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Abstract

We present a numerical model for time domain reflectometry (TDR) signal propaga-
tion in dispersive dielectric materials. The numerical probe model is terminated with
a parallel circuit, consisting of an ohmic resistor and an ideal capacitance. We de-
rive analytical expressions for the capacitance, the inductance and the conductance5

of three-wire probes. We couple the time domain model with global optimization in
order to reconstruct water content profiles from TDR traces. For efficiently solving the
inverse problem we use genetic algorithms combined with a hierarchical parameteri-
zation. We investigate the performance of the method by reconstructing synthetically
generated profiles. The algorithm is then applied to retrieve dielectric profiles from10

TDR traces measured in the field. We succeed in reconstructing dielectric and ohmic
profiles where conventional methods, based on travel time extraction, fail.

1. Introduction

1.1. Motivation

Time Domain Reflectometry (TDR) has become an indispensable technique for mea-15

suring the water content of soils in hydrology, civil engineering, agriculture and related
fields over the last years, for a review see Robinson et al. (2003). Early realizations
of the method delivered a single water content θ from a TDR trace (Birchak et al.,
1974; Topp et al., 1980, 1982a,b; Topp and Davis, 1985; Dasberg and Dalton, 1985).
A second phase of TDR development has targeted to deliver spatially resolved water20

content profiles along the TDR probe (Yanuka et al., 1988; Hook et al., 1992; Dasberg
and Hopmans, 1992; Pereira, 1997; Todoroff et al., 1998; Feng et al., 1999; Oswald,
2000; Oswald et al., 2003; Lin, 2003; Heimovaara et al., 2004; Schlaeger, 2005).

Because the dielectric permittivity of soil material typically depends considerably on
frequency, particularly if there are clay and loam components (Hoekstra and Delaney,25
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1974; Sposito and Prost, 1982; Ishida et al., 2000; Huisman et al., 2004; Robinson
et al., 2005), in a third phase methods have been studied to recover the average dis-
persive dielectric parameters from TDR traces (Heimovaara, 1994; Heimovaara et al.,
1996; Hilhorst et al., 2001; Lin, 2003). Clearly, the next logical step are methods to
extract the full dielectric profile from a TDR trace.5

1.2. Objectives

In this paper we study an efficient method for the reconstruction of spatially resolved
profiles of water content and electrical conductivity from TDR traces assuming disper-
sive dielectric properties of the soil material along the probe. In particular, we want to
reconstruct field measured TDR traces (Wollschläger and Roth, 2005) which could not10

be successfully reconstructed with techniques used by Roth et al. (1990).
We use the Debye model to account for dispersive dielectric properties (Debye,

1929). While the three-rod probe is often employed for TDR measurements, there
is only scarce material on its transmission line parameters, particularly inductance, ca-
pacitance and conductance per unit length. We therefore derive an analytical model for15

these parameters under the approximation of small conductor diameter D with respect
to conductor distance d .

2. Methods

The propagation of TDR signals, voltage v (x, t) and current i (x, t), on probes of two
or more conducting rods is described by transmission line theory (e.g. Ramo et al.,20

1984). Our approach for numerically modeling TDR probes is essentially based on
Oswald et al. (2003). A transmission line is described by capacitance C′, conduc-
tance G′, inductance L′ and resistance R′, all per unit length. These parameters are
functions of the probe geometry and the dielectric and ohmic properties of the ma-
terial between the probe’s conductors C′=C′ (d,D, ε), G′=G′ (d,D, σ), L′=L′ (d,D, µ)25
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and R′=R′ (d,D,Rskin) where d is the spacing between the probe rods (for a three
wire probe this is the distance between neighboring rods) and D is the diameter of the
probe rods.

For piecewise constant transmission line parameters, voltage v (x, t) and current
i (x, t) are described by the the following two linear first order, partial differential equa-5

tions (PDE) (Ramo et al., 1984):

∂v
∂x

= −
(
R′ + L′

∂
∂t

)
i (1)

∂i
∂x

= −
(
G′ + C′ ∂

∂t

)
v. (2)

The piecewise constant dielectric permittivity ε and ohmic conductivity σ can be dis-
continuous, because the water content θ in general is discontinuous across soil bound-10

aries. With a variable water content θ(x) along the probe the parameters G′ and C′ vary
accordingly; L′ is assumed to be constant, because the materials’ magnetic permeabil-
ity equals µ0; skin resistance R′ is neglected in the current study.

For extracting dielectric and ohmic profiles from measured TDR traces we use an
iterative, globally optimizing approach based on Oswald et al. (2003), in order to solve15

the non-linear, inverse, electromagnetic problem. The global optimization method uses
genetic algorithms form Levine (1996).

To calculate the TDR signal for a given dielectric profile we numerically solve Eqs. (1)
and (2) using a finite difference time domain (FDTD) approach (Taflove, 1998). The
spatial discretization of the x coordinate is given by x=k∆x and temporal discretization20

by t=n∆t with:

∆x ≤
λmin

10
(3)

where λmin is the minimum wavelength present in the system, which in non magnetic
material, is determined by the maximum frequency fmax and the largest permittivity
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value εmax (Taflove, 1998):

λmin =
c0

fmax
√
εr,max

. (4)

We estimate the maximum relevant frequency from

trise · f3dB = 0.34 , (5)

an expression widely used in electrical engineering. It refers to a Gaussian type time5

domain waveform with rise time trise. This is a good model for a TDR input signal.
Later on we choose an “explicit” time domain integration. To keep it stable, there is the
upper limit for ∆t (Taflove, 1998; Kunz and Luebbers, 1993):

∆t ≤ ∆x
c0

(6)

2.1. Numerical solution of transmission line equations10

Numerically, there are three spatially different regions, at the beginning of the probe
x=0, at the end of the probe, x=Λ, and in-between, x<0<Λ. At the ends of the probe,
the discretized set of PDE is connected to a lumped electrical model, such as voltage
sources or resistive-capacitive terminations.

