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Abstract

Successful implementation of best management practices for reducing non-point
source (NPS) pollution requires knowledge of the location of saturated areas that pro-
duce runoff. A physically-based, fully-distributed, GIS-integrated model, the Soil Mois-
ture Distribution and Routing (SMDR) model was developed to simulate the hydrologic5

behavior of small rural upland watersheds with shallow soils and steep to moderate
slopes. The model assumes that gravity is the only driving force of water and that most
overland flow occurs as saturation excess. The model uses available soil and climatic
data, and requires little calibration.

The SMDR model was used to simulate runoff production on a 164-ha farm water-10

shed in Delaware County, New York, in the headwaters of New York City water supply.
Apart from land use, distributed input parameters were derived from readily available
data. Simulated hydrographs compared reasonably with observed flows at the water-
shed outlet over a nine year simulation period, and peak timing and intensities were
well reproduced. Using off-site weather input data produced occasional missed event15

peaks. Simulated soil moisture distribution agreed well with observed hydrological fea-
tures and followed the same spatial trend as observed soil moisture contents sampled
on four transects. Model accuracy improved when input variables were calibrated within
the range of SSURGO-available parameters. The model will be a useful planning tool
for reducing NPS pollution from farms in landscapes similar to the Northeastern US.20

1. Introduction

Reducing agricultural non-point source (NPS) pollution has become a focus for water-
shed management programs that maintain and improve water quality. Significant NPS
pollution originates from hydrologically active areas where runoff is generated, and that
also have high soil nutrient concentrations (Gburek et al., 1996). Successful implemen-25

tation of best management practices for reducing NPS pollution requires the knowledge
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of the location of frequently-saturated areas prone to overland flow generation, termed
hydrologically sensitive areas (HSAs) (Walter et al., 2000).

Overland flow generation can occur by two mechanisms. Infiltration-excess runoff
(also called Hortonian overland flow) takes place when precipitation rate exceeds soil
infiltration capacity (Horton, 1933, 1940). This mechanism is predominant on low or-5

ganic matter arid and semiarid soils that are prone to crusting and on compacted areas
during high-intensity rainfall events. In contrast, saturation-excess overland flow occurs
when precipitation falls on saturated soil. Locations of saturation-excess overland flow
does not depend on rainfall intensity but on topography, soil properties, and local hy-
drological conditions, such as high water table (Hewlett and Hibbert, 1967; Dunne and10

Black, 1970; Hewlett and Nutter, 1970; Dunne et al., 1975; Beven and Kirby, 1979).
Either infiltration- or saturation-excess processes may predominate at different times

and different locations within a watershed. When Hortonian flow dominates, the volume
of surface runoff is a function of soil type, land cover and rainfall intensity. Semi dis-
tributed models such as SWAT (Arnold et al., 1993, 1994; Di Luzio and Arnold, 2004;15

Neisch et al., 2002), HSPF (Donigian et al., 1995; Bicknell et al., 1997; Srinivasan et
al., 1998) or GWLF (Haith and Shoemaker, 1987; Haith et al., 1992; Schneidermannet
al., 2002) are usually based on Hortonian overland flow generation mechanisms. With
these models, topographical information is not an important predictor of total runoff and
nutrient loads to the streams. However, when overland flow is generated by saturation-20

excess mechanisms, landscape position is a determining factor, and the temporal dis-
tribution of variable source areas must be estimated. Therefore, only fully distributed
models can accurately simulate saturation-excess overland flow.

Typical fully-distributed spatial models include the Système Hydrologic Européen,
SHE (Abbott et al., 1986a, b; Refsgaard and Storm, 1995); TOPMODEL (Beven, 1997;25

Beven and Kirkby, 1979; Saulnieret al., 1998); Distributed Hydrology Soil Vegetation
Model, DHSVM (Wigmosta et al., 1994; Wigmosta et al., 2002; Wigmosta and Perkins,
2001) and the Soil Moisture Distribution and Routing model, SMDR. The SMDR is
based on a soil moisture balance calculation initially developed by Steenhuis and
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van der Molen (1986), later modified and integrated into the Geographic Resources
Analysis Support System (GRASS) Geographic Information System (GIS) (US Army
C.E.R.L., 1991; Neteler and Mitasova, 2002) by Zollweg et al. (1996), Frankenberger
et al. (1999) and Kuo et al. (1999). This model is currently maintained by the Soil and
Water Laboratory, Cornell University (Soil and Water Laboratory, 2003). The SMDR5

was specifically designed for application on small rural watersheds of the Northeast-
ern United States, characterized by soils overlying slowly permeable layers at shallow
depths and moderate to steep slopes. It differs from other models such as SHE or
DHVSM in that it uses only readily available data. Unlike TOPMODEL, it does not
assume a water table underlying the whole watershed, but uses soil data on depth to10

restrictive layer to determine the lower soil boundary.
In the recent years, SMDR has been successfully applied to predict discharge data

in several watersheds of the Catskills Mountain region, New York (Frankenberger et
al., 1999; Mehta et al., 2004), in Central New York (Kuo et al., 1999; Johnson et al.,
2003), and in Pennsylvania (Srinivasanet al., 2005). Validation of the model distributed15

outputs has been limited due to the difficulty of collecting accurate distributed data
required for validation purposes.

