
We would like to thank both referees for their valuable comments. We
hereby list the comments of the referees and formulate our answers in italic.
Changes we made to the manuscript are given in boldface.

1 Comments by the first referee

• This paper is like the “curates egg” - good in parts. It raises more
questions than it gives answers. It is a mixture of ancient and modern
[e.g. Huff curves and Fern copulas]. There is plenty of math offered in
describing how to construct a fern copula, which is nicely done after
one had read Aas et al. (2009) for guidance (the papers Section 2
gives a nice description of the practicalities of fitting vine copulas),
but there is not enough material of how these were chosen/calibrated
in the context of the 105 year 10-minute record of rainfall at Uccle.
What I found missing was how the choices were made for the ordering
of the 3- and 4- dimensional copulas chosen in this paper. How was
the non-unique ordering of the fern tree chosen?

The ordering of the copulas, i.e. the selection of a D-vine, was based
on the values of Kendall’s tau (as listed in Table 1.) These values show
that strongest dependencies exist between the variables W and V , pd
and W , and V and D. By putting the most dependent pair of variables
in the first tree of the vine copulas, we ended up with a D-vine.

The method we followed to estimate the parameter value of the Frank
copulas consists in calculating Kendall’s tau for the different pairs of
variables in the tree. Using the relationship between Kendall’s tau
and the parameter value of the Frank copula, the value for θ can be
numerically estimated:

τK = 1−
4

θ
(1−

1

θ

∫ θ

0

t

et − 1
dt) , (1)

We added this information to the revised paper in Section 4.1, lines
264-267 and lines 277-280

• Where are the sample copulas? We need more figures - such as sample
plots of the material for the copula models. How far are they from
Gaussian? How good would an alternative, simpler Gaussian copula
have been in competition? It seems that no justification was provided
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for the choice. There were no comparisons made with alternative mul-
tidimensional probability distribution models; fern and Frank copulas
were chosen and that was it.

We agree that in the paper we restricted ourselves to vine copulas and
the Frank family, though we tried to explain why. More validation (as
shown below) of the choice will be added to the revised paper. The
validation will be restricted to a visual appreciation of the empirical
versus Frank copulas based on contour plots. Yet, in this rebuttal we
provide the scatter plot of the normalized ranks of the four variables
for season 1, which are shown in Figure 1 and a corresponding plot
in which the contours of the Frank copulas and the empirical copulas
for the three- and four-dimensional vine copulas for the first season is
shown in Figure 2.

As stated before, we did not intend to select the “best copulas” in the
vine copulas but rather wanted to test the framework based on the flex-
ible and easy to fit Frank copula family. As can be seen from Figure 2,
probably other copula families could better fit the dependencies between
the first two variables (pd and W ) in the first tree, and the third and
fourth variable in the second tree (W |V and D|V ). However, the goal
of our conceptual demonstration is to use a quite easily manageable
copula family that has already proven its merits in hydrology. It is not
our intention to present the Frank copula as the best copula in this
study. This was already addressed in the manuscript: “We are aware
that different copula families could be used to describe the dependen-
cies between the different variables (cfr. Vandenberghe et al. [2010b]).
Yet, in this conceptual study, we opted to restrict to the Frank cop-
ula family to describe the (conditional) bivariate dependencies within
the vine copulas, because of its ability to represent positive or negative
dependence. Furthermore, this family is frequently applied to describe
bivariate hydrological phenomena [Pan et al., 2013]. Alternative fam-
ilies could better fit the different dependencies within the vine copula,
however, the search for the best fitting copula was out of the scope of
the current study.” We opted to use a vine copula instead of a multi-
variate copula because of its flexibility to handle multivariate data sets
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Figure 1: Scatter plots of the normalized ranks of the four (three) variables
included in the vine copulas for season 1. Top panel: pd vs. W (left), S vs
V (middle) and V vs D (right). Bottom panel: W vs. V (left) and V vs.
D (right)
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Figure 2: Contour plots of the empirical (dotted lines) and the fitted (solid
lines) Frank copulas (solid lines) for the different trees in the three- (a) and
four-dimensional vine copulas (b). CWV and CV D in the top panel of (a),
and CWD|V in bottom panel of (a). CpdW , CWV and CV D in the top panel
of (b), CpdV |W and CWD|V in the middle panel of (b) and CpdD|WV in the
bottom panel of (b).
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and the (possible) different dependences therein. Although we admit
that we do not fully exploit this flexibility, in future research this can
still be accomplished by allowing for the use of different copulas in the
vine copula and hence taking into account different dependences such
as no, intermediate or strong tail dependencies, (a)symmetries, etc.