2.1.1. Boundary conditions15

The termination of a TDR probe is modeled with a parallel circuit, consisting of an ohmic
resistor and an ideal capacitance. The voltage current relationship of this parallel circuit
is given by

IT =
VT
RT

+ CT
∂VT
∂t

(7)
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where IT is the current at the end of the TDR probe through the terminal resistor RT
and the terminal capacitance CT . VT is the voltage drop at the end of the TDR probe
over the parallel circuit of RT and CT . To couple this parallel circuit to the distributed
transmission line model we use Eq. (1). We truncate the FDTD scheme of the probe
through coupling Eqs. (1) and (7) using the definitions:5

i (x = Λ, t) = IT (8)

v (x = Λ, t) = VT . (9)

We rewrite Eq. (1)

∂v
∂x

= −R′
k i − L

′
k
∂i
∂t

∣∣∣∣
x=Λ

(10)

⇒ ∂
∂x
v (x = Λ, t) = −R′

K i (Λ, t) − L′K
∂
∂t
i (Λ, t) . (11)10

All current terms in Eq. (11) are replaced by inserting Eq. (7). Note that the currents
in the expressions, both constitutive and first-order PDE, are equivalent. Also, the
voltages at the end of the probe and across the resistor are equal:

∂
∂x
v (Λ, t) = −

R′
K

RT
v (Λ, t) − R′

KCT
∂
∂t
v (Λ, t) −

L′K
RT

∂
∂t
v (Λ, t) − L′KCT

∂2

∂t2
v (Λ, t) . (12)

We select a suitable discretization of Eq. (12): (i) the discretization must result in a15

fully explicit update scheme; (ii) the scheme must not require values outside the spatial
computational domain x= [0 . . .Λ]. We choose the “backward differencing in space”
and “forward differencing in time” scheme using the Taylor series expansion of first-
order accuracy. The sum of backward and forward second-order Taylor series expan-
sion in time provides the second order time derivative. With the usual notation we write20

the discretized version of Eq. (12):(
vnK − vnK−1

∆x

)
= −

R′
K

RT
vnK − R′

KCT

(
vn+1
K − vnK

∆t

)
1454
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−
L′K
RT

(
vn+1
K − vnK

∆t

)
− L′KCT

(
vn+1
K − 2vnK + vn−1

K

∆t2

)
. (13)

Finally, by rearranging Eq. (13) we obtain the explicit update procedure, in the time
domain, for the voltage at the end of the TDR probe x = Λ.

vn+1
K =

(
R′
KCT
∆t

+
L′K
RT∆t

+
L′KCT
∆t2

)−1

·
[
vnK

(
2L′KCT
∆t2

+
L′K
RT∆t

−
R′
KCT
∆t

−
R′
K

RT
− 1

∆x

)
5

−
L′KCT
∆t2

vn−1
K +

1
∆x

vnK−1

]
(14)

and similarly for the current at x=Λ from, using Eq. (7):

in+1
K =

1
RT
vn+1
K + CT

vn+1
K − vnK

∆t
. (15)

As special cases we mention CT=0, RT<∞ and CT=0, RT→∞. An overview of the
equations of all these boundary conditions is given in Table 1. We have implemented10

them in our TDR code, so almost any given experimental setup can be modeled. The
values of CT and RT can also be optimized for, if so desired.

To implement the excitation we employ the same approach used by Oswald et al.
(2003). We couple a resistive voltage source to the distributed transmission line. The
resistive voltage source consists of a series of an ideal ohmic resistor RS and an ideal15

voltage source vnS . To avoid reflections between the voltage source and the cable
connecting the TDR instrument to the probe we adjust RS to the impedance of the
connecting cable. The current flow out of the resistive voltage source is inS . The time
derivative of the source voltage is implemented with a discretized version of the given
expression for the time domain signal shape.20
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2.1.2. Transmission line parameters for three-rod TDR Probe

To solve the forward TDR problem the transmission line parameters for the three-rod
probe, C′, G′, L′ and R′, are essential. Closed-form, analytical expressions for the
two-rod probe and the coaxial line are well known (Ramo et al., 1984). This is however
not the case for the three-rod probe. We will derive an analytical model for the three-5

rod TDR probe based on an approximation of the electric and magnetic fields. This
approximation, in principle, also applies for the two-rod probe and therefore can be
used to assess its quality by comparing it to the exact solution. The comparison is then
extrapolated to serve as an indication for the method’s reliability to model three-rod
probes.10

We calculate the electric parameters, C′ and G′, from the electric potential Φel and
the inductance L′ from the magnetic induction B of the three-rod probe. For long
rods and a large conductor distance d in comparison to the conductor diameter D, i.e.
D
d�1, we approximate the electric potential and the magnetic induction. We postulate
that the total electrostatic potential of a three-rod probe equals the superposition of the15

single conductor potentials; the same assumption applies for the magnetic induction.
Thus, the neighboring conductors are neglected for the derivation of the potential of
a specific conductor. The details of the derivation are given in in Appendix 6. The
electrostatic potential, magnetic field, and the geometrical basis of the three-rod probe
for calculating these parameters are shown in Fig. 1. The transmission line parameters20

per unit length for the three rod probe with κ= d
D are then obtained as

C′ =
4πε

ln
(

4κ2−1
4κ−1

)
+ 2 ln (2κ − 1)