The objective of this paper is, therefore, to validate SDMR integrated (i.e. runoff at the
watershed outlet) and distributed results. The study watershed is a 164-ha dairy farm,
located in the northern Catskills region of Delaware County, NY, within the headwaters20

of Cannonsville reservoir, the third largest reservoir of the New York City water supply
system. Streamflows and streamwater nutrient concentrations have been measured
at the watershed outlet since 1993 (Bishop et al., 2003, 2005). Detailed management
records are also available, and this farm provides an ideal context for application of the
model and verification of results.25
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2. Description of the SMDR model

The purpose of SMDR is to identify the location and evolution of variable source areas
for overland flow generation and to estimate water fluxes to streams and groundwa-
ter. The SMDR is intended as a tool for planners or groups interested in watershed
management. Therefore, it does not require extensive calibration and is designed to5

use data that are readily available in electronic form: (i) a digital elevation map, (ii)
a soil type map and the associated table of soil hydrologic properties, (iii) a land use
and land cover map, and (iv) weather data (temperature, precipitation and potential
evapotranspiration). Details of input data requirements are given in a following section.

Use of SMDR is limited to upland, well-vegetated watersheds, where soils have a10

high infiltration capacity and slopes over 3%. In many cases, a low permeability layer,
such as bedrock or fragipan, is present at a relatively shallow depth. Watersheds of
this type occur not only in the Northeastern United States, but also in many other parts
of the world.

The SMDR divides the watershed in square gridcells, with typical cell dimensions15

ranging from 5 to 30 m. Larger dimensions tend to misrepresent the landscape curva-
tures and lead to unreasonably high estimates of soil water content (Kuo et al., 1999).
In practice, the minimum grid size depends on the resolution of the DEM. Within each
cell, soil properties are assumed to be homogeneous. Soil horizons above the low-
conductivity restricting layer are grouped into a single surface soil layer. This surface20

soil layer is then decomposed into two functional sublayers, corresponding to the root-
ing zone and a transmission zone.

A soil water mass balance is computed for the surface soil of each cell at each time
step. A constant daily time step is usually chosen as a good compromise between
computational speed, accuracy of results, and data availability. Daily water inputs to25

the top soil layer of each cell are daily precipitation and lateral flow from surrounding
upslope cells. Outputs are lateral flow to surrounding downslope cells, percolation
through the restrictive layer, and evapotranspiration. A schematic representation of the
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water balance is illustrated Fig. 1. The water mass balance equation can be expressed
for each cell as:

zW 2|θ(t) − θ(t − ∆t)| = |RF (t) + SM(t)|
+ Qi (t) −Qo(t)
− ET (t) − P (t) − SE (t)

(1)

where z is the thickness of the surface soil (m), W the (square) grid size (m), θ the
cell average water content (cm3.cm−3), ∆t the time step (d), RF and SM the rainfall5

and snowmelt volumes, respectively, Qi the volume of water received through lateral
flow from surrounding upslope cells, Qo the volume of water lost through lateral flow to
surrounding downslope cells, ET the volume of water lost by evapotranspiration, P the
volume of water lost by percolation through the bounding layer, and SE the saturation
excess runoff. Volumes are expressed in (m3). Although the mass balance compo-10

nents are tightly coupled, they are estimated separately for computational simplicity.
They are presented hereafter in the order in which they are calculated for each time
step.

2.1. Precipitation

Daily precipitation is first partitioned into rain or snow, depending on the observed daily15

mean air temperature (◦C), corrected as necessary for local elevation by the adiabatic
lapse rate of 6.5×10−3 C.m−1 (Boll et al., 1998). Rainfall RF is identified with precipi-
tation on cells where air temperature is greater than −1◦C. Snowmelt SM is computed
following a simple land-cover dependent temperature index method (US Army Corps
of Engineers, 1960). Rainfall and snowmelt occurring on impervious areas, e.g. roads20

and buildings, are converted directly to overland flow.

2.2. Moisture redistribution

Water inputs are assumed to infiltrate and are added to the water already stored in the
surface layer. After infiltration, three characteristic moisture θf , θm and θs are consid-
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ered, corresponding to field capacity, macroporous drainage limit and saturation, re-
spectively. Field capacity is defined as the moisture content below which no drainage
takes place. The macroporous drainage limit corresponds to the minimum water con-
tent required to activate macropore flows, and is related to the depth to the slowly
permeable layer: the shallower the slowly permeable layer, the larger the drainage limit5

(Boll et al., 1998). The moisture content at saturation is identified with effective porosity
(i.e. porosity corrected by rock fragment and organic matter content).

When the average soil water content θ̄ is less than the macroporous drainage limit,
the moisture profile is assumed uniform throughout the top layer of soil. Otherwise, a
saturated layer of thickness zs is formed, so that10

z0 = (z − zs)θm + zsθs (2)

2.3. Lateral flows

Lateral outflows are calculated with a simplified Darcy’s law:

Qo = − κ K (θ) z W σ ∆t (3)

where K is the average hydraulic conductivity of the layer (m.day−1), κ a depth-15

dependent multiplier (typical range of 2 to 10) introduced to correct transmissivities
for preferential flows in macropores (Boll et al., 1998) and σ the local surface slope
(m.m−1). The average hydraulic conductivity K is defined as:

K (θ) = 0 for θ < θf

K (θ) = Ks exp
[
−α θs−θ

θs−θf

]
for θf ≤ θ < θm

K (θ) = Km + Ks
θ−θm
θs−θm

for θm ≤ θ

(4)

where Ks=K (θs) and Km=K (θm) are the hydraulic conductivity at saturation and at20

macroporous drainage limit, respectively, and α universal constant equal to 13 for a
large range of soils (Bresler et al., 1978; Steenhuis and van der Molen, 1986).
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Lateral outflows from each cell are then distributed according to local aspect between
one cardinal and one diagonal downslope neighboring cells, following the D∞ algorithm
(Tarboton, 1997). On each cell, the lateral inflow Qi is defined as the sum of the
contributions received from the upslope surrounding cells.

