
Response to the comment of L. Samaniego (Referee) 

 

We would like to thank the reviewer for his positive and insightful comments on the 
manuscript. Below is our response to the issues raised in the review. The original comment 
is printed in plain font, our response is printed in italics.  

 

This manuscript is based on the presumption that the combination of statistical analysis, 
process-based modeling using climate and stochastic projections as well as expert 
judgement is the best way to assess climate impacts on low flows. Without any further 
analysis, one could dare say that this premise should be true considering that this approach 
has much more information than any single analysis and thus should have less chance of not 
finding an answer that is closer to the true one. The authors strive to demonstrate the 
advantages of the proposed approach and the validity of this premise with a regional study 
conducted in four Austrian river basins. The manuscript is well written although it is a bit too 
long in my opinion. The topic of the study is relevant for HESS but the manuscript requires a 
substantial revision before publication. Below, I provide a number of issues to be clarified 
before publication. 

We would rephrase the above statements in saying that the three pillar approach is a 
plausible way to assess climate impacts (not necessarily the best as we do not compare it 
with other approaches) and that we strive to demonstrate the usefulness of the premise 
rather than its validity, as validity can never be demonstrated for the future. We have now 
removed Figure 1 which may have been suggestive of the claim of a “best method”.  

 

    • My first remark refers to the terminology chosen for this manuscript. My impression after 
reading the abstract and the introduction is that the names given to the various methods and 
the proposed “three-pillar” approach can be considerably simplified without diminishing the 
message that the authors try to convey. On the contrary, it will help the reader. I wonder, for 
example, what a data-based method has to do with a downward approach (downward refers 
to “toward a lower place, point, or level” )... and conversely a mechanistic one with an 
upward approach ... I know that these terms have been used in current literature, but in my 
opinion, these buzzwords can be replaced by method A and B without changing the meaning 
of the sentences. I suggest either to justify the meaning of “downward” and “upward” in the 
present context or even better, to simplify the text. In my opinion, the so-called “downward 
approach” is a classical statistic method, so I wonder why not calling it simply like that. 

The terminology of upward and downward approaches (Sivapalan et al., 2003) reflects the 
alternative avenues towards obtaining understanding of how a system operates which is 
unrelated to whether the methods are statistical or deterministic. The upward or mechanistic 
approach is based on a preconceived model structure that puts conceptual components such 
as runoff generation together (hence upward), while the downward approach infers the 
catchment functioning from an interpretation of the observed response at the catchment 
scale (fingering down to smaller scales, hence downward). We realise there are subtleties 
involved and the terminology is not essential for the paper, so we have removed it.  

 

    • In this study, old IPCC nomenclature for emission scenarios (A1B, B1, A2 etc) are still 
used instead of the newer RCPs proposed by the IPCC. Newer climate projections (e.g., 
CMIP5) are readily available for quite some time. Please explain why. 

Jacob et al. (2015) showed that the most recent regional climate simulations over Europe, 
accomplished by the EURO-CORDEX initiative (RCPs, Moss et al., 2010), are rather similar 
to the older ENSEMBLES simulations with respect to the climate change signal and the 
spatial patterns of change. For consistency with related studies in Austria (e.g. Parajka et al., 
2016) we have therefore chosen the older emission scenarios. We are now noting this in the 
manuscript.  
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    • Authors do not formulate in the introduction a research hypothesis to be tested. I guess, 
the authors intend to test that the “Three-pillar approach” is superior than any of the single 
ones, but failed both to explicitly mention this hypothesis and to present statistic evidence 
that corroborates this assertion. 

Actually, we are not intending to test a hypothesis in this paper. The aim of the paper is to 
present an approach to assess climate impacts on low flows from different sources of 
information. The objective is twofold, to present the concept and to illustrate the viability of 
the approach. A hypothesis that the three pillar approach is superior to any of the single 
methods would be testable in a synthetic world (where the future is generated and assumed 
to be perfectly known) but this would probably be a rather trivial exercise. The real world is 
more complex, so we confine ourselves to illustrating the feasibility of the approach very 
much in the spirit of ensemble predictions. We are now making the underpinning philosophy 
of ensemble predictions more explicit in the paper.   