(16)

G′ =
4πσ

ln
(

4κ2−1
4κ+1

)
+ 2 ln (2κ − 1)

(17)
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L′ =
3µ0

4π

[
1
2
+ ln (2κ − 1) +

1
3

ln
(

2κ + 1
4κ − 1

)]
. (18)

For assessing the quality of the approximate solutions we calculate the electrical
parameters for the two-rod probe in the same way:

C′
2,approx. =

πε ln (2κ)

ln (2κ − 1)
(19)

G′
2,approx. =

πσ
ln (2κ − 1)

(20)
5

L′2,approx. =
µ0

π

[
1
2
+ ln (2κ − 1)

]
. (21)

We now calculate the relative error of these approximations using the exact values for
the two-rod probe (Ramo et al., 1984):

C′
2,approx. − C

′
2,exact

C′
2,exact

=
cosh−1 (κ)

ln (2κ − 1)
− 1 (22)

G′
2,approx. − G

′
2,exact

G′
2,exact

=
cosh−1 (κ)

ln (2κ − 1)
− 1 (23)

10

L′2,approx. − L
′
2,exact

L′2,exact
=

1
2 + ln (2κ − 1)

cosh−1 (κ)
− 1. (24)

The relative error for these three equations is plotted in Fig. 2. The error of the ap-
proximation for the capacitance and the conductance is for a wide range much smaller
than 4%. For the inductance the error is largely in the range of 10−15%. Transmission
line parameters are inherently integral quantities. They result from the integral evalu-15

ation of electric (C′, G′) and magnetic (L′) fields, for details Appendix 6. Because the
approximation for the two-rod probe is very accurate over a large parameter range, we
extrapolate the error of the approximation for the three-rod probe to be of the same
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size. The quality of the approximation improves with increasing κ, which more and
more correspondents to the situation of an infinitely thin line charge and current fila-
ment, respectively.

2.2. Time domain dispersive dielectric modeling

Experience gained from TDR traces measured in the field has shown that it is manda-5

tory to consider dispersive dielectric soil properties. We start with a Debye model using
one single relaxation frequency (Debye, 1929; Nyfors and Vainikainen, 1989; Taflove,
1998). The Debye model describes the orientation polarization of polar molecules. Let
us think of an electric field, switched on instantaneously. The polar molecules turn
slowly and the polarization evolves exponentially, with a time constant τ, to its final10

state. The relative dielectric permittivity εr as a function of frequency is then:

εr (ω) = ε′∞ +
ε′s − ε

′
∞

1 + jωτ
. (25)

Here ε′∞ is the permittivity at infinite frequency, where the orientation polarization of
the molecules has no time to develop. The static permittivity ε′s corresponds to a state
where the orientation polarization has had sufficient time to develop fully. For solving15

the transmission line equations in the time domain, we transform Eq. (25) into the time
domain.

εr (t) = ε′∞δ (t) +
∆ε′

τ
e−

t
τU (t) (26)

with ∆ε′r = ε′s − ε
′
∞. We end up with a time-dependent capacitance per unit length

C′ (t), which is split into a time-dependent and a time-independent part:20

C′ (t) = C′
0εr (t) (27)
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Equation (27) with Eqs. (2) and (1) are discretized, using central finite differences both
in space and in time. We obtain the update procedure for the voltage and current:

vn+1
k = −

2∆tG′
k

C′
0kε

′
∞k

vnk −
2∆t∆ε′k
ε′∞kτk

vnk + vn−1
k

− ∆t
C′

0kε
′
∞k∆x

(
ink+1 − i

n
k−1

)
+

2∆ε′k∆t

τ2
kε

′
∞k

ψnk (28)

5

in+1
k = −

2R′
k∆t

L′k
ink + in−1

k − ∆t
∆xL′k

(
vnk+1 − v

n
k−1

)
(29)

with the abbreviation

ψnk = e−
∆t
τk ψn−1

k +
∆t
2

(
vnk + e−

∆t
τk vn−1

k

)
. (30)

The detailed calculation for this discretization can be found in Appendix 7.

2.3. Hierarchical Optimization10

Our profile reconstruction approach is based on Oswald et al. (2003). The non-linear
inverse problem is solved iteratively with a transmission line solver to calculate TDR
traces, based on a given profile of electric parameters. The forward solver is embedded
into a global optimizer based on a genetic algorithm (Levine, 1996; Rahmat-Samii and
Michielssen, 1999) which delivers electric parameter profiles, adapted according to15

their fitness. Fitness is a quantity which is roughly inversely proportional to the trace
mismatch :

m =
Nstop∑

n=Nstart

|vmeas (n∆t) − vcalc (n∆t)| , (31)
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We use the sum of absolute values of the difference between calculated and measured
TDR traces in contrast to the sum of squared differences used by Oswald et al. (2003).

The genetic algorithm operates on bit-strings which are mapped to real numbers
to produces the electric parameter profiles. Hence the electric parameters are inher-
ently discretized. Using a sufficient number of bits per parameter we provide a fine-5

grained set of values. The efficiency of profile reconstruction depends on the genetic
algorithm’s parameters: mutation rate, crossover probability and population size. The
corresponding values are listed in Tables 3 and 4.

While Oswald et al. (2003) achieve to solve the problem, there are still issues, namely
(i) it is computationally intensive due to a large number of forward problem runs (ii)10

the resulting electric parameter profiles may exhibit oscillatory behavior even if their
average corresponds to the converged state.