2.4. Evapotranspiration5

Evapotranspiration ET is calculated by solving the differential equation:

zr
dθ
dt

= −Kc E (5)

where zr is the depth of the rooting zone (m), Kc a basal evapotranspiration coefficient
introduced to reflect differences among vegetation types (−) (Allen et al., 1998), and
E the evapotranspiration rate (m.day−1). Following Thornthwaite and Mather (1955),10

it is assumed that E varies linearly with water content, from 0 at permanent wilting
point, θp (cm3.cm−3), to the potential evapotranspiration rate, Eref , when soil moisture
exceeds a given “evapotranspiration limit” θl , usually set to field capacity. The potential
evapotranspiration rate Eref is calculated daily from temperature data, following the
Hargreaves and Samani’s (1985) method or a simplified Priestley and Taylor (1972)15

method. Rooting depths zr and basal coefficients Kc are calculated for each vegetative
cover, depending on its development stage. Vegetative development is calculated as
a function of cumulative growing degree-days, i.e. the cumulative difference of daily
average temperatures and a vegetation-type dependent basal temperature Tb (◦C).
Five development stages are defined, according to cumulative growing degree-day20

thresholds and a final winter cutoff condition (Jensen et al., 1990). Growing degree-
days accumulation starts when average daily air temperature is larger than the basal
temperature Tb for five consecutive days (Goudriaan and van Laar, 1994). Data for
the basal coefficients and growing-degree day threshold are compiled from literature
or estimated from local records.25
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2.5. Percolation

Percolation of water through the fractures and cracks in the bedrock and, to a lesser
extent, through the dense fragipan (Soren, 1963), is computed for each cell as:

P = min[K (θ);Ksub]W 2∆t (6)

where Ksub is the conductivity at saturation of the cell substratum, (m.day−1), and5

where the hydraulic conductivity K is given by Eq. (4). Percolation stops when the
average water content of the bottom structural layer is less than field capacity.

Identification of percolation pathways requires some knowledge of the geometry of
the fractures. Unfortunately, such data are scarce. Therefore, it is assumed that at
each time step, only a fraction r of the total percolating volume flows to the streams,10

with the remainder lost to regional flow. Percolation to the stream constitutes the stream
baseflow BF (m3), such as

BF = r
∑
i

Pi (7)

where Pi is the percolation volume simulated on cell (i ) (m3), and where the summation
domain is the entire watershed. Previous versions of the model assumed that all per-15

colated water accumulated into a subsurface reservoir, and that a constant fraction of
the reservoir storage became baseflow at each time step. Closer examination showed
that such a hypothesis was unnecessary.

2.6. Overland flow and streamflow generation

At the end of each time step, any water in excess of saturation becomes saturation20

excess overland flow SE (m3). Overland flow is routed directly to the watershed outlet.
Re-infiltration and interaction of overland flow with downslope soils are not considered.
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3. Input data

Refsgaard and Strom (1996) stress that for a rigorous parametrization hydrological
systems, only the parameters that are pertinent to modeling and that can be directly
measured or derived from field data should be selected. In SMDR, computation of the
water balance requires, in addition to climatic input, the knowledge of several param-5

eters on each cell: z, θp, θl , θf , θm, θs, κ, Ks, zr , Kc, and Ksub. Another parameter,
the percolation coefficient r , has to be estimated on the watershed scale. To limit
the risk of overparameterisation (Beven, 1996), parameters are actually grouped in
generic classes reflecting only significant spatial variations. Typical classes consist of
soil units, soil horizons, vegetative types and land covers. Parameter classes for the10

study watershed are defined in a following section.

3.1. Weather information

Daily minimum and maximum temperatures were obtained from a nearby weather sta-
tion located at Delhi, New York, 438.9 m.s.l., (National Weather Service (USDC NOAA)
cooperative observer station #302036, “Delhi 2 SE”), located about 20 km SW of the15

site (NCDC, 2000). Temperatures were corrected by −1.2◦C to account for the dif-
ference of elevation with the study watershed. Potential evapotranspiration rates Eref
were calculated from daily temperature data, following the Priestley and Taylor (1972)
method. Precipitation was recorded at a 10-min interval, and integrated over one day.
Onsite precipitation records were available from 1998 to 1999 only, for air temperatures20

greater than 1◦C. When onsite information was not available, daily precipitation records
from the Delhi weather station were used instead. Daily stream flows were recorded
on a 10-min basis by a gauge at the watershed outlet, and integrated over one day
(Bishop et al., 2003).
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3.2. Parameter classes

3.2.1. Topographic map

Elevation data were obtained from the USGS as a 1:24 000, 10-m×10-m horizontal,
0.1-m vertical resolution digital elevation map (USGS, 1998). The watershed boundary
was first derived using the Arcview Basins extension (ESRI, 2002), then was modified5

to reflect the effect of a farm access road and to match the area above the streamflow
monitoring station, and was finally verified by Hively (2004). An aerial photograph
of the watershed, with 5-m elevation contours, is presented Fig. 2. Study watershed
elevations range from 600 to 740 m.s.l. The main flow direction is oriented NNW-SSE.
Slopes on the upper part of the watershed range from 2 to 40% (with an average about10

17%), while slopes on the lower part range from 0 to 20% (with an average about 8%).

