
Anonymous Referee #2: 

 

Thank you for the opportunity to review the article "Can assimilation of crowdsourced streamflow 
observations in hydrological modelling improve flood prediction?" (hess- 2015-415). This article 
presents an evaluation of methods for improving the accuracy of hydrologic models by 
incorporating crowdsource (social sensors) data. This is an interesting idea and the first paper on 
the topic that I have read. The opportunity to get the public to engage in extreme-events using 
technology they are already familiar with is exciting and will likely be a great success. I think the 
paper is generally written well and accurately presents the methods and results and that the 
discussion and conclusions are reasonable. That said, I have included a few 
comments/suggestions/questions for the authors to consider. I have not provided an editorial 
review, though I do believe the paper should have a thorough editorial review prior acceptance. 
There are several instances with subject / verb agreement, some words are unnecessarily plural, 
and acronyms that do not appear to have definition (DA for example). Additionally, figures need 
to be checked to make sure they include relevant information included in the text (for example, 
include "setting A" on figure 15 or describing (a) and (b) on figure 13).  

 

RC: Are there any methods currently in use to quantify the accuracy of crowdsource (CS) data? 
This is particularly important given that the methods you for including crowdsourced data are 
workable. I think you mention briefly about assessing accuracy of actual social sensors. Please 
expand on this in terms of current ideas, particularly ideas that would assess accuracy in an 
objective manner 

AC: We thank the reviewer for this valuable comment. Following his suggestion, we included the 
following additional information about methods used to assess quality of CS data, in the 
introduction:  
 

“According to Bordogna et al. (2014) and Tulloch and Szabo (2012), quality control 
mechanisms should consider contextual conditions to deduce indicators about reliability 
(expertise level), credibility (volunteer group) and performance of volunteers such as 
accuracy, completeness and precision level. Bird et al. (2014) addressed the issue of data 
quality in conservation ecology by means of new statistical tools to assess random error and 
bias in such observations. Cortes et al. (2014) evaluated data quality by distinguishing the 
in-situ data collected between a volunteer and a technician and comparing the most frequent 
value reported at a given location. They also gave some range of precision according to the 
rating scales. With in-situ exercises, it might be possible to have an indication of the 
reliability of data collected (expertise level). However, this indication does not necessarily 
lead to a conclusion of high, medium or low accuracy every time a streamflow observation 



of a contributor is received. In addition, such approach is not enough at operational level to 
define accuracy in data quality. In fact, every time a crowdsourced observation is received 
in real-time, the reliability and accuracy of observations should be identified. To do so, one 
possible approach could be to filter out the measurements following a geographic approach 
which defines semantic rules governing what can occur at a given location (e.g. 
Vandecasteele and Devillers, 2013). Another approach could be to compare measurements 
collected within a pre-defined time-window in order to calculate the most frequent value, 
the mean and the standard deviation.” 

RC: Please consider restructuring the Introduction. While the Introduction is very informative, it 
is quite long and digresses into a discussion of sensor technologies, issues of quality control, other 
CS networks, oceanographic models, and assimilation of asynchronous observations among other 
things. The paper is supposed to be about assimilation of CS data assimilation. The Introduction 
should go directly to this point. As written, the introduction of the topic and explanation of the 
objectives are separated by a considerable amount of material. Please shorten the Introduction to 
clearly present the topic, current understanding of how to include CS data, gaps in that 
understanding, and what you propose to do to fill that knowledge gap. The other information 
should be retained, but put into a different sections ("Background", "Existing CS Networks"). I 
personally find the material on existing CS networks very interesting and would like to see that 
information discussed a bit more. 