As a comparison with a multivariate Gaussian copula is suggested
by the referee, we also employed the multivariate Gaussian copulas
(three- or four-dimensional, no vine structure is used) in the same
setting as for the vine copulas. We furthermore must stress, that,
although goodness-of-fit-tests exist for individual copulas (see, for in-
stance Genest et al. [2009] and Aas and Berg [2009]), obtaining a
good fit for the individual copulas does not guarantee a globally opti-
mal fit [Nikololoupoulos et al., 2012]. In this regard, we believe that
it is at present better to compare the performance of different copu-
las and vine copulas by comparing the statistics and extremes of their
generated time series to those of the measured time series. Still, for
the referee’s interest, we also provide contour plots of the three- and
four-dimensional Gaussian copulas for the first season for the pairs
of variables that are also included in the vine structure, and of the
conditional Gaussian copulas CWD|V of the three-dimensional Gaus-
sian copula and CpdV |W CWD|V and CpdD|WV of the four-dimensional
Gaussian copula for the first season (see Figure 1). A comparison
of these contour plots with those of the vine copula, shows that the
four-dimensional Gaussian copula more closely fits the contours of the
empirical conditional distribution CWD|V . For the other copulas, sim-
ilar contour plots are obtained.

We also compared the statistics and the extremes of the time series
obtained by the Gaussian copulas with those of the vine copulas. Fig-
ure 4 shows the results for aggregation levels of 10 min and 1 h for
the vine copulas (cyan) and the multivariate Gaussian copulas (ma-
genta). The comparison of the annual maxima is given in Figure 5.
The statistics of the time series generated with the multivariate Gaus-
sian copulas show a slightly better performance compared to those of
the vine copulas. We observed that in 19 of the 36 cases (6 aggregation
levels, 6 statistics), the cdf of the observed statistics is situated to the
right of the bundles for both models. In 17 (resp. 14) cases, the cdf
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Figure 3: Contour plots of the empirical (dotted lines) and the fitted (solid
lines) three- (a) and four- (b) dimensional Gaussian copulas (solid lines) for
the pairs of variables that are used in the vine copulas (b). CWV and CV D

in the top panel of (a), and CWD|V in the bottom panel of (a). CpdW , CWV

and CV D in the top panel of (b), CpdV |W and CWD|V in the middle panel of
(b) and CpdD|WV in the bottom panel of (b).
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Table 1: Percentage of the observed extremes that are located under, within
or above the bundle of extremes obtained by the vine-copula-based model
or the Gaussian-copula-based model.

Aggregation VC GC VC GC VC GC
level under under within within above above

10 min 100.0 100.0 0.0 0.0 0.0 0.0
1 h 0.0 0.0 81.0 9.5 19.0 90.5
3 h 0.0 0.0 27.6 2.9 71.4 97.1
6 h 0.0 0.0 95.2 3.8 4.8 96.2
12 h 0.0 0.0 100.0 72.4 0.0 27.6
24 h 64.8 0.0 35.2 100.0 0.0 0.0

of the observed statistics is situated to the left of the bundle obtained
by the vine-copula-based model (resp. Gaussian-copula-based model).
This more or less quantitatively confirms the visual impression of a
slightly better performance of the multivariate Gaussian copulas.