3.2.2. Soil type classes

Soil types and characteristics were derived from the SSURGO database (USDA-
NRCS, 2000). The steeper, shallower (average thickness 65 cm) upper terrains are
characterized by Halcott channery loams (loamy-skeletal, mixed, active, frigid Lithic15

Dystrudepts) and Vly channery silty loams (loamy-skeletal, mixed, superactive, frigid
Typic Dystrudepts). These terrains overlay a fractured horizontal bedrock. The flatter,
deeper (average thickness 180 cm) lower terrains consist of moderately-well-drained
Willowemoc channery silt loams (coarse, loamy, mixed, frigid, Typic Fragiochrepts) and
Onteora silt loams (coarse-loamy, mixed, semiactive, frigid Aquic Fragiudepts). These20

terrains are restricted by a dense fragipan. The watershed soil map is presented in
Fig. 3.

3.2.3. Land covers and land uses

Because readily available MRLC land cover data were not sufficiently detailed for mod-
eling at a 10-m gridcell resolution, a 1-m Chromatic InfraRed (CIR) digital orthopho-25
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tograph quadrangle quarter (DOQQ) covering the study watershed was taken on 1–6
December 2000 (NYSDoS, 2000). It was used as a basemap for high-resolution on-
screen digitization of field boundaries, impermeable areas, and other important land-
scape features. Combination of this information with field observations, GPS data,
farm planning records, and farmer interview provided sufficient detail to produce 10-m5

land use raster maps reflecting annual changes in crop rotation (Hively, 2004). Land
use categories were based upon the National Land Cover Data (NLCD) classification
system (NLCD, 1997), with the addition of several categories specific to local farm man-
agement practices. The map of field boundaries and corresponding land uses for 2001
is presented in Fig. 4. About 53% of the watershed area is covered by deciduous for-10

est. The lower slopes consist of improved pasture and hay (27%), unimproved pasture
(11%), rotated maize (7%) and impermeable areas such as roadways and barnyards
(2%).

3.3. Parameters definition

3.3.1. Vegetation properties15

Minimum and maximum values of the basal evapotranspiration coefficient Kc and the
rooting depth zr were derived from generic values reported in the literature (Jensen et
al., 1990; Allenet al., 1998). For each vegetation type, growing degree-days thresholds
and basal temperatures were adjusted prior to simulation, to reflect times of budding,
leaf emergence and full canopy representative of the Central New York climate. Rele-20

vant information is reported in Table 1.

3.3.2. Directly available soil properties parameters

Look-up tables associated with the SSURGO database provided the basis for the def-
inition of soil properties for each soil type. Only the data pertaining to the main soil
sequence for each soil type were taken into account. For each structural layer of each25
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soil type, the SSURGO database reports expected ranges of porosity, rock content,
organic matter, available volumetric water contents and hydraulic conductivity at satu-
ration. Only the midrange values were considered for the uncalibrated runs. Porosity
and available water content were furthermore corrected for rock and organic matter
content. The selected properties values were then weighted by the structural layer5

thickness, averaged over the composite topsoil layer and rounded. Parameters values
for each soil type are presented in Table 2.

In previous versions of the model, the main soil sequence was decomposed as the
superposition of several structural layers, as described by the SSURGO data base
(Johnson et al., 2003; Metha et al., 2004). In the current version, the structural lay-10

ers above the restricting layer (bedrock or fragipan) are aggregated into a composite
surface soil layer, and soil depth z is defined as the sum depth of this composite layer.

Wilting point θp was calculated as the water content at −1500 kPa, using SSURGO
values of organic matter and clay contents, and a linear regression equation developed
by Rawls and Brakensiek (1985). Field capacity θf was calculated as the sum of θp15

and the midrange of SSURGO values for available water content. Evapotranspiration
limit θl was set to field capacity.

3.3.3. Estimated soil properties parameters

Only four parameters are not readily available and have to be estimated: macroporous
drainage limit θm, horizontal hydraulic conductivity multipliers κ, hydraulic conductivity20

at saturation of the bounding layer Ksub, and percolation fraction delivered to stream-
flow, r .

In previous versions of the model, decreasing values of the multipliers κ were allo-
cated from the top structural layer to the bottom one (Mehta et al., 2004). In the current
version, the multipliers were assumed to decrease exponentially with topsoil thickness,25

from 10 for the shallowest soils of the watershed to 2 for the deepest ones. The val-
ues were initially chosen to reproduce field observations that hydraulic conductivities
derived from bore hole measurements were up to one order of magnitude larger than
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those reported in the SSURGO database, for which conductivities are determined on
disturbed samples (unpublished data).

The macroporous drainage limit, θm, is a key parameter controlling subsurface lateral
flows and percolation. Preliminary investigations indicated that if θm was set to a low
value, simulated percolation would last for too long a period for wet soils, as compared5

with observed baseflows, and would restart after a too short period for dry soils, leading
to overestimated baseflows at the beginning and end of the summer period. Eventually,
for soils with a restrictive layer of less than 3 m, the parameter was estimated from field
capacity and soil depth, through the relation:

θm = θf |3/z|1/4 (8)10

with the soil depth z expressed in (m). This relation relies on the hypotheses that
under hydrostatic conditions, the soil water pressure – water content relationship is
described by the Brooks and Corey (1964) model, and that field capacity is identified
with the water content at a pressure of −30 kPa (equivalent to 3 m of water column).
The exponent in Eq. (8) corresponds to a generic value of Brooks-Corey pore size15

distribution index over a wide range of soils.
Following Frankenberger et al. (1999), a generic value of 1 mm·day−1 was assumed

for the saturated conductivity of fragipan layers, while a saturated conductivity of
2 mm·day−1 was assumed for the slowly permeable bedrock layers. The percolation
fraction r , was calibrated after simulation to a value of 0.677, in order to match ob-20

served flows during a dry summer period (1997).