AC: Following reviewer’s suggestion we shortened the introduction and focused on assimilation 
of CS observation, providing also some details about the past and ongoing projects in which CS 
are used to improve models predictions. In particular, we firstly defined the necessity of improving 
the model introducing the concept of model updating and DA. Secondly, we described the need of 
CS observations and some CS projects are illustrated. We focused on two main characteristics of 
the crowdsourced observations: a) data quality and b) variable life span (asynchronous 
observations). Thirdly, data quality issues and method used to deal with this problem are described 
(following previous reviewer’s comment). Finally, we described existing methods used to 
assimilated asynchronous observations in hydrology and other water related models. The text 
related to the assimilation of distributed hydrological observations has been removed. We believe 
that in the present form the introduction is more readable and objectives of this paper are clearer. 
We also provided additional details about methods to assess observational uncertainty as proposed 
by reviewer in a previous comment. The new version of the introduction included in the revised 
manuscript is reported below: 
 

“Observations of hydrological variables measured by physical sensors have been 
increasingly integrated into mathematical models by means of model updating methods. 
The use of these techniques allows for the reduction of intrinsic model uncertainty and 
improves the flood forecasting accuracy (Todini et al., 2005). The main idea behind model 
updating techniques is to either update model input, states, parameters or outputs as new 



observations become available (Refsgaard, 1997; WMO, 1992). Input update is the classical 
method used in operational forecasting as uncertainties of the input data can be considered 
as the main source of uncertainty (Bergström, 1991; Canizares et al., 1998; Todini et al., 
2005). Regarding the state updating, Kalman filtering approaches such as Kalman filter 
(Kalman, 1960), extended Kalman filter (Aubert et al., 2003; Kalman, 1960; Madsen and 
Cañizares, 1999; Verlaan, 1998) or Ensemble Kalman filter (EnKF, Evensen, 2006) are 
ones of the most used when new observations are available. 

Due to the complex nature of the hydrological processes, spatially and temporally 
distributed measurements are needed in the model updating procedures to ensure a proper 
flood prediction (Clark et al., 2008; Mazzoleni et al., 2015; Rakovec et al., 2012). However, 
traditional physical sensors require proper maintenance and personnel which can be very 
expensive in case of a vast network. For this reason, the technological improvement led to 
the spread of low-cost sensors used to measure hydrological variables such as water level 
or precipitation in a distributed way. An example of such sensors, defined in the following 
as “social sensor”, is a smart-phone camera used to measure the water level at a staff gauge 
with an associate QR code used to infer the spatial location of the measurement (see Error! 
Reference source not found.). The main advance of using these type of sensors is that they 
can be used not only by technicians but also by regular citizens, and that due to their reduced 
cost a more spatially distributed coverage can be achieved. The idea of designing such 
alternative networks of low-cost social sensors and using the obtained crowdsourced 
observations is the base of the EU-FP7 WeSenseIt project (2012-2016), which also 
sponsors this research. Various other projects have also been initiated in order to assess the 
usefulness of crowdsourced observations inferred by low-cost sensors owned by citizens. 
For instance, in the project CrowdHydrology (Lowry and Fienen, 2013), a method to 
monitor stream stage at designated gauging staffs using crowd source-based text messages 
of water levels is developed using untrained observers. Cifelli et al. (2005) described a 
community-based network of volunteers (CoCoRaHS), engaged in collecting precipitation 
measurements of rain, hail and snow. An example of hydrological monitoring, established 
in 2009, of rainfall and streamflow values within the Andean ecosystems of Piura, Peru, 
based on citizen observations is reported in Célleri et al. (2009). Degrossi et al. (2013) used 
a network of wireless sensors in order to map the water level in two rivers passing by Sao 
Carlos, Brazil. Recently, the iSPUW Project is aims to integrate data from advanced 
weather radar systems, innovative wireless sensors and crowdsourcing of data via mobile 
applications in order to better predict flood events in the urban water systems of the Dallas-
Fort Worth Metroplex (ISPUW, 2015; Seo et al., 2014). Other examples of crowdsourced 
the water-related information include the so-called Crowdmap platform for collecting and 
communicating the information about the floods in Australia in 2011 (ABC, 2011), and 
informing citizens about the proper time to drink water in an intermittent water system 
(Alfonso, 2006; Au et al., 2000; Roy et al., 2012). A detailed and interesting review of the 



examples of citizen science applications in hydrology and water resources science is 
provided by Buytaert et al. (2014) 

The traditional hydrological observations from physical sensors have a well defined 
structure in terms of frequency and accuracy. On the other hand, crowdsourced observations 
are provided by citizens with varying experience of measuring environmental data and little 
connections between each other, and the consequence is that the low correlation between 
the measurements might be observed. So far, in operational hydrology practice, the added 
value of crowdsourced data it is not integrated into the forecasting models but just used to 
compare the model results with the observations in a post-event analysis. One reason can 
be related to the intrinsic variable accuracy, due to the lack of confidence in the data quality 
from such heterogeneous sensors, and the variable life-span of the observations. 