 

    • L19, P9. If a hydrologic model is used in this study, I do not understand why a runoff 
index is not used instead of a meteorological drought index like SPEI. Streamflow, and thus 
low flow characteristics, are the outcome of the whole hydrologic system that is represented 
by a hydrological model. Moreover, it is well documented in the literature that atmospheric 
drought indices are quite transient whereas those related to soil moisture, groundwater, and 
runoff are not (Samaniego et al JHM 2013 and sources therein). Thus, the stochastic 
dependence of SPI or SPEI with any low-flow index is, in general, not significative (Kumar et 
al. 2016 HESSD). It should also explained why a Gaussian transformation (perhaps due to a 
long tradition... ) should be applied a variable than is definitely non-Gaussian (i.e., P �EP ). 
L14 P9. A more reliable approach to “check the realism” of the ensemble climate simulations 
would be to estimate a runoff index over a historial period in which reanalysis (or hindcasts) 
and historial meteorological forcings are available. This is probably the best way to know 
whether a RCM or a Numeric Weather Prediction Model output can explain observed low-
flow spells or other kinds of drought events as proposed by Thober et al. 2015. 

We agree that a number of methods can be used for testing the realism of ensemble climate 
simulations (and we find the methods suggested by the reviewer useful), but the jury is 
probably still out on what is the most suitable method in a particular hydro-climatological 
setting. Kumar et al. analyse groundwater anomalies rather than low flows, so their results 
are not fully applicable to the present case, while Haslinger et al.. (2014) did find significant 
links between SPEI and low flows in the study area. The SPEI has been adopted here for its 
simplicity and because it can be calculated from the HISTALP data (Auer et al., 2007) back 
to the year 1800. Given this is a side issue in the paper, in our opinion, comparing different 
methods would go beyond the scope of this paper. The hydrological modelling later in the 
paper allows a more detailed comparison in the spirit of the references suggested by the 
reviewer. We now give an explicit justification of the use of SPEI.  

 



    • L18 P.5 It is not clear to me why the “first and second pillars” do not use local information 
used in the third pillar. After all, trends are based on local meteorological observations and 
any rainfall-runoff model, to my knowledge, uses local observations of rainfall, temperature, 
and discharge. Please elaborate why they have to be different (L22)? 

We appreciate the comment as the wording has indeed been lacking clarity. The first two 
pillars do not use observed changes in the stochastic rainfall characteristics while the third 
pillar (stochastic extrapolation) does. We have reworded the sentence for clarity.  

 

    • L17 ff, P5. I guess authors demand too much from downscaled GCM-RCM forcings. 
GCM and RCM are climate models describing the evolution of physical processes in the 
atmosphere, ocean, cryosphere and land surface at large temporal and spatial scales (about 
2.5_). They are not intended to describe transient states, consequently one can not say that 
they are reliable or not. They do not have all the process necessary to describe rainfall 
generation at smaller scales like high resolution numerical weather models have if they are 
run at 1 km to 2 km spatial resolution. RCMs at 1/4_ resolution and larger would be hardly 
able to estimate convective precipitation over mountainous areas like Austria. For GCMs, this 
is almost an imposible job. If this is known, I wonder why the hydrology comuntiny insist on 
getting “reliable” daily precipitation (say from RCMs inreanalysis mode) from these models so 
that low-flow statistics can be estimated ... Dynamic and stochastic downscaling may help a 
bit but many studies have shown, for example, that very few RCMs from the ENSEMBLES 
project are even able to get extreme statistics of the observed rainfall fields at monthly time 
scales (see e.g., Soares et al. 2012 JGR in Portugal, and Thober & Samaniego JGR, 2014 in 
Germany). As a consequence, low-flow statistics and its variability (e.g., Q95) obtained from 
reanalysis (e.g., WATCH) should be evaluated as expectations over reasonable periods 
(e.g., over decades). Likely yearly statistics are too short a period. See for example Schewe, 
J. et al. as an alternative. 