With respect to the annual extremes, a smaller range is obtained, yet
the annual extremes of the measured time series are more often un-
derestimated. To that end, we compared how often the 105 observed
extremes are situated within the bundle of extremes obtained by the
models. Table 1 shows that the observed extremes are better situated
within the bundle of the vine-copula-based model, except for an aggre-
gation level of 24 h where the multivariate Gaussian copulas perform
better and that of 10 min, where none of both models performs well.

Based on these statistics it is clear that the Gaussian copulas do not
perform better than the vine copulas, while the vine-copula-based model
can be further optimized. Therefore, we decided not to include a com-
parative study between both types of copulas, as only such a comparison
would be fair if both types of models are fully optimized, making it a
study on its own. Such a study, which should also investigate the rea-
son why the Gaussian copulas have a lower performance with respect
to the extremes, will be performed in the near future.
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Figure 4: Comparison of the empirical cumulative distributions of the yearly
statistics of the observed time series and the bundle of empirical cumula-
tive distributions of synthetic time series generated by means of the vine-
copula-based rainfall model (cyan) and the multivariate-Gaussian-copula-
based rainfall model (magenta) for aggregation levels of 10 minutes (a) and
1 hour (b).
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Figure 5: Comparison of empirically derived annual maxima related to the
empirical return periods for different aggregation levels on the observed
(black asterisks) and ensemble of synthetic time series generated by means of
the vine-copula-based rainfall model (cyan) and the multivariate-Gaussian-
copula-based rainfall model (magenta).
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• I question the complicated (and difficult to follow) method of disaggre-
gating the generated rectangular pulses of rainfall ”events”. Instead of
using Huff curves directly with a strangely unique recipe, why not use
a practical alternative (even if the authors are reluctant to go ”para-
metric”!), such as an autoregressive generator or similar. This would
provide a sequence of serially correlated pulses, with breaks, then use
the seasonal Huff curves to scale the elemental pulses, constrained by
the rectangular pulse total, to get the right ”shape”. There is quite a
nice example which does the job, designed by Koutsoyiannis, D. (1994)
”A stochastic disaggregation method for design storm and flood syn-
thesis”, Journal of Hydrology, 156, 193-225, which I reviewed - there
will be others.

We are aware of alternative methods for disaggregation (including an
autoregressive generator), however, we did not apply them because we
do not see how they could allow for imposing a value of the dry fraction
within a storm pd, which is drawn beforehand from the vine copulas.

• Further questions come to mind. What constitutes a break within an
event that is not a separation of storms? Can you justify the limit of
24 hours? This seems artificial and constraining - storms dont obey
the 24-hour clock for their starting time, although they tend to initiate
based on diurnal variation - particularly convective storms in summer
rainfall regions.

The 24 h limit to separate individual, independent storms for this time
series has been defined by Verhoest et al. [1997] based on a study
similar to the one of Restrepo-Posada and Eagleson [1982]. In this
analysis, storms are considered to be independent when their storm
arrivals are described by a Poisson process. Hence, the interstorm
arrival periods should be exponentially distributed. By repeatedly re-
defining storms, i.e. by enlarging the length of a dry period within a
storm, and testing the distribution of the intervals to be exponential,
the interstorm arrival period was defined. The resulting storms are
regarded as being independent in storm duration, depth and intensity.
Furthermore, since the methodology developed allows for including long
dry periods within a storm (less than 24 hours), we ensure that all dry
durations can be modelled. Duration smaller than 24 hours, are ob-
tained through the disaggregation process, while the dry period that last
longer than 24 hours are obtained from the vine copulas.

• This review is choppy and irritable - please excuse me. It comes partly
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from the felt need for more explanation combined with a respect for
the innovation and bright ideas that are put forward by the authors.
However, after all is said and done, the last two sentences of the paper
highlight the nature of the incompleteness one obtains in reading it.
My recommendation is: moderate revision before resubmission.

