,
turbidity and stream temperature.

Top-kriging as presented in this paper is based on a simple linear aggregation
scheme. There are numerous opportunities for extending this simple scheme and still
retaining the merits of a regionalisation procedure that naturally takes into account the10

area and nested structure of catchments. There are more complex ways of represent-
ing the logarithmic back-transformation of the variable of interest (e.g. Clark, 1998;
Krige, 2004) and these could be used in a Top-kriging context. We have in a different
context extended Top-kriging to a more complex scheme that takes auxiliary variables
into account (such as mean annual precipitation and a lake index) to improve the es-15

timates beyond simple interpolation. This is being used to estimate T-year floods for
26 000 km of Austrian streams, which will be used for hazard zone planning in a project
known as HORA. We are also planning to extend Top-kriging to space-time aggrega-
tion. Initial tests of space-time aggregation have been made in Skøien and Blöschl
(2005b) and Skøien (2005a). Results of the more complex schemes will be reported in20

the near future.
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Type of Proposed
variability approach

Atmospheric
Forcing

Soil and
Vegetation

Channel
Network

Euclidian

Euclidian

}Variogram

Tree
structure Boundaries

Fig. 1. Atmospheric forcing and soil and vegetation contribute to the runoff generation process
locally and can be represented by point variograms. The channel network organises runoff into
streams, which can be represented by the catchment boundaries.
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Fig. 2. Schematic stream network and catchment boundaries with point pairs shown.
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Fig. 3. Effect of catchment size (left) and nesting (centre and right) on the kriging weights λi
(red numbers) as estimated by Top-kriging. x0 indicates the centre of the target catchment.
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Fig. 4. Point variogram and regularised variograms of different catchment sizes.
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Fig. 5. Comparison between observed semivariances and mean and standard deviation (error
bars) of modelled semivariances. Green line shows γobs = γmod.
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Fig. 6. Catchment area of the Mur and tributaries (km2). Arrows show flow direction. Numbers
refer to the stream gauges. Gauges 1–3 are situated directly on the Mur, the other gauges on
the tributaries. The region represents a rectangle of 52 by 35 km.
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Fig. 7. Estimates of the normalised specific 100-year flood Q100N from Top-kriging (top) and
Ordinary Kriging (bottom) colour coded on the stream network of the Mur region. The mea-
surements (i.e. values at the stream gauges) are shown as circles. Units are in m3/s/km2.
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Fig. 8. Cross validation errors of Q100N for the eight gauges in the Mur region. Station numbers
as shown in Fig. 7.
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Fig. 9. Uncertainties of the normalised specific 100-year flood Q100N from Top-kriging (top)
and Ordinary Kriging (bottom), expressed as the coefficient of variation, colour coded on the
stream network of the Mur region. Uncertainties of the measurements (i.e. values at the stream
gauges) are shown as circles.
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Fig. 10. Catchment area of the Inn and tributaries (km2). Arrows show flow direction. Numbers
refer to the stream gauges. Gauges 1–3 are situated directly on the Inn, the other gauges on
the tributaries. The region represents a rectangle of 43 by 29 km.
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Fig. 11. Estimates of the normalised specific 100-year flood Q100N from Top-kriging (top) and
Ordinary Kriging (bottom) colour coded on the stream network of the Inn region. The measure-
ments (i.e. values at the stream gauges) are shown as circles. Units are in m3/s/km2.
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Fig. 12. Cross validation errors of Q100N for the eight gauges in the Inn region. Station numbers
as shown in Fig. 7.
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Fig. 13. Uncertainties of the normalised specific 100-year flood Q100N from Top-kriging (top)
and Ordinary Kriging (bottom), expressed as the coefficient of variation, colour coded on the
stream network of the Inn region. Uncertainties of the measurements (i.e. values at the stream
gauges) are shown as circles. 2286
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