Regarding data quality, Bordogna et al. (2014) and Tulloch and Szabo (2012) stated that 
quality control mechanisms should consider contextual conditions to deduce indicators 
about reliability (expertise level), credibility (volunteer group) and performance of 
volunteers such as accuracy, completeness and precision level. Bird et al. (2014) addressed 
the issue of data quality in conservation ecology by means of new statistical tools to assess 
random error and bias in such observations. Cortes et al. (2014) evaluated data quality by 
distinguishing the in-situ data collected between a volunteer and a technician and 
comparing the most frequent value reported at a given location. They also gave some range 
of precision according to the rating scales. With in-situ exercises, it might be possible to 
have an indication of the reliability of data collected (expertise level). However, this 
indication does not necessarily lead to a conclusion of high, medium or low accuracy every 
time a streamflow observation of a contributor is received. In addition, such approach is not 
enough at operational level to define accuracy in data quality. In fact, every time a 
crowdsourced observation is received in real-time, the reliability and accuracy of 
observations should be identified. To do so, one possible approach could be to filter out the 
measurements following a geographic approach which defines semantic rules governing 
what can occur at a given location (e.g. Vandecasteele and Devillers, 2013). Another 
approach could be to compare measurements collected within a pre-defined time-window 
in order to calculate the most frequent value, the mean and the standard deviation. 

Regarding the variable life-span, crowdsourced observations can be defined as 
asynchronous because do not have predefined rules about the arrival frequency (the 
observation might be sent just once, occasionally or at irregular time steps which can be 
smaller than the model time step) and accuracy. In a recent paper, Mazzoleni et al. (2015) 
we have presented results of the study of the effects of distributed synthetic streamflow 
observations having synchronous intermittent temporal behaviour and variable accuracy in 
a semi-distributed hydrological model. It has been shown that the integration of distributed 
uncertain intermittent observations with single measurements coming from physical 
sensors would allow for the further improvements in model accuracy. However, we have 



not considered the possibility that the asynchronous observations might be coming at the 
moments not coordinated with the model time steps. A possible solution to handle 
asynchronous observations in time with EnKF is to assimilate them at the moments 
coinciding with the model time steps (Sakov et al., 2010). However, as these authors 
mention, this approach requires the disruption of the ensemble integration, the ensemble 
update and a restart, which may not feasible for large-scale forecasting applications. 
Continuous approaches, such as 3D-Var or 4D-Var methods, are usually implemented in 
oceanographic modeling in order to integrate asynchronous observations at their 
corresponding arrival moments (Derber and Rosati, 1989; Huang et al., 2002; Macpherson, 
1991; Ragnoli et al., 2012). In fact, oceanographic observations are commonly collected at 
not pre-determined, or asynchronous, times. For this reason, in variational data 
assimilation, the past asynchronous observations are simultaneously used to minimize the 
cost function that measures the weighted difference between background states and 
observations over the time interval, and identify the best estimate of the initial state 
condition (Drecourt, 2004; Ide et al., 1997; Li and Navon, 2001).In addition to the 3D-Var 
and 4D-Var methods, Hunt et al. (2004) proposed a Four Dimensional Ensemble Kalman 
Filter (4DEnKF) which adapts EnKF to handle observations that have occurred at non-
assimilation times. In this method the linear combinations of the ensemble trajectories are 
used to quantify how well a model state at the assimilation time fits the observations at the 
appropriate time. Furthermore, in case of linear dynamics 4DEnKF is equivalent to 
instantaneous assimilation of the measured data (Hunt et al., 2004). Similarly to 4DEnKF, 
Sakov et al. (2010) proposed the Asynchronous Ensemble Kalman Filter (AEnKF), a 
modification of the EnKF, mainly equivalent to 4DEnKF, used to assimilate asynchronous 
observations (Rakovec et al., 2015). Contrary to the EnKF, in the AEnKF current and past 
observations are simultaneously assimilated at a single analysis step without the use of 
adjoint model. Yet another approach to assimilate asynchronous observations in models is 
the so-called First-Guess at the Appropriate Time (FGAT) method. Like in 4D-Var, the 
FGAT compares the observations with the model at the observation time. However, in 
FGAT the innovations are assumed constant in time and remain the same within the 
assimilation window (Massart et al., 2010). Having reviewed all the described approaches, 
in this study we have decided to use a straightforward and pragmatic method, due to the 
linearity of the hydrological models implemented in this study, similar to the AEnKF to 
assimilate the asynchronous crowdsourced observations. 