4. SMDR model integrated results

The SMDR model was applied to the study watershed over a 9-year period (1 January
1993 to 31 December 2001). The resulting hydrographs are presented in Figs. 5a–5h.
The first year of simulation (1993) is not shown as it might have been affected by the25
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assumed initial water storage conditions. Outputs for each year were decomposed into
two 6-month seasons, “summer” (May-October) and “winter” (November-April).

From 1993 to 2001, a total of 8577 mm of precipitation was recorded (4422 and
4155 mm for summer and winter periods, respectively), and 4531 mm of streamflow
was observed (1155 and 3376 mm for summer and winter periods, respectively). For5

the same period, simulated streamflow was 4412 mm (1157 and 3255 mm for summer
and winter periods, respectively). Precipitation and observed and simulated stream-
flows are reported for each simulated year in Table 3, along with the values of three
efficiency criteria: modified Nash-Sutcliffe criterion MNS (Chiew and McMahon, 1994),
mean absolute error MAE (Ye et al., 1997), and correlation coefficients R2. The MNS10

criterion was selected because it is more sensitive to low flow events than the classical
Nash and Sutcliffe (1970) criterion. The mean absolute error characterizes how close
the simulated results are from observations at each time step (Ye et al., 1997). The
closer the value of any of the three criteria is to one, the better the simulation.

Agreement between observed and simulated streamflows was reasonable over the15

entire simulated period (MNS=0.66, MAE=0.44, R2=0.58). Differences in accuracy
could be observed from year to year: the model was more precise and gave larger
efficiency criteria for the dry years (1997–1999) than the wetter years (1994–1996,
2000–2001). As expected, the best agreement (MNS=0.90, MAE=0.76, R2=0.90)
was obtained for the dry summer 1997 on which the calibration of the percolation rate20

r was performed.
Peak flow timing, intensities and hydrograph recession were usually well simulated.

Occasionally peaks were not reproduced in winter (e.g. 25 January 1996, 6 February
1997, 17 January 1998, 15 Feburary 2000 in Figs. 5c–5g, respectively), while some
peaks were incorrectly simulated during observed low winter flows (e.g. 23 January25

1997, 22 March 1999 in Figs. 5d and 5f, respectively). This discrepancy was attributed
to the use of off-site climate data.

Agreement between observed and simulated flows was better during summer
(MNS=0.66, MAE=0.47, R2=0.63) than during winter (MNS=0.51, MAE=0.33,
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R2=0.54). Here again, peak timing and intensities were generally well predicted, with
a slight underestimation of peakflows. A significant underestimation of peakflows was
observed in August 2000 (Fig. 5g), when precipitation occurred late in the season, as
short-duration, high-intensity summer thunderstorms over dry soils. Low flows were
usually underestimated (e.g. August 1998 and July 1999).5

Three main sources can explain the occasional poor matches between observed and
predicted hydrographs. First, water balance components are not perfectly modeled.
Snowmelts are only crudely estimated by the temperature-index method currently im-
plemented. More realistic snowmelt routines involve calculation of a radiation balance,
even simplified (Walteret al., 2004), but required data were not readily available. Soil10

freezing and interactions between rainfall and snow cover should be taken into account.
Moreover, infiltration-excess overland flow during summer months is modeled on im-
pervious areas only and not on other soils, which for high rainfall intensity summer
storms will likely cause the underestimation of peakflows such as were observed in
August 2000. Also, SMDR takes into account perched water tables only, and regional15

groundwater only indirectly.
An additional source of errors comes from non-optimal parameter calibration. For

example, an overestimation of the soil drainage properties would lead to too rapid a
depletion of the water storage by lateral flows, causing an underestimation of perco-
lation during summer months. This hypothesis can explain the simulation of lower20

summer flows than were observed.
Finally, weather data were obtained from an offsite station about 20 km from the site.

In the summer, thunderstorms are localized, and precipitation measured at Delhi, NY
may not equal precipitation occurring onsite. For example, on 7 August 2000, 18 mm
of rain (as recorded in Delhi) produced only 0.7 mm of streamflow at the watershed25

outlet, while three days later, 15 mm of rain produced 7.3 mm of streamflows. It is
likely that the actual precipitation for the storm that hit Delhi on 7 August 2000 was in
fact much less on the study watershed. Model results may improve substantially with
the use of on-site climatic data. Similarly, the use of off-site temperature data may have

1552

http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/2/1537/hessd-2-1537_p.pdf
http://www.copernicus.org/EGU/hess/hessd/2/1537/comments.php
http://www.copernicus.org/EGU/EGU.html


HESSD
2, 1537–1579, 2005

Phosphorus
transport in an

agricultural
landscape

P. Gérard-Marchant et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

contributed to the imperfect reproduction of snowmelt events.