To alleviate the computational burden and to achieve smoother parameter profiles
we have implemented a hierarchical optimization scheme, Fig. 3. The scheme starts
out with a coarse spatial resolution which is increased as convergence decreases. For15

assessing the degree of convergence we calculate the envelope of the fitness and
approximate its slope with with a line, Fig. 4. An envelope point (squares at green
line) is retrieved as the maximum fitness value of N consecutive individuals, in our
case N=30. A complete envelope consists of M such points. As soon as the next N
individuals have been calculated, the oldest envelope point is discarded and the whole20

envelope section is moved one point ahead with respect to the sequence of evaluated
individuals. If the majority of envelope points is below the line (red line), with the
slope defined in the job file, the spatial resolution is increased by cutting the intervals
of dielectric properties into halves. The new intervals are initialized with the same
dielectric properties, as the old intervals had at the same location. The optimization25

stops if a previously specified spatial resolution is reached and the fitness does not
increase.
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3. Results

3.1. Validation of parallel RC boundary condition

We show the results of TDR traces calculated for different probe termination conditions
with a non-dispersive dielectric permittivity between the probe conductors, for all pa-
rameters cf. Table 2. Figure 5 shows the open termination. The first reflection results5

form the cable-probe-transition, the second from the end of the probe. After these,
there are multiple reflections. The TDR probe in Fig. 6 is terminated with the probe
impedance. There are no reflections from the end of the probe visible, as expected.
Figure 7 demonstrates the effect of ohmic conductivity between the probe conductors
with an open at the end of the probe. Figure 8 shows the result of a probe with parallel10

resistive capacitive termination and ohmic conductivity between the probe conductors.
At the second reflection we can see the effect of the resistive capacitive termination:
(i) at first it behaves like a short circuit; (ii) if the capacitor is charged, it behaves like a
pure resistive termination; (iii) and the edges of the reflections are smoothed.

3.2. Validation of dispersive dielectric TDR model15

Figures 9–11 show the results for TDR traces calculated with dispersive media and
open probe termination. At Fig. 9 the effect of dispersive media with low relaxation
frequency can be seen: the reflection coefficient decreases slowly after a reflection.
We note that there is negligible ohmic conductivity between the probe rods. Figure 10
shows the second effect of dispersion: the reflections are not sharp any more, they20

appear smoothed. In Fig. 11 the impact of a smaller ∆ε with respect to the values
used for Fig. 10, is shown.
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3.3. Hierarchical reconstruction of water content profiles

3.3.1. Traces measured in non-dispersive media

In Figs. 13–15 we show hierarchical reconstructions of the dielectric parameters for
the same traces used by Oswald et al. (2003). The probe was in a sand tank with
water content θ1=θ3=0, θ2 was varied. The experimental setup is sketched in Fig. 12.5

Relevant optimization parameters are given in Table 3. The vertical dashed lines in
fitness and error history indicate an increase in spatial resolution. The number of
spatial intervals are given in red in history and fitness.

For Fig. 13 with water content θ2 = 0 we see no significant increase in fitness,
when increasing the spatial resolution during the optimization. For traces with inho-10

mogeneous water content, Fig. 14: θ2=0.05, Fig. 15: θ2=0.10, we see an increase in
fitness, if the spatial resolution is commensurate with the region where the water con-
tent varies. The hierarchical reconstruction requires about an order of magnitude less
iterations for the same traces as the reconstruction with full spatial resolution right from
the optimization’s start. Additionally, the hierarchical approach leads to considerably15

smoother profiles when compared to Oswald et al. (2003).

3.3.2. Traces measured under field conditions

In Figs. 16–19 we show hierarchical reconstructions of TDR traces measured under
field condition at the Grenzhof (Heidelberg, Germany) test site (Wollschläger and Roth,
2005). The traces were recorded with a “Campbell TDR 100” using a Campbell probe20

“CS610”. Essential TDR properties and the parameters used in the optimization to
produce Figs. 16–19 are shown in Table 4. The steps in all these measured traces
result of finite time resolution in recording. The first reflection in all traces is a result of
the TDR probe head. The head is simulated with a transmission line section. Generally,
we can fit the transmission line parameters for this part with our simulation. Because25

the parameters are constant for every single probe, we fit them manually and fix the
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respective parameters in the job file, because it would unnecessarily slow down the
optimization if it was fitted for every trace from scratch once again. We particularly
note Fig. 16. More conventional techniques (e.g. Roth et al., 1990) experience severe
problems, may even fail, to evaluate this trace, because there is no sharp reflection
from the end of probe.5

4. Discussion

We have derived analytical expressions for the transmission line parameters of a three
rod probe, based on an approximate model; such expressions, to our knowledge, have
not been presented in the area of the TDR literature yet.

We have validated the numerical model by calculating synthetic traces, using both10

dispersive and non-dispersive dielectric properties. We mention that dispersive di-
electrics place additional restrictions onto the time-step of the explicit integration scheme
to keep it stable.

We have used a hierarchical approach to reconstruct electric parameter profiles from
TDR traces measured in the laboratory with minimal electrical losses. The hierarchical15

approach reduced the number of forward solutions required and leads to considerably
smoother profiles.

We consider hierarchical optimization to be a definite advance and speculate that this
will hopefully support the deployment of TDR profile reconstruction in field applications.

Numerical experimentation for reconstructing TDR traces measured in the field has20

definitely shown that dispersive dielectric properties must be included in the numerical
model. Only when using dispersive dielectrics can such TDR traces be recovered
numerically; using frequency-independent permittivity alone can not account for the
the shape of the traces.

If the frequency range of the TDR instrument is well below the relaxation frequency,25

dispersion becomes less important. On the other hand, if the TDR’s frequency content
and the relaxation frequency have a significant overlap, then dispersion will be quite
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pronounced. The “Campbell TDR 100” has f3dB≈740 MHz. The relaxation frequencies
extracted by the optimization are within this range and therefore dispersion is relevant
(Robinson et al., 2003, 2005).