• 494 − 23: This choice is not unique; there are other combinations:
f12|3 · f3, or f23|1 · f1
In order to stress this, we changed the sentence to: The joint proba-
bility density function (PDF) f123 of a random vector (X1,X2,X3)
can, for instance, be decomposed as follows:

• 500−20: correct the reference
The reference has been corrected.

• 501−10: ”asserted”, not ”ascerted”
This has been corrected.

• 502−5: ”quartile of the storm” - dont you mean ”quarter of the storm
duration?”
This has been corrected.

• 502−10: ”duration” instead of ”extremity”?
Extremity is correct, as Vandenberghe et al. [2010a] refers to the return
period of the storm.

• 502−15: ”have internal dry 10min intervals” what is the maximum
duration of an internal dry period that does not define the end of a
storm?
This period is, from a practical point of view, restricted to 23 hours,
although theoretically a dry duration of 23 hours 40 minutes could be
allowed.

• 504−6-17: this paragraph is difficult to understand. Also the limita-
tions are very fussy and artificial - the choice of 10 min & 23h as storm
duration limits affects the modelling of 24 hour storms - see 1st and
last images in Fig 7
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We changed the paragraph such that it, hopefully, becomes better to
understand. The reviewer unfortunately must have misunderstood it,
23 hours is not the maximum duration of a storm, but rather the max-
imum dry duration within a storm. The duration of the storm itself
can take a large range of durations, which can be much more than 24
hours. The paragraph has been changed to:
The internal storm structure is then generated as follows.
Firstly time intervals having zero rainfall are randomly as-
signed within the storm such that the sampled value of pd
is respected. It should be noted that the first and the last
interval of the storm cannot have zero rainfall in order to
preserve the duration W of the storm. Furthermore, when
the value of pd is such that the storm should only contain one
wet 10 minute interval (i.e. pd is close to one), the rainfall
depth is evenly divided among the first and last 10 minute
intervals. In addition the total length of a dry spell within a
storm is constrained to 23 hours, i.e. one hour less than the
selection criterion, in order to avoid that one storm would
result in two different storms when the same storm selection
criterion is applied on the simulated rainfall series. It should
also be mentioned that storms that have a duration smaller
than 40 minutes and for which pd 6= 0, are disregarded in the
generation of the rainfall series, because of the inability to
assure the generation of the imposed quartile storm.

• 504−18 to 505−20: remove the word ”step” from the explanation, be-
cause ”time b” is an instant, not an interval
The word “step” has been replaced by “instant”

• 505−8-20: this passage is difficult to follow - consider revision. I think
that in panel (c) of Fig 4, ”min” is in the wrong place; it cant be below
Vrc(b)
with “min”, we mean the smallest increment that can be chosen, the
smallest increment is indicated with the line next to min. The resulting
value in the Huff curve hence has to be greater or equal to Vrc(b). We
changed the symbol Vrc to Dnc indicating the “normalized cumulative
storm depth”. We rephrased some sentences in this paragraph in order
to make it clearer:
Time instant b corresponds to the end of a wet period. In this third

12



case, depicted in Figures 6(c) and (d), the dry period starts at
time instant b and ends at time instant c. Two sampling strate-
gies are possible, among which is chosen with equal probability.
It is allowed that a cumulative storm depth is sampled according
to the 10% and 90% Huff curves either at time instant b or at
time instant c. When the first strategy is chosen (cfr. Figure 6(c)),
Dnc(b) is sampled from the interval [max(Dnc(a),H10(b)),H90(b)], the
sampled value can hence be smaller than H10(c), which indicates
that the generated Huff curve will cross the 10% Huff curve,
before reaching time instant c and will hence not remain be-
tween the 10 and 90% boundaries. When the second strategy
is chosen (cfr. Figure 6(d)), Dnc(b) is drawn from
[max(Dnc(a),H10(c)),H90(c)] i.e. the sample is chosen according
to the 10% and 90% Huff curves at time instant c. The sam-
pled value can hence be larger than H90(b), which indicates
that the generated Huff curve will cross the 90% Huff curve
before reaching time instant b.