We fully agree with the remark that RCM outputs should be assessed at time scales longer 
than a year and we did not intend to convey the impression that individual years should be 
taken at face value. In the discussion we are now making it clearer that the focus is on 
decadal rather than yearly scales and this is how the figures should be interpreted.  

 

    • L13 p8. The area of the river basins and the sampling size used in this study are 
probably too small to derive conclusive results. Authors should consider that the area of a 
GCM grid cell like ECHAM5 is at least 9 _ 104 km2 and that of a RCMs used in Reclip:century 
is approximately 1 _ 102 km2 (based on the project report). As a rule of thumb, due to the 
Courant–Friedrichs–Lewy condition, it is not recomendable to use prognostic values of state 
variables or fluxes obtained by numeric integration for areas less than four times the area of 
a typical grid cell. This implies that the minimun area to be consider in this case is a basin 
with at least 4 _ 102 km2. Three of the study areas do not fulfill this condition. As a result, the 
uncertainty of the numerical model plus that of the downscaling techniques would increase 
dramatically which, in turn, would negatively affect the impact analysis. I recommend to test 
this approach in large basins that fulfill this condition and to enlarge the sample size 
considerably. 

Yes, the spatial scales of applicability of RCM simulations is on the order of hundreds of km². 
This is exactly the reason why we put the smaller catchments into a regional context (Figure 
3, now Figure 2). This was acknowledged by reviewer #1: "the paper also works with a large 
dataset condensed to a few representative examples ... that ensure that patterns are not 
emergent from a few preselected sites or times." As suggested by the reviewer we are now 
making the scale considerations of the climate simulations more explicit in the manuscript 
with respect to Figure 3, now Figure 2.  

 

    • L15 P11, I suggest to use a non-parametric test to estimate confidence bounds 
considering that the underlaying variable is certainly non-Gaussian. In this case, parametric 
t-Student estimations for confidence bounds do not apply. 



This is a good point. We therefore reanalysed the data by a nonparametric approach based 
on bootstrapping to estimate distribution-free confidence intervals. The results are given in 
supplement A of this response. The bootstrap distributions of predicted values turn out to be 
very close to Gaussian so the results change very little. The expected changes never differ 
by more than 4% from those of the method used in this paper, and their 95% confidence 
bounds never differ by more than 21% (period 2021-2050) and 33% (period 2051-2080) from 
those of this paper. However, we do see the value of the nonparametric approach and have 
adopted it therefore in this paper, replacing the Gaussian approach in the original 
manuscript.   

 

    • The structure of the manuscript is cumbersome in some sections. I suggest that methods 
and results from every approach is presented separately to easereading. The number of 
sections is quite large for a research paper in my opinion. This manuscript is a bit long too. 

In response to this comment we have reorganised the paper, merging the methods sections 
into one chapter and condensing the entire manuscript by about 30%.  

 

    • L31, p19. Authors do not attempt to estimate “how strongly the pillars agree”. It will be 
very enlightening to see a statistical analysis in this respect. 

We appreciate the idea and have added a figure (now Fig. 11) showing the probability 
density functions (pdfs) of the low flow projections from the three methods for the period 
2021-2051. We have tested the consistency of the pdfs by a two-sample Kolmogorov-
Smirnov test which, however, gives lack of significant agreement for most cases which does 
not provide a lot of insight. We have therefore chosen to limit the quantitative comparison to 
the new figure.  

 

    • L2 ff p 26 As I said earlier, I have no doubt of this statement. In general, more information 
should lead to more reliable results. I do not see novelty on this statement. This can be 
inferred, for example, from simple parametric statistical tests by gradually changing the 
sampling size and estimating the effect on the confidence bounds for a given statistic. L29 ff 
is a consequence of this. Authors should present results and make statistical tests that 
demonstrate with large degree of certainty that adding information gradually leads to better 
results in this case. I have, however, reservations, on how soft data (e.g. historical reports), 
or subjective impressions can be used in a formal statistical analysis to “correct” confidence 
bound. 