We note that in all cases we used a relatively small mutation probability, 0.01, and
a significantly higher cross-over probability, 0.6. Increasing the mutation probability5

results in a more diverse population but does not seem to accelerate the convergence
behavior. On the other hand, using a relatively high cross-over probability ensures
efficient reconstruction. The error and fitness histories represent the search in a wide
parameter range. For some individuals we obtain a high error and respectively a low
fitness. The low fitness of some individuals give the black filled area in fitness history.10

Note that the error and fitness history are line plots. The high errors are cut of in the
plots so that the relevant sector is visible. Additionally, the error’s running average is
plotted in the diagrams with a blue line.

Furthermore, a more realistic numerical boundary condition using a parallel resistive-
capacitive impedance is essential. Using all these model components we succeed in15

reconstructing field measured TDR traces over a wide spectrum of dielectric permittiv-
ity and conductivity. We note that dielectric loss caused by the dispersive Debye model
is fundamentally different from electric loss. We finally mention that our profile recon-
struction does not require any a priori information whatsoever in order to succeed.

5. Conclusions20

A robust, accurate and efficient method has been presented for reconstructing dielec-
tric and ohmic conductivity profiles along TDR traces, for both laboratory and field
traces. Different boundary conditions have been implemented for modeling a wide va-
riety of probe terminations encountered in experimental setups. Dispersive dielectric
properties are reconstructed and may be of interest for extracting even more informa-25

tion from TDR traces, such as a distinction between bound and free water, so charac-
teristical for clay and loam soils (Ishida et al., 2000).
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Now, that TDR technology using conventional, transverse-electric-magnetic (TEM)
probes has reached considerable maturity we speculate that it could be worthwhile to
address more advanced concepts, such as the single-rod probe using a transverse-
magnetic mode of propagation, (Oswald et al., 2004; Nussberger et al., 2005). Such
probe types may pose modeling challenges but they also hold the promise of avoiding5

problems of probes with multiple conducting rods.
The code developed in this work will be available in due course.

6. Appendix: Three-rod probe transmission line parameters

The electric potential of a line charge, with diameter D, in z-direction, cf. Fig. 1, outside
the conductor is given by10

Φel (x, y) = Φ0 −
Q
l

1
2πε

ln
(√

x2 + y2

)
(32)

with potential Φ0 at infinity and line charge density Q
l . By convention, the potential at

infinity is set to zero. We consider three parallel, infinitely long line charges, Fig. 1. The
total potential, outside the conductors, is the superposition of of the single rod potential,
Eq. (32):15

Φel =
Q
l

1
2πε

{
1
2

ln
[(

(x − d )2 + y2
)(

(x + d )2 + y2
)]

− ln
[
x2 + y2

]}
. (33)

The capacitance per unit length between conductor 0 and 1 is

C′
01 =

Q
l

V
(34)

with the potential difference V between the two nearest points of conductor 0 and
1:(x=D, y=0) and

(
x=d−D

2 , y=0
)
.20

V = Φel

(
x =

D
2
, y = 0

)
−Φel

(
x = d − D

2
, y = 0

)
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=
Q
l

1
2πε

[
ln

(
4d2 − D2

4dD − D2

)
+ ln

(
2d − D
D

)]
. (35)

Due to the symmetry of the conductor arrangement the capacitance of a three-rod
probe is twice the capacitance, resulting from Eq. (35). Therefore, the capacitance per
unit length is

C′ =
4πε

ln
(

4d2−D2

4dD−D2

)
+ 2 ln

(2d−D
D

) . (36)
5

The conductance per unit length G′ of the medium between the rods is calculated from
the electric potential. We use Ohm’s law

j = σE (37)

with current density j, ohmic conductivity σ and the electric field E=−∇Φel . The current
between conductor 0 and 1 per length l is the integral of j · F1 with F1⊥x-axis:10

I =

l∫
0

+∞∫
−∞

jx dy dz

= σl

+∞∫
−∞

Ex dy. (38)

Using the electric potential, Eq. (33), and evaluating the integral we obtain

I =
σ
ε
Q. (39)

With the potential difference, Eq. (35), we compute the conductivity per unit length15

between conductor 0 and 1:

G′
01 =

I ′

U
. (40)
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Again, due to the symmetry of the conductor arrangement, Fig. 1, the conductivity per
unit length of the three-rod TDR probe is twice G′

01:

G′ =
4πσ

ln
(

4d2−D2

4dD+D2

)
+ 2 ln

(2d−D
D

) . (41)

The magnetic field of a wire infinitely extended in z-direction with radius D
2 , conduct-

ing current I, using the definition r=
√
x2+y2 is5

r ≤ D
2

: B (r) =
2µ0I

πD2
r (42)

r >
D
2

: B (r) =
µ0I
2πr

. (43)

The magnetic induction outside a wire for the three-rod probe is given as a superposi-
tion of Eq. (43)

B (x, y) =
µ0I
2π

 2√
x2 + y2

− 1√
(x − d )2 + y2

− 1√
(x + d )2 + y2

 (44)

10

where we have implicitly assumed that we only need the field in a plane parallel to the
line connecting the centers of the three conductors, hereby ensuring that the directions
of the three magnetic induction components are all parallel. With Eqs. (44) and (42)
the magnetic flux Φm through the area F2⊥y-axes with F2=d ·l at y=0 is