• 507−3: 6a not 6b
This has been changed.

• 507−10: ”lag-2 covariances” - between what variables?
We changed lag-2 covariances to lag-2 autocovariances.

• 507−13: ”With respect to” instead of ”W.r.t.”
This has been changed.

• 507−29: consider replacing ”seems to perform well” with ”has promise”!
Thank you for this nice way of phrasing. We adapted the text with:
holds promise.

• 508−8: ”and does not need any calibration” - not as such, but the
Huff curves are a limitation/constraint. The choice of Frank copulas
is a matter of convenience? Couldnt we have some plots? How poor
would the choice of Gaussian copulas be? At least they would replace
the very involved vine copulas. True, that would remove much of the
reason for the paper, but the choice seems a touch one-sided.
We hereby refer to our previous answers (see above) with respect to
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the choice of the Frank copulas and the performance of the Gaussian
multivariate copula.

• 520: Fig 3 please add labels of 10% and 90% or mention ”upper” and
”lower curves” in the caption?
This has been changed.

• 521: Fig 4 this is very difficult to follow - the explanation in the text
and in the caption need improvement. It would be helped if a selected
set of 24h time series of wet 10m pulses [separated by dry 10m periods
if appropriate] were shown in a companion figure, so that readers could
weigh up the choice of model.
We changed the text (see the revised manuscript, changes are indicated
in boldface) such that the method is described clearer. However, we are
not convinced that showing a time series will clarify the method, as the
reader will only see a sequence of wet and dry pulses. The caption of
Fig. 4 has been changed to:
Illustration of the generation of an internal storm structure.
The part of the Huff curve that is already generated (up to
time instant a) is indicated by a thick solid line. The value
at time instant b needs to be determined. Four cases are
possible: sampling in between two consecutive wet periods
(a), sampling at the end of a dry period (b), sampling at
the end of a wet period followed by a dry period with a
selection on the basis of the current time instant (c) and
with a selection on the basis of the last time instant in the
dry period (d).

2 Comments by the second referee

• The manuscript describes a rainfall model based on vine-copula for
simulating the dependence structure of four variables: storm volume,
storm duration, dry duration after the storm, and the fraction dry
within the storm. The analyzed case study consists on fitting the
model on a long rainfall time series (105 years) and comparing simu-
lated and observed data.

The topic is particularly interesting since rainfall simulators are piv-
otal for several hydrological models. The paper is well written, easy
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to read and understand, so I am glad to suggest to publish it.

Thank you.

• I have some minor comments to share with the authors listed in the
following.

• Introduction. This section could be improved. In the present form it
reviews five issues: importance of rainfall simulator, types of rainfall
simulators, copulas for rainfall analyses, multivariate copulas, sum-
mary of the paper. While the general structure is appropriate, each
sub-section could be better described and reviewed. The first sub-
section (from pag. 490 line 14 to page 491 line 6) is too vague. It
could be removed or it should be clearer. From the practical point
of view, in my opinion, rainfall simulators are pivotal for continuous
rainfall-runoff models to overcome the drawbacks of event-based ap-
proach, so maybe this issue could be underlined.

We further stressed the advantage of continuous time series of pre-
cipitation for deriving extreme statistics of hydrological variables (e.g.
discharge) compared to an event-based approach:
The corresponding rainfall volume, obtained from e.g.
intensity-duration-frequency (IDF) curves is then assigned to
the design storm according to a temporal rainfall pattern or
internal storm structure [Chow et al., 1988].

However, this approach has an important drawback as it does
not properly account for the antecedent wetness state of the
catchment [Verhoest et al., 2010]. Yet, this initial condition
regulates the fractioning of the incident rainfall into runoff
and infiltration and thus determines the fluvial response of
a catchment to the imposed rainfall event. It was shown
by Verhoest et al. [2010] that, because of this, the return
period of the rainfall event may differ significantly from that
of the corresponding discharge. In order to account for the
antecedent soil moisture condition within the catchment, one
can alternatively work with continuous rainfall models that
provide input to rainfall-runoff models. As the latter models
continuously update the soil moisture state, they therefore
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provide continuous estimates of the antecedent wetness state
within the catchment.