The main objective of this novel study is to assess the potential use of crowdsourced 
observations within hydrological modelling. In particular, the specific objectives of this 
study are to a) assess the influence of different arrival frequency of the crowdsourced 
observations and their related accuracy on the assimilation performances in case of a single 
social sensor; b) to integrate the distributed low-cost social sensors with a single physical 
sensor to assess the improvement in the flood prediction performances in an early warning 
system. The methodology is applied in the Brue (UK) and Bacchiglione (Italy) catchments, 



considering lumped and semi-distributed hydrological models respectively. The Brue 
catchment is considered because of the availability of precipitation and streamflow data, 
while the Bacchiglione river is one of the official case studies of the WeSenseIt Profect 
(Huwald et al., 2013), which is funding this research. Due to the fact that streamflow 
observations from social sensors are not available in the Brue catchment while in the 
Bacchiglione catchment the sensors are being recently installed, the synthetic time series, 
asynchronous in time and with random accuracy, that imitate the crowdsourced 
observations, are generated and used. 

The study is organized as follows. Firstly, the case studies and the datasets used are 
presented. Secondly, the hydrological models used are described. Then, the procedure used 
to integrate the crowdsourced observations is reported. Finally, the results, discussion and 
conclusions are presented.” 

RC: Is the discussion about oceanographic studies / models needed? It was not clear to me what 
that material added to the paper. If it is needed, please make it more clear what the connection is? 
Is it technology of oceanographic models that can be used in your process of including CS data 
into models? 

AC: DA in oceanographic models is in the paper since oceanographic observations are commonly 
collected at not pre-determined, or asynchronous, times – and this has relevance for the paper. 
Indeed, the DA technologies used in oceanography (continuous (variational DA)) could have been 
used also for hydrology, but they require building adjoint models and this limits their use in case 
of using real complex hydrological models. (The reasons of using KF instead are given in 
Introduction.) 

RC: Why is the MIKE11 model presented as the model for representing flood propagation on the 
main channel in the Bacchiglione basin? Immediately after stating that the MIKE11 model was 
used, it appears that it was replaced by the Muskingum - Cunge model. Maybe they were used to 
represent two different processes in this basin? Obvioulsy, this was not clear. If you used the M-C 
model, then why even bother with the MIKE11 part of the discussion? Please reconsider your 
wording to make it clear. If both were used, please explain the role of each. 

AC: We thank the reviewer for pointing out this aspect of our study, which perhaps was not clearly 
explained. MIKE11 model was originally used by AAWA, the water authority, within their early 
warning system on the Bacchiglione basin. However, in this study, in order to reduce the 
computational time of the simulations and since main part of the uncertainty sources come from 
the hydrological model, MIKE11 was replaced with a Muskingum-Cunge model. We mentioned 
this point in section 3.2: 
 



“In the early warning system implemented by AAWA in the Bacchiglione catchment, the 
flood propagation along the main river channel is represented by one-dimensional 
hydrodynamic model, MIKE 11 (DHI, 2005). This model solves the Saint-Venant 
equations in case of unsteady flow based on an implicit finite difference scheme proposed 
by Abbott and Ionescu (1967). However, in order to reduce the computational time 
required by the analysis performed in this study MIKE11 is replaced by a hydrological 
routing Muskingum-Cunge model (see, e.g. Todini 2007), considering river cross-sections 
as rectangular for the estimation of hydraulic radius, wave celerity and the other hydraulic 
variables“ 

Due to limitation in the number of figures we do not present a comparison between MIKE11 and 
MC routing. However, we are currently working on a study in which we demonstrate that these 
two methods show similar results in terms of estimated discharge at Ponte degli Angeli.  
 