Φm = l


D
2∫

0

Bx (x)dx +

d−D
2∫

D
2

Bx (x)dx +

d∫
d−D

2

Bx (x)dx


15

=
µ0I l
2π

[
3
2
+ 3 ln

(
2d − D
D

)
+ ln

(
2d + D
4d − D

)]
. (45)
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The self inductance per unit length between conductor 0 and 1 is

L′ =
Φm
l

I
. (46)

Due to the symmetry of the arrangement the inductance of the three rod probe is one
half the inductance that follows from the magnetic flux Eq. (46). So the inductance per
unit length is5

L′ =
3µ0

4π

[
1
2
+ ln

(
2d − D
D

)
+

1
3

ln
(

2d + D
4d − D

)]
. (47)

7. Appendix: Discretization of dispersive dielectric medium

To obtain the update procedure for the voltage we insert Eq. (27) into Eq. (2):

∂i
∂x

= −
(
G′ + C′ (t) ⊗ ∂

∂t

)
v

= −G′v − C′
0

[(
ε′∞δ (t) +

∆ε′

τ
e−

t
τU (t)

)
⊗ ∂v
∂t

]
10

= −G′v − C′
0ε

′
∞

+∞∫
−∞

∂v
(
t′
)

∂t′
δ (t − t′)dt′

−C′
0

∆ε′

τ

+∞∫
−∞

e−
t−t′
τ U (t − t′)

∂v
(
t′
)

∂t′
dt′. (48)

The second term of Eq. (48) is

C′
0ε

′
∞

+∞∫
−∞

∂v
(
t′
)

∂t′
δ (t − t′)dt′ = C′

0ε
′
∞
∂v (t)
∂t

. (49)
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The integral of the third term leads, using partial integration, to

+∞∫
−∞

e−
t−t′
τ U (t − t′)

∂v
(
t′
)

∂t′
dt′ =

t∫
−∞

e−
t−t′
τ
∂v
(
t′
)

∂t′
dt′

=
[
e−

t−t′
τ v (t′)

]t′=t
t′=−∞

−
t∫

−∞

1
τ
e−

t−t′
τ v (t′)dt′

= v (t) − 1
τ

t∫
−∞

e−
t−t′
τ v (t′)dt′. (50)

We agree on the following abbreviation:5

ψ (t) :=

t∫
−∞

e−
t−t′
τ v (t′)dt′. (51)

We finally obtain the transmission line Eq. (2) for a Debye medium

∂i (t)
∂x

= −G′v (t) − C′
0ε

′
∞
∂v (t)
∂t

− C′
0

∆ε′

τ
v (t) + C′

0

∆ε′

τ2
ψ (t) . (52)

The discretized version of ψ is

ψnk = ψ (t)|xk ,tn (53)10

=

n∆t∫
−∞

e−
n∆t−t′
τk vk (t′)dt′ (54)

=

n∆t∫
−∞

e−
n∆t
τk e

t′
τk vk (t′)dt′ (55)
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= e−
n∆t
τk

 (n−1)∆t∫
−∞

e
t′
τk vk (t′)dt′ +

n∆t∫
(n−1)∆t

e
t′
τk vk (t′)dt′

 (56)

= e−
∆t
τk e−

(n−1)∆t
τk

 (n−1)∆t∫
−∞

e
t′
τk vk (t′)dt′ +

n∆t∫
(n−1)∆t

e
t′
τk vk (t′)dt′

 . (57)

With these expansions we write the first integral as a function of ψn−1
k and the second

integral is evaluated using the trapezoidal rule.

ψnk = e−
∆t
τk ψn−1

k +
1
2
e−

∆t
τk e−

(n−1)∆t
τk ∆t

(
e
n∆t
τk vnk + e

(n−1)∆t
τk vn−1

k

)
(58)

5

= e−
∆t
τk ψn−1

k +
∆t
2

(
vnk + e−

∆t
τk vn−1

k

)
(59)

With this rearrangement we can calculate ψnk from ψn−1
k . There is no need to save the

total history of v (t) which results into a considerable memory savings. The derivatives
in Eqs. (52) and (1) are discretized, accurate to 2nd order (Taflove, 1998) using central
finite differences both in space and in time. We obtain10

ink+1 − i
n
k−1

2∆x
= −G′

kv
n
k − C′

0kε
′
∞k

vn+1
k − vn−1

k

2∆t
− C′

0k

∆ε′k
τk

vnk + C′
0k

∆ε′k
τ2
k

ψnk (60)

vnn+1 − v
n
k−1

2∆x
= −R′

k i
n
k − L′k

in+1
k − in−1

k

2∆t
. (61)

By rearranging terms this leads to the update procedure for voltage and current

vn+1
k = −

2∆tG′
k

C′
0kε

′
∞k

vnk −
2∆t∆ε′k
ε′∞kτk

vnk + vn−1
k

15
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− ∆t
C′

0kε
′
∞k∆x

(
ink+1 − i

n
k−1

)
+

2∆ε′k∆t

τ2
kε

′
∞k

ψnk (62)

in+1
k = −

2R′
k∆t

L′k
ink + in−1

k − ∆t
∆xL′k

(
vnk+1 − v

n
k−1

)
. (63)

8. List of symbols

B magnetic field, Vs
m2 = T.

c0 speed of light in vacuum, m
s .

C capacitance, F.
CT value of the capacitor terminating the TDR probe, F.
C′ capacitance per unit length of a transmission line, F

m .
∆x spatial resolution in the discretization of the transmission

line equations, m.
∆ε′=

(
ε′s − ε

′
∞
)

difference between static permittivity and permittivity at infi-
nite frequency, dimensionless.