• Page 491 lines 7-15. This paragraph could be clearer.

We changed the paragraph on page 491, lines 7-15 such that is clearer
to the reader:
The variables that characterize a storm, i.e. the storm in-
tensity, duration and volume, mostly exhibit some kind of
mutual dependence: a long storm duration is more likely to
be associated with a low storm intensity than with a high
one.
It is therefore of utmost importance to construct joint proba-
bility distribution functions whenever frequency analysis stud-
ies, e.g. to analyse extremes, need to be carried out. Yet,
the marginal probability distribution functions of these storm
variables usually do not exhibit the same type of paramet-
ric distribution and are largely skewed [Vandenberghe et al.,
2010b], i.e. there is a large deviation from the normal distri-
bution. These characteristics complicate the identification of
the joint probability distribution functions in order to calcu-
late the probability of occurrence of a storm with a specific
duration and intensity. The introduction of copulas in hy-
drology facilitated this task.

• Concerning the multivariate copula review, vine-copula is an hot-topic
now and there are some papers published in the last two years that
should be mentioned, i.e.: Gräler, B. Modelling skewed spatial ran-
dom fields through the spatial vine copula (2014) Spatial Statistics,
10, pp. 87-102. Xiong, L., Yu, K.-X., Gottschalk, L. Estimation of
the distribution of annual runoff from climatic variables using copulas
(2014) Water Resources Research, 50 (9), pp. 7134-7152. so I would
devote more lines here for providing literature review compared to the
standard copula that is well known.

Thank you for this suggestion. We included both references in the
overview and added some references to finance, as vine copulas are
also becoming more popular in that domain:
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The use of vine copulas is becoming popular in finance (see
e.g. [Nikololoupoulos et al., 2012, Zhang, 2014, Mendes and
Accioly, 2014]) and geophysics and hydrology (see e.g. [Gräler,
2014, Xiong et al., 2014, Gyasi-Agyei and Melching, 2012,
Gräler et al., 2013]).

• Concerning the Huff curve, the citation of Candela et al. ,2014 should
be included in the Section 4.2, while here, briefly, the Huff curve should
be defined. Section 2 Authors should make the effort to make lighter
this section. I would suggest to include an appendix where all the
equations are listed. At the same time I would remove all basic equa-
tions about copula that are well known or in any cases available in
many other papers (for sure, Eq. (1), (2), (3))
We included a short definition of the Huff curve in this paragraph:
In a second submodel, the intrastorm-generating-model, the intrastorm
variability is obtained based on Huff curves [Huff, 1967], which plot
the normalized cumulative storm depth against the normal-
ized time since the beginning of a storm.
The reference to Candela et al., 2014 was, however, moved to Section
3 (instead of Section 4.2., as suggested by the referee) as the explana-
tion of a Huff curve is given in that section:

As the storm characteristics V , W and D do not reveal any
information on the internal storm structure, and pd only gives
partial information, Huff curves, as derived in Vandenberghe
et al. [2010a] are employed to provide statistical information
on the internal structure. The idea to use Huff curves for
generating an internal storm structure has also been adopted
by Candela et al. [2014]. Huff or mass curves present . . .

Concerning the equations in Section 2, we opted to include the basic
equations as more explanation about copulas was asked in a recent
review of another paper and we therefore conclude that copulas are
not yet broadly known in the hydrological community. Concerning the
equations used in the vine structure, we think that these equations are
important to understand how vine copulas are constructed and used in
simulations. As the first referee states that this Section “gives a nice
description of the practicalities of fitting vine copulas”, we believe that
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it is better to keep these equations in Section 2 instead of moving them
to an appendix.