5. SMDR model distributed results

Alone, comparison of observed and simulated hydrographs is not a sufficient check of
the distributed accuracy of hydrological models. For example, Refsgaard and Knud-
sen (1996) observed that after proper calibration, a conceptual lumped model (NAM)5

and a physically-based distributed model (MIKE-SHE) predicted streamflows equally
well. Similarly, Johnson et al. (2003) compared SMDR results with outputs simulated
by HSPF, an infiltration-excess based semi-distributed conceptual model. Both models
gave equally accurate hydrographs despite their different runoff generation mecha-
nisms (Johnson et al., 2003).10

A classical approach to assess the efficiency of a distributed model such as SMDR
consists in the quantitative comparison of observed and simulated moisture contents at
various locations throughout the watershed. Such a method is intrinsically limited by its
local character, as samples are taken at specific locations, on particular dates. Even if
this approach provides valuable information about the hydrodynamic characteristics of15

the soils where the samples are taken, it usually fails to identify variable source areas
on a larger scale and to capture their dynamics.

A complementary validation consists in using direct information about the location
of springs, ephemeral stream paths and saturated areas, as obtained with GPS and
mapping (Mehta et al., 2001, 2004), or indirect information about the position of hy-20

drological features in the landscape. For example, diversion ditches and tile drains are
usually installed to intercept overland flow and subsurface lateral flows, respectively,
thus indicating the regular occurrence of runoff generating areas upslope of these in-
stallations. In a related way, certain vegetation types, like ferns, grow preferentially in
wet areas, and could be used as an indicator of the location of areas prone to generate25

runoff. Both direct and indirect validation approaches are presented below.
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5.1. Transect sampling

Soil samples were collected at 10-m intervals along three transects on two occasions
(8 June 2001 and 5 December 2001). The transects were chosen to represent vari-
ous land uses and topography. A forested transect (“F”) was located on a steep hills-
lope, over bedrock-limited soils. Transect (“P”) was located on pasture fields, on gently5

sloping soils overlying a fragipan. Transect (“S”) was located on moderately steep
shrubland. Sampling locations were identified by GPS for the eastern (“P”) and middle
(“S”) transects, but could not be obtained the forested transect (“F”) because of the
interference from tree canopy. The location of this latter transect was therefore only
approximated from the DOQQ. Transect positions are plotted on the land use map in10

Fig. 4.
Single cores (48 cm3) were taken from each location at a depth from 2 to 6 cm. Each

core was weighted and dried to determine gravimetric moisture content and soil bulk
density. The samples were also sieved (2 mm) to correct the results for rock content.
Soil moisture saturation degree was calculated as:15

Θ =
mw

Vc −ms/ρs

(9)

where mw and ms are the measured mass of water and dry soil in the sample, Vc
the core volume and ρs the particle density, after correction by the organic matter
content. Relative errors on the core volumes were estimated at 10 to 15%. Other
uncertainties about weight measurements and particle density led eventually to an20

approximate relative error on saturation degree about 20 to 30%.
Additional soil moisture information was available from a previous sampling cam-

paign (6 May, 30 June, 28 October 1994 and 18 January 1995) on a fourth transect
(noted “P2”), located on moderately steep pastures (Frankenberger et al., 1999). For
these data, saturation degrees were calculated as the ratio of volumetric water content25

values and an average porosity of 0.45 cm3.cm−3, as reported by Frankenberger et
al. (1999). Absolute errors on volumetric contents and porosity were estimated for this
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transect as about 0.07 cm3.cm−3 and 0.04 cm3.cm−3, respectively (Frankenberger et
al., 1999), giving an absolute error about 0.11 cm3.cm−3 on saturation degrees.

Comparisons of observed and simulated saturation degrees are presented for each
transect on Figs. 6a–6d. A 3-point moving average was calculated for both the simu-
lated and observed values to smooth outliers (lines). On each plot, the estimated error5

margin is presented as the grey area. A vertical dash line represents the approximate
transition point from one soil type to another. Correlation coefficients (R2) and rela-
tive standard errors (RRSE ) of the linear regression between observed and simulated
3-point moving averages are reported for each of the four transects in Table 4, along
with the average square residual NASR (normalized by the simulated average). Not-10

ing Θob, Θsm, Θf t the observed, simulated and regression-fitted saturation degrees,
respectively, the relative standard error RRSE and the average square residual are
defined as

RRSE =
(
Θsm

)−1

√√√√ 1
n − 2

n∑
i=0

(Θsm,i −Θf t,i )2 (10a)

NASR =
(
Θsm

)−1

√√√√1
n

n∑
i=0

(Θsm,i −Θobs,i )2 (10b)
15

For the shrubland transect “S” on 8 June 2001 (Fig. 6a), simulated degrees of sat-
uration matched observations on the bottom half of the transect, but overpredicted
them on the top half, while showing the same generic trend (R2=0.56, NASR=0.21).
On 5 December 2001, simulations systematically overestimated observations by about
33%, but still had a similar trend (R2=0.83, NASR=0.29). These results indicate that20

the drainage characteristics of the upper portion of the transect were underestimated.
Indeed, when the average porosity value measured on the site is used instead of the
SSURGO estimates, and when the hydraulic conductivities at saturation are set to the
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higher limits reported in the SSURGO database, simulated results have a much bet-
ter fit to observations, as illustrated Fig. 6a (R2=0.86, NASR=0.09 for 8 June and
R2=0.75, NASR=0.06 for 5 December). For the pasture transect “P”, simulated satu-
ration degrees are in close agreement with observed moisture contents on both dates
(R2=0.43, NASR=0.17 for 8 June and R2=0.04, NASR=0.21 for 5 December). Ob-5

served data points at 30 and 330 m from on 5 December had suspiciously low mea-
sured water content, and are likely outliers. These outliers explain the low values of the
R2. Corresponding error margins were adapted in consequence. Results were also
satisfactory for transect “F” (forest) on both dates in Fig. 6c, correctly reproducing the
observed greater saturation at the flatter base of the slope than on the steeper upper10

section (R2=0.78, NASR=0.24 for 8 June and R2=0.93, NASR=0.09 for 5 Decem-
ber). On 8 June 2001, however, the model did not reproduce as sharp a decrease in
saturation degree with slope change as was observed at 70 m from the bottom of the
slope.