∆t discretization width in the time domain, s.
D diameter of the conductors of a two- or three-wire transmis-

sion line, m.
d distance between the centers of two nearest conductors of

a transmission line, m.
ε=ε0εr absolute complex dielectric permittivity, As

Vm .
ε (t)=ε0εr (t) absolute dielectric permittivity as function of time, As

Vm .
ε0 absolute dielectric permittivity of vacuum, 1

µc2 .5
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ε′∞ real valued relative permittivity at infinite frequency in De-
bye model, dimensionless.

εr complex valued relative dielectric permittivity, dimension-
less.

εr,max maximum value of relative dielectric permittivity, dimension-
less.

εr (ω) complex valued relative dielectric permittivity as a function
of angular frequency of electric field, dimensionless.

εr (t) relative dielectric permittivity as a function of time, Fourier
transformed of εr (ω), dimensionless.

ε′s real valued relative permittivity at zero frequency in Debye
model, dimensionless.

E electric field, V
m .

f3dB frequency at which amplitude of the respective function has
reduced by 3dB, Hz.

fmax maximum frequency, Hz.
frel relaxation frequency in Debye model, Hz.
G conductance, S.
G′ conductance per unit length of a transmission line, S

m .
I current, A.
IT current at the end of the transmission line, A.
i (x, t) current on a transmission line as function of position x and

time t, A.
ink≡ (xk , tn) current at point k∆x at time n∆t, A.
iS TDR source current, A.
j imaginary unit, j =

√
−1.

j current density, A
m2 .

jx, jy , jz components of current density referring to a Cartesian co-
ordination system, A

m2 .
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δ(t) Dirac delta function.
κ= d

D factor of probe geometry, dimensionless.
k index used for the specification of spatial locations, k ·

∆x=xk , dimensionless.
K index, denoting the last index in spatial discretization, K ·

∆x=Λ, dimensionless.
Λ total length of TDR-probe, m.
λmin minimum wavelength, m.
L′ inductance per unit length of a transmission line, H

m .
l length of a part of TDR probe, m.
µ=µ0µr magnetic permeability of a material, Vs

Am .
µ0 magnetic permeability of vacuum, 4π10−7, Vs

Am .
µr=

(
µ′
r − jµ

′′
r
)

complex valued relative magnetic permeability, equals 1 for
considered soil materials, dimensionless.

µ′
r real part of the complex valued relative magnetic perme-

ability, dimensionless.
µ′′
r imaginary part of the complex valued relative magnetic per-

meability, dimensionless.
M number of fitness envelope points.
m mismatch between measured and calculated TDR trace, di-

mensionless.
N number of consecutive individuals, used for a fitness enve-

lope point.
Nstart index denoting start time for mismatch calculating, dimen-

sionless.
Nstop index denoting stop time for mismatch calculating, dimen-

sionless.
n index used for the specification of time, x (n ·∆t)=xn, di-

mensionless.
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ω angular frequency of electric field,1
s .

Φel electro static potential, V.

ψnk =e−
∆t
τk ψn−1

k +∆t
2

(
vnk+e

−∆t
τk vn−1

k

)
, abbreviation for calcula-

tions in a dispersive dielectric medium.
Q electric charge, As.
ρ reflection coefficient, dimensionless.
R′ resistance per unit length of a transmission line, Ω

m .
RS source impedance of resistive voltage source, Ω.
Rskin skin resistance of a conductor, Ω.
RT value of the resistor terminating the TDR probe, Ω.
σ (x) ohmic conductivity as a function of longitudinal position on

the TDR probe, S
m .

τ= 1
2πfrel

relaxation time of a dipole in the Debye model, s.

θ volumetric water content, m3

m3 .
θ (x) volumetric water content as function of longitudinal position

on the TDR probe, m3

m3 .
t time, s.
trise rise time of an electrical signal, usually the time required for

the signal to rise from 10 to 90% of its final value, s.
tsec time step security for explicit time domain integration, s.
VT voltage at the end of the transmission line, V.
v (x, t) voltage on a transmission line as function of position x and

time t, V.
vnk≡v (xk , tn) voltage at point k∆x at time n∆t, V.
vS TDR source voltage, V.
U(t) Heaviside step function.
x, y , z spatial coordinate, m.
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Table 1. Summary of boundary conditions.

termination condition voltage current

parallel resistive capacitive termination

vn+1
K =

(
R ′
KCT
∆t

+
L′
K

RT∆t
+
L′
KCT
∆t2

)−1

·
[
vnK

(
2L′

KCT
∆t2

+
L′
K

RT∆t

−
R ′
KCT
∆t

−
R ′
K

RT
− 1

∆x

)

−
L′
KCT
∆t2

vn−1
K +

1
∆x

vnK−1

]

in+1
K = 1

RT
vn+1
K

+CT
vn+1
K −vnK
∆t

resistive termination

vn+1
K = vnK

(
1 −

R ′
K∆t

L′
K

−
∆tRT
L′
K∆x

)

+vnK−1

∆tRT
L′
K∆x

in+1
k = 1

RT
vn+1
K
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Table 1. Continued.

termination condition voltage current

open termination

vn+1
K = vn+1

K−1 in+1
K = 0

resistive voltage source termination

vn+1
k = vnk

(
1 −

∆tR ′
1

L′
1

∆tRS
L′

1∆x

)

+
∆tRS
L′

1∆x
vnk+1 +

∆tR ′
1

L′
1

vnS

+∆t
∂vnS
∂t

in+1
1 = vn+1

S (t)−vn+1
1

RS
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Table 2. Parameters used for calculation of synthetic TDR traces for validating the termination
condition and the dispersive media, for all: ε′∞=10, ∆x=1.2 · 10−3 m.