RC: Increases in model accuracy due to assimilating CS observations needs to be presented in 
different ways. I understand the value in evaluating model accuracy and improvements in accuracy 
in terms of NSE. Several times in the paper, the value of including these CS observations is couched 
in terms of increased accuracy of flood peak magnitudes and timing. Discussing this increased 
accuracy in terms of NSE only is not all that informative. Statistics such as NSE only speak to 
overall model accuracy, not to real increases/decreases in prediction error. Please include 
discussion about percent change in flood peak prediction (in text and/or table) for a few of the 
peaks in your evaluation period. 

AC: Indeed, the averages statistics like NSE may not correctly present the model performance 
gains during floods, so the other error metrics which reflect flood-time performance more explicitly 
can be used. As suggested by the reviewer we have carried out additional analyses to assess the 
change in flood peak prediction considering 3 peaks occurred during flood event 2 (see Figure 3), 
in the Brue catchment.  

 



Figure 1. Indication of the 3 flood peak occurred during flood event 2 in Brue catchment 

Error in the flood peak timing and intensity is estimated using Errt and ErrI equal to: 
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Where tp
o and tp

s are the observed and simulated peak time (hours), while Qp
o and Qp

s are the 
observed and simulated peak intensity (m3/s). From the results in Figure 2 and 3, considering 12-
hours lead time, it can be observed that, overall, errors reduction is achieved for increasing number 
of observations within 1 hour. In particular, assimilation of CS observations has more influence in 
the reduction of the peak intensity rather than peak timing. In fact, as Figure 4 shows, e.g. in case 
of peak 1, a small reduction of Errt is obtained even increasing the number of CS observations. In 
fact, in all the 3 considered peaks, maximum reduction in Errt is around 1 hour. On the other hand, 
higher error reduction is achieved if we considered the peak intensity rather than its timing. In 
particular. Smaller ErrI error values are obtained in case of scenario 1, while scenario 5 is the one 
that shows the lowest improvement in terms of peak prediction. This can be related to the random 
moment and accuracy of the CS observation in such scenario. Similar results are obtained in case 
of scenario 6 and 9.  



 

Figure 2. Representation of Errt as function of the number of CS observations for 3 different peaks in case 
of scenarios from 1 to 9 



 

Figure 3. Representation of ErrI as function of the number of CS observations for 3 different peaks in case 
of scenarios from 1 to 9 

These conclusions are very similar to the ones obtained analysing only NSE as model performance 
measures. This can be related to the linear nature of the model and the consequent DA approach 
used in this work. Due to the already high number of figures included in the revised version of 
manuscript, we have prepared an additional table (see below) indicating the percentage of error 
Errt and ErrI reduction for each scenario changing from the assimilation of 1 to 20 observations. 
We leave the decision to the Editor whether to add or not these latest results and Figures/Table. 

 

 

 

 



Table 1. Percentage of error Errt and ErrI reduction 

 Errt ErrI 
Scenario peak1 peak2 peak3 peak1 peak2 peak3 

1 0 0 0 0.588007 0.990132 0.545782 
2 0.02 0 -0.01 0.571863 0.97161 0.535791 
3 0.015 0.069767 0.309524 0.529608 0.967312 0.480587 
4 0 0 -0.00337 0.564742 0.897512 0.535304 
5 0.004975 0.186235 0.029126 0.486836 0.855197 0.443373 
6 0.07 0 -0.02 0.578038 0.969569 0.537394 
7 0.05 0.052133 0.313333 0.528956 0.96833 0.481274 
8 -0.03093 0 0 0.560649 0.896826 0.535814 
9 0.004975 0.177419 0.023333 0.489236 0.858807 0.441452 

 

 

 