We agree that, to some degree, more information leading to more reliable results is an 
obvious statement. On the other hand, this is exactly the basis of multi-model ensemble 
projections. We have now changed the tone of the presentation in order not to imply that the 
use of more information is novel, rather the particular implementation in the context of low 
flow projections. Of course this can be formalised, for example by Bayesian methods that 
can handle subjective information (eg. Viglione et al., 2013) but this would go beyond the 
scope of this paper.  

 

    • Fig 11 is quite dense. It is supposed to be a synthesis, but I hardy can understand it. 
Sorry. In my opinion, this manuscript could become a nice contribution to the field if these 
issues are addressed before publication.  

While reviewer Luce did note that the graphics of the paper are well constructed we can see 
the point here. To assist in the interpretation we have added a new figure (now Fig. 11) 
which is simpler and more clearly demonstrates the similarities and differences of the pillar 
projections.  

 

 

Luis Samaniego  
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SUPPLEMENT A 
 
## Original CI 
Table #2 Trend projections FOR MID OF PROJECTION PERIOD 2035 for (2021-2050) and 
2065 for (2051-2080) 
 Hoalp Muhlv Gurk Buwe 
Predicted 
discharge 
2050 (m³/s) 

0.28 m³/s  
(0.19, 0.38) m³/s 

0.67 m³/s  
(0.36, 0.97) m³/s 

1.17 m³/s  
(0.48, 1.87) m³/s 

0.02 m³/s  
(-0.10, 0.14) m³/s 

Change 
2050 (%) 

+42% (-5, +88) -10% (-51, +32) -36% (-74, +1) -89% (-156, -21) 

     
Predicted 
discharge 
2080 (m³/s) 

0.35 m³/s  
(0.20, 0.51) m³/s 

0.58 m³/s  
(0.07, 1.09) m³/s 

0.74 m³/s  
(-0.42, 1.90) m³/s 

-0.08 m³/s  
(-0.29, 0.12) m³/s 

Change 
2080 (%) 

+78% (1, 156) -21% (-91, +48) -60% (-123, +3) -145% (-258, -33) 

 

 

 

 
 
## BOOTSTRAPED CI (5000 replications) 
Table A.2 Trend projections FOR MID OF PROJECTION PERIOD 2035 for (2021-2050) 
and 2065 for (2051-2080) 

Table 2 
 Hoalp Muhlv Gurk Buwe 
Predicted 
discharge 
2050 (m³/s) 

0.28 m³/s  
(0.19, 0.37) m³/s 

0.68 m³/s  
(0.45, 1.02) m³/s 

1.19 m³/s  
(0.58, 2.00) m³/s 

0.02 m³/s  
(-0.14, 0.14) m³/s 

Change 
2050 (%) 

+39% (-7, +71) -8% (-41, +34) -36% (-72, -1) -90% (-177, -22) 

     
Predicted 
discharge 
2080 (m³/s) 

0.35 m³/s  
(0.22, 0.45) m³/s 

0.60 m³/s  
(0.15, 1.14) m³/s 

0.74 m³/s  
(-0.23, 2.01) m³/s 

-0.08 m³/s  
(-0.33, 0.12) m³/s 

Change 
2080 (%) 

+74% (0, 123) -21% (-79, +51) -59% (-113, +9) -148% (-282, -36) 

 
 



Figure A.1. Bootstrap distribution of trend projection for Hoalp, period 2065 for (2051-2080) 

 
 
Figure A.2. Bootstrap distribution of trend projection for Muhlv, period 2065 for (2051-2080) 
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Figure A.1. Bootstrap distribution of trend projection for Gurk, period 2065 for (2051-2080) 

 
 
Figure A.2. Bootstrap distribution of trend projection for Buwe, period 2065 for (2051-2080) 
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