Figure number ∆ε′ frel (MHz) σ ′ ( S
m ) RT (Ω) CT (F) tsec

5 - - 1 · 10−30 - - 0.25
6 - - 1 · 10−30 84 - 0.25
7 - - 1 · 10−2 - - 0.25
8 - - 5 · 10−3 150 5 · 10−12 0.25
9 10 10 1 · 10−30 - - 0.25

10 10 100 1 · 10−30 - - 0.11
11 5 100 1 · 10−30 - - 0.25
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Table 3. Parameters used for hierarchical TDR trace reconstruction of laboratory traces.

optimization parameter value

population size 50
crossover probability 0.6
mutation probability 0.01
bits for ε′r 20
bits for conductivity 20
transmission line termination resistive
termination resistor 214 Ω
TDR rise time trise 28 ps
spatial discretization 0.0005 m
time step security 0.9
TDR probe type two rod
probe length 1.0 m
conductor diameter D 1.0 mm
conductor center distance d 30.8 mm
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Table 4. Parameters used for hierarchical TDR trace reconstruction of field data.

TDR/optimization parameter value

population size 50
crossover probability 0.6
mutation probability 0.01
bits for ε′∞ 20
bits for ∆ε′ 20
bits for frel 20
bits for conductivity 20
bits for terminal resistor 10
bits for terminal capacitor 10
transmission line termination parallel resistive

capacitive, optimized
TDR rise time trise 460 ps
measured samples 251
time between samples 107 ps
spatial discretization 0.002 m
time step security 0.25
TDR probe type three rod
probe length 0.3 m
conductor diameter D 4.8 mm
conductor center distance d 22.5 mm
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Fig. 1. Three-rod probe configuration and parameters.
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Fig. 2. Relative error of approximated transmission line parameters per unit length to exact
parameters for two-rod probe as function of κ. Upper figure: Relative error of capacitance
C′

2,approx. (conductance G′
2,approx.) to C′

2,exact (G′
2,exact). Lower figure: Relative error of induc-

tance L′
2,approx. to L′

2,exact.
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Fig. 3. Flowchart for the hierarchical optimization.
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Fig. 4. Determination of the criteria when to increment spatial resolution.
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Fig. 5. Calculated TDR trace for two-rod probe with length l=0.3 m, D=4.8 mm, d=22.5 mm,
ε′∞=10, σ=10−30 S, not dispersive, infinite termination.
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Fig. 6. Calculated TDR trace for two-rod probe with length l = 0.3 m, D = 4.8 mm, d = 22.5
mm, ε′∞ = 10, σ = 10−30 S, not dispersive, resistive termination, RT = 84 Ω.
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Fig. 7. Calculated TDR trace for two-rod probe with length l = 0.3 m, D = 4.8 mm, d = 22.5
mm, ε′∞ = 10, σ = 1 · 10−2 S, not dispersive, infinite termination.
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Fig. 8. Calculated TDR trace for two-rod probe with length l = 0.3 m, D = 4.8 mm, d = 22.5
mm, ε′∞ = 10, σ = 5 · 10−3 S, not dispersive, parallel resistive capacitive termination, RT = 150
Ω, CT = 5.0 · 10−12 F.
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Fig. 9. Calculated TDR trace for two-rod probe with length l = 0.3 m, D = 4.8 mm, d = 22.5
mm, ε′∞ = 10, σ = 1 · 10−30 S, infinite termination, dispersive media with ∆ε′ = 10, frel = 10
MHz.
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Fig. 10. Calculated TDR trace for two-rod probe with length l = 0.3 m, D = 4.8 mm, d = 22.5
mm, ε′∞ = 10, σ = 1 · 10−30 S, infinite termination, dispersive media with ∆ε′ = 10, frel = 100
MHz.
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Fig. 11. Calculated TDR trace for two-rod probe with length l = 0.3 m, D = 4.8 mm, d = 22.5
mm, ε′∞ = 10, σ = 1 · 10−30 S, infinite termination, dispersive media with ∆ε′ = 5, frel = 100
MHz.
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Fig. 12. Experimental setup by Oswald et al. (2003): segmented sand tank with different water
contents.
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Fig. 13. Reconstruction of synthetic profile, θ2 = 0. Individual 7547 with error: 2.9 · 107 and
fitness: 3.4.
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Fig. 14. Reconstruction of synthetic profile, θ2 = 0.05. Individual 8146 with error: 2.3 · 107 and
fitness: 4.3.
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Fig. 15. Reconstruction of synthetic profile, θ2 = 0.10. Individual 7977 with error: 2.7 · 107 and
fitness: 3.8.
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Fig. 16. Reconstructed TDR trace, measured at Grenzhof, Heidelberg, Germany in 1.41 m
depth. Individual 32231 with error: 5.9 · 105, fitness: 171, terminal impedance: 600 Ω, and
terminal capacitance 3.8 · 10−17 F.
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Fig. 17. Reconstructed TDR trace, measured at Grenzhof, Heidelberg, Germany in 0.72 m
depth. Individual 35948 with error: 8.0 · 105, fitness: 125, terminal impedance: 189 Ω, and
terminal capacitance 2.5 · 10−17 F.
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Fig. 18. Reconstructed TDR trace, measured at Grenzhof, Heidelberg, Germany in 0.13 m
depth. Individual 45685 with error: 2.1 · 106, fitness: 47, terminal impedance: 580 Ω, and
terminal capacitance 9.5 · 10−18 F.
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Fig. 19. Reconstructed TDR trace, measured at Grenzhof, Heidelberg, Germany in 0.30 m
depth. Individual 36373 with error: 2.3 · 106, fitness: 43, terminal impedance: 600 Ω, and
terminal capacitance 3.6 · 10−17 F.
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