Finally, observed saturation degrees (Fig. 6d) were also well reproduced for the15

fourth transect “P2”, with however a slight systematic overestimation of saturation de-
grees on 18 January 1995, and overestimation on the bottom part of the transect on 6
June 1994 (R2=0.51 and NASR=0.13 on the four dates).

Overall, the trend of moisture distribution along selected transects was reasonably
well reproduced, although simulated saturation degrees did not match observations20

at some locations at some dates. Discrepancies between observed and simulated
results originated partly from experimental errors in the determination of saturation de-
grees, partly from the potential lack of representativity of the samples, but also from
the soil properties input dataset used in the simulation. The SSURGO database de-
scribes characteristic soils, and by its statistical nature cannot account for local variabil-25

ity. Therefore, the parameters derived from SSURGO are only approximate. A better
match of simulations and observations could be achieved by calibrating the soil hydro-
dynamic characteristics on a soil by soil, or even field by field, basis, as illustrated by
the better fit obtained on transect “S” after calibration. However, such a punctual ad-
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justment of parameters would defy the original purpose of SMDR, i.e. a fully distributed
model that requires little calibration, and would lead naturally to the overparametriza-
tion pitfall pointed out by Beven (1996), without gaining much accuracy in the overall
location of wet areas.

5.2. Mapping of saturated areas5

Eight 30-cm CIR DOQQs covering the watershed were taken on April 2001 (NYS-
DoS, 2000). These orthophotographs provided basemaps for the digitization of natural
hydrological features (streambeds, pond, main springs, wetlands area) and drainage
features (diversion ditches, tile drains). Additional information, including farmer inter-
view and field observations, enabled the mapping of frequently saturated areas prone10

to overland flow production. The resulting map is presented Fig. 7.
Simulated daily runoff volumes for the test period were summed up by season and

averaged over the simulation period, to create the predicted maps of frequently satu-
rated areas presented in Fig. 8. Clearly, runoff is frequently generated in the fragipan-
restricted lower terrains of the study watershed. The northeastern steeper slopes pro-15

duce more runoff than the gentler western slopes. Variable source areas are concen-
trated in converging areas, slope breaks, and transition between bedrock- and fragipan-
restricted soils. These areas (Fig. 8) match well with the actual location of streampaths
and diversion ditches (Fig. 7). Areas mapped as frequently saturated from field obser-
vations were properly reproduced by the model.20

6. Conclusions

Results of the hydrological model were good considering the minimal calibration. Hy-
drographs were generally properly simulated, both in terms of peaks timing and inten-
sity, although summer baseflows were often underestimated, and some winter peak-
flows were improperly reproduced. Agreement between observed and simulated sat-25
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uration degrees along four transects at different dates were usually correct. Visual
comparison of seasonal cumulative runoff maps and digitized hydrological features
was also very encouraging. Improvements should focus on a better representation of
snowmelt and soil freezing during winter periods, baseflow generation mechanisms
during summer periods, and simple estimation rules for some of the hydrodynamic5

properties (macroporous drainage limit and horizontal hydraulic conductivity). How-
ever, given the limited information about spatially distributed nature of soils, the ques-
tion remains how the suggested improvements can best be implemented to obtain
more accurate simulated distributed moisture contents.
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Table 1. Vegetation and land uses properties used in the calculation of evapotranspiration:
rooting depth zr , basal evaportranspiration coefficient Kc, base temperature Tb and growing
degree thresholds DD.

zr (mm) Kc Tb DDmax DD12 DD23 DD34
min max min max (◦C) (%) (%) (%)

Open Water 0 0 1.00 1.00 0 0 0 0 0
Roads/Buildings 0 0 1.00 1.00 0 0 0 0 0
Deciduous Forest 1500 1500 0.25 1.00 1 3500 0.10 0.15 0.93
Shrubland 750 750 0.20 1.00 1 2700 0.08 0.13 0.95
Grasslands/Herbaceous 600 600 0.20 1.00 1 4000 0.05 0.10 0.97
Row Crops 75 750 0.40 1.10 5 2100 0.15 0.40 0.90
Small Grains 75 750 0.40 1.10 5 2000 0.15 0.40 0.90
Fallow 600 600 0.20 1.00 3 3500 0.05 0.10 0.97
Alfalfa 1500 1500 0.20 1.20 1 4000 0.05 0.10 0.97
Grass/Hay + grazing 600 600 0.20 1.00 1 4000 0.05 0.10 0.97
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Table 2. Soil characteristics for the study watershed.