• Section 4.1 The a priori choice of Frank copula seems in contradiction
with the choice to adopt the vine-copula. However, I understand that
the best fitting copula issue is out of the scope of the paper. At the
same time two questions arise: which is the impact on final results, in
practice, of the best copula selection? authors in the conclusions say
that the approach is data driven and does not need any calibration,
however a four-dimensional copula is fitted on the observed data....is
there not a risk that with 105years the fitting is reasonable while in the
common situation (50years) the number of parameters to be estimated
are too numerous? these issues should be at least mentioned in the
conclusion as future work.

We changed the sentence ”and does not need any calibration” to:
and is easier to calibrate than other rainfall generators as e.g.
the commonly used Modified Bartlett Lewis model as, once
the structure of the vine copula is determined, the calibra-
tion is reduced to estimating the parameters of the bivariate
copulas.
We do not expect that fitting a 4D vine copula (which requires 6 pa-
rameters, as 6 bivariate copulas need to be fitted) will be problematic
in situations where one posesses of e.g. only 50 years of rainfall data.
In such situation, one would still have ca. 1000 storms (per season) on
the basis of which 6 parameters will need to be determined. In criteria
such as Akaike’s information criterion (AIC), which takes into account
the model complexity, the number of parameters of the model does not
matter in comparison to the value of the log-likelihood (first term in
the AIC), if the number of data points (N) is much larger than the
number of parameters (p) to be fitted. For fitting a three-dimensional
vine copula, however, one would possess of only ca. 100 storms (per
season) on which 3 parameters will need to be determined. For these
vine copulas, one could expect that finding the best copula can be more
problematic, although in that case one could reduce the 24 hour crite-
rion to delineate individual storms, to enlarge the data set on which
the vine copulas can be fitted. Reducing this limit will not influence
the modelled rainfall series, since all dry durations can be modelled.
Durations smaller than 24 hour are now obtained through the disag-
gregation process, while dry periods that last longer than 24 hours are
obtained from the vine copulas. We added this in the conclusions:
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It should also be noted that we possess of an exceptional
long time series of rainfall data on which the vine copulas
are determined. If one would follow the same approach and
search for the best-fitting copula family on a more commonly
shorter time series of e.g. < 50 years of rainfall data, one
could be faced with difficulties as, the number of storms per
season may become too small for fitting the copulas.

We also added a line that future research will reveal whether copulas
that better fit the data can improve the performance of the vine cop-
ulas:
Also, it should be investigated whether including other bi-
variate copulas in the vine copulas can further improve the
performance of the vine-copula-based model.

• Concerning Figures, often in paper where copula and time series are
applied, a plot with the comparison among observed and simulated
data is included since it is highly communicative. So, I would suggest
to include a matrix plot for the four-dimension copula visual assess-
ment and a spot (not all 105 years...but only short window) of the
time series.
We don’t believe that such a figure would give much information, as our
rainfall generator is not used to predict future rainfall. It is a stochas-
tic model, which generates rainfall time series that should, hopefully,
obey the properties of the observed rainfall time series (e.g. statistics,
extremes). Yet, this does not mean that e.g. rainfall peaks and dry
periods will occur at the same instances as in the observed time series.
In this regard, showing a spot of simulated versus observed rainfall will
not add information to the reader, but rather could cause confusion.

References

K. Aas and D. Berg. Models for construction of multivariate dependence - a
comparison study. European Journal of Finance, 15(7-8):639–659, 2009.

A. Candela, G. Brigandi, and G.T. Aronica. Estimation of synthetic flood
design hydrographs using a distributed rainfall-runoff model coupled with

19



a copula-based single storm rainfall generator. Natural Hazards and Earth
System Sciences, 14:1819–1833, 2014.

V.T. Chow, D.R. Maidment, and L.W. Mays. Applied Hydrology. McGraw-
Hill Book Company, New York, 1988.

C. Genest, B. Rémillard, and D. Beaudoin. Goodness-of-fit tests for copula:
a review and power study. Insurance: Mathematics and Economics, 44:
199–213, 2009.
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