Soil z Rock1 OM2 θw θf θm θs Ksat κ Boun-
(mm) (%) (%) (%) (%) (%) (%) (mm.d−1) ding

Layer3

Ek Elka-Vly complex 1500 15.0 0.0 7.5 22.5 27.5 47.5 800 4 D
El Elka-Vly complex 1800 17.5 0.5 7.5 22.5 25.0 47.5 800 2 D
Hc Halcott, Mongaup and Vly soils 500 52.5 0.5 10.0 20.0 32.5 45.0 800 6 D
Lh Lewbeach channery loam 500 25.0 2.5 10.0 20.0 32.5 50.0 700 7 R
Lk Lewbeach and Lewbath soils 500 27.5 2.5 10.0 22.5 35.0 50.0 1000 7 R
No Norchip silt loam 300 7.5 6.5 12.5 30.0 50.0 52.5 1000 7 R
Oe Onteora channery silt loam 300 22.5 4.0 10.0 22.5 40.0 52.5 1000 7 R
Of Onteora and Ontusia soils 300 27.5 3.5 10.0 22.5 40.0 52.5 1000 7 R
Te Torull-Gretor complex 500 17.5 2.5 12.5 25.0 40.0 47.5 200 7 D
Vl Vly channery silt loam 800 47.5 2.0 12.5 22.5 32.5 47.5 800 6 D
Wm Willowemoc channery silt loam 500 22.5 1.5 10.0 22.5 35.0 52.5 800 4 R

1 Rock and gravel content.

2 Organic matter content.

3 Bounding layer type – R: restricting (fragipan) – D : draining (bedrock).
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Table 3. Comparison of annual, summer and winter values of observed and simulated daily
streamflows and efficiency criteria for the simulated period (1 January 1994–31 December
2001).

Year All 1994 1995 1996 1997 1998 1999 2000 2001

Annual
Precipitation (mm) 8577 1184 1047 1472 866 993 951 1230 834
Obs. Flows (mm) 4531 702 494 883 424 552 473 675 328
Simul. flows (mm) 4412 632 492 898 424 520 464 638 344
MNSa 0.661 0.632 0.638 0.604 0.769 0.746 0.635 0.413 0.579
MAEb 0.436 0.448 0.385 0.383 0.515 0.516 0.418 0.287 0.388
R2 0.584 0.571 0.465 0.625 0.581 0.752 0.673 0.483 0.496

Summer (1 May–31 October)
Precipitation (mm) 4422 611 588 776 367 515 480 604 480
Obs. Flows (mm) 1155 155 87 310 73 163 88 229 51
Sim. flows (mm) 1157 161 141 303 76 121 106 183 66
MNSa 0.656 0.568 0.505 0.757 0.903 0.733 0.336 0.182 −0.301
MAEb 0.473 0.390 0.271 0.513 0.760 0.573 0.354 0.212 0.065
R2 0.633 0.489 0.700 0.732 0.896 0.779 0.717 0.443 0.538

Winter (1 January–31 March, 1 November–31 December)
Precipitation (mm) 4155 573 459 696 499 478 471 625 354
Obs. Flows (mm) 3376 548 407 573 351 389 385 446 277
Sim. flows (mm) 3255 472 350 595 348 399 358 455 278
MNSa 0.506 0.526 0.257 0.457 0.439 0.707 0.407 0.444 0.531
MAEb 0.335 0.385 0.194 0.275 0.298 0.469 0.294 0.298 0.287
R2 0.539 0.535 0.357 0.586 0.427 0.737 0.664 0.465 0.440

a Modified Nash Sutcliffe criterion (Chiew and McMahon, 1994).
b Mean Absolute Error (Ye et al., 1997).
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Table 4. Correlation coefficient (R2), relative standard error (RRSE) and Normalized Aver-
age Square Residual (NASR) of the comparison between observed and simulated saturation
degree on each transect.

NASRa (%) R2 RRSEb (%)

Transect S (shrubs)
Without calibration 26.5 0.34 12.6
8 June 2001 20.5 0.56 7.3
5 December 2001 29.3 0.83 3.4
After calibration 10.3 0.77 8.6
8 June 2001 15.6 0.86 8.8
5 December 2001 6.9 0.75 5.6

Transect P (pasture) 20.0 0.05 15.3
8 June 2001 17.7 0.43 3.7
5 December 2001 20.6 0.04 13.0

Transect F (forest) 20.5 0.42 16.7
8 June 2001 24.2 0.78 10.5
5 December 2001 9.4 0.93 3.4

Transect P2 (pasture) 12.5 0.51 9.3
6 May 1994 13.1 0.72 8.5
30 June 1994 12.7 0.46 6.4
28 October 1994 3.4 0.41 1.8
15 January 1995 14.5 0.84 3.9

a NASR: Normalized Average Square Residual.
b RRSE: Regression Relative Standard Error.
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Fig. 1. Schematic representation of the water balance components over one cell.
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Figure 2. Aerial photograph of the study watershed, with 5-m elevation contours. 

Black line indicates watershed boundary. 
 

Fig. 2. Aerial photograph of the study watershed, with 5-m elevation contours. Black line
indicates watershed boundary.
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 Hc: Halcott, Mongaup and Vly soils
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Fig. 3. SSURGO soil units map for the study watershed.
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Fig. 5. (a)–(h) Comparison between observed (grey) and simulated (black) hydrographs.
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Fig. 5. Continued.
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Fig. 5. Continued.
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Fig. 6. Comparison between observed and simulated saturation degrees along four transects,
(a) shrubland transect “S”, (b) pasture transect “P”.
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Fig. 6. Continued. (c) forest transect “F”, (d) transect “J”. Symbols: Saturation degrees. Lines:
3-points moving average. Grey stripe: experimental error. Vertical dash line: soil transition.
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Fig. 7. Position of natural and artificial drainage features, and estimated frequently saturated
hydrologic source area positions, as digitized from a 1-m resolution DOQQ.
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expressed in (mm) (1 mm∼=1637.7 m3).
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