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Abstract. Polsinelli and Kavvas (2015) paper contributes to
the understanding of scaling methods. I suggest to comple-
ment it, considering the wider perspective of Lie groups and
the important problem of anomalous exponents that come
from type-2 self similarity.

1 Introduction

As the title states, “A comparison of the modern Lie scaling
method to classical scaling techniques”, Polsinelli and Kav-
vas (2015) paper presents an important analysis of classical
scaling methods with Lie group method illustrated by two
main examples and other cases used to emphasize concepts.
The first example is the Dupuit equation that describes the
flow in a heterogeneous unconfined aquifer subject to a flux
boundary condition. A second example is a linear 1-D con-
taminant transport problem. Among the cases they use, one
can mention a confined aquifer to stress that a variable (ve-
locity) is small and therefore advective effects are dominated
by viscous effects. Also the cases of water infiltration into
a hill slope during a rain event and of open channel flow are
used to emphasize that the choice of variables in dimensional
analysis depends on the possibility of measuring or control-
ling.

The main objective of the paper is clearly developed.
Methods are fully described, examples are pertinent and well
presented. Concepts are clear.

Of the three methods, I note that the inspection one is a
minor variation of the classical scaling method. Moreover,
the widespread attribution of the Π theorem to Buckingham
should be straightened out as discussed here.

Beyond those two comments I have two suggestions. One
is to acknowledge the generality of the Lie Group method.
The second is to mention self similarity of the second kind
in situations where the predictions based in classical dimen-
sional analysis do not agree with observations.

It is true, as it is said in the paper, that an important goal
of any scaling method is to predict information on one scale
from known information to another scale. But scaling meth-

ods serve additional purposes. For instance, using similarity
transformations it is possible to reduce the order of an equa-
tion, or to transform a partial differential equation into an
ordinary one. In general, extracting the information from the
scale symmetry of a problem can simplify a problem in vari-
ous ways.

2 History of Scaling Methods

One of the greatest mathematicians in history (Arnold, 1998)
tells us that his fellow Berry attributed to him a principle,
the Arnold Principle, that states that “if a notion bears a per-
sonal name, then this name is not the name of the discoverer”.
Arnold’s principle does apply to the Π theorem. It is true
that Buckingham (1921) presented a version of the theorem
and contributed to its popularization, but as Macagno (1971)
has clarified, there are various precursors and probably three
previous formulations of the theorem. Among the precursors
one should mention Fourier (1878), Strutt-Lord-Rayleigh
(1877-78) and Carvallo (1891). But clearly Vaschy (1892a,b)
stated the theorem much earlier. Also Bertrand (1878) and
Riabouchinsky (1911, 1915) probably independently arrived
at some version of the theorem earlier than Buckingham.
Despite the widespread use, I believe that Vaschy should
be given due credit, for example, by calling it “.Vaschy-
Buckingham” theorem.

3 Scaling Methods

The authors consider three methods: the classical scaling
methodology based on the Π theorem, a modified inspec-
tional analysis of scaling transformation and the Lie group
method that considers the symmetries admitted by a system
of equations. The second one is not more than a minor vari-
ation of the first one when considering a given system of
equations. The result of this inspection analysis is an intu-
itive version of the Lie-group method. Presented this way, it
may help with the clarification of a comparison between the
other two methods.
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4 Lie Group Analysis

The authors’ presentation of the Lie method is correct, as it is
what is needed for scaling analysis. This is, they present the
so called local Lie group of one parameter stretching trans-
formations (Logan, 1987, p. 447).

But the Lie group method is more general as it is not re-
stricted to the scale symmetries but to all kind of symmet-
ric transformations that leave a system of equations invari-
ant (Lie, 1888). For instance, translation invariance, time in-
variance or rotational invariance. One of the important con-
sequence of this is the Noether (1918) theorem that states
that invariance of a system with respect to each symmetric
transformation is equivalent to a conservation law. For in-
stance, translation invariance is equivalent to linear moment
conservation, rotational invariance to angular moment con-
servation, and time invariance to energy conservation.

Also, similarity transformations that leave an equation in-
variant have other important consequences with regard to the
equation itself. That was the original motivation of Lie. The
transformation may allow the solution of an otherwise dif-
ficult equation, or the reduction of its order, or the change
from a partial to an ordinary differential equation (Bluman
and Cole, 1974; Logan, 1987). The Lie-group method sys-
tematically considers all those difficult changes of variables
that make an equation integrable. Of course, scaling is one of
the important symmetries, but it is not the only one.

5 Types of Self-Similarity

Successful examples of application of scaling share a very
important property that is not always emphasized. For those
problems there is a clear way of separating the important
variables from the ones that do not play a significant role
because they are either too small or too large. Polsinelli and
Kavvas (2015) made this point clear in various places, for
instance in discussing the confined aquifer case, or the open
channel case.

In those successful cases, one of the dimensionless num-
bers, say π1 is small and therefore don’t play a significant
role in the problem. Mathematically this corresponds to the
case that the limit of the function

π = φ(π1,π2, . . . ,πk)

that relates the non dimensional numbers goes to a non trivial
limit when π1 → 0. Non trivial in this case is a limit different
from 0 or ∞. These cases are classified as type-1 self simi-
larity. For those cases it is possible to reduce the number of
arguments of φ and to simplify the problem to

π = φ(π2, . . . ,πk).

But there are cases in which π1 is small but it continues
to play a significant role in the limit. In such cases, it cannot

be removed from the problem. It is possible to save the self
similarity concept if one assumes the existence of a limit to
0 or ∞ in the form of a power function. Stated another way,,
if for some real θ, the following asymptotic relation is true

π = πθ1 φ(π2, . . . ,πk) + o(πθ1).

Depending on the sign of θ the limit is to 0 or to ∞ as π1 → 0.
But the exponent θ cannot be determined from dimensional
analysis or from Lie group methods. It is called an anomalous
exponent, for example, the fractal dimension. They lead to
type-2 self similarity (Barenblatt, 1996). These exponents are
common in empirical relations in Hydrology and Hydraulics,
but they require theoretical explanations (Gupta and Mesa,
2014).

Among the areas of science with complete theories of
anomalous exponents one should consider as a model the
Statistical Mechanics of phase transitions, including the
renormalization group technique (Goldenfeld, 1992).

6 Conclusions

Scaling is a very important problem in Science in general and
in Hydrology in particular. Scaling comes from the simple
idea that the laws of nature are invariant under scale contrac-
tion or amplification.. In particular they are independent of
the arbitrarily chosen basic units of measurements. From this
essential symmetry it is possible to derive the Π theorem and
the classical scaling methods.

The comparison between classical methods of scale analy-
sis and Lie group method presented in Polsinelli and Kavvas
(2015) contributes to the understanding of the scale issue, but
two important complements are necessary:

1. The Lie Group method is a general method for obtaining
consequences from symmetries of a differential equa-
tion. Scaling is a particular type of symmetry that cor-
respond to the local Lie group of one parameter stretch-
ing transformations. But this scaling symmetry is just
one among the general symmetries. All the symmetries
have general important consequences, for instance in
the form of conservation laws.

2. Type-2 self similarity corresponds to scaling with
anomalous exponents that require determination from
considerations beyond dimensional analysis. Among
the successful methods, the renormalization group
method holds promise in Hydrology to solve long-
standing open problems(Gupta and Mesa, 2014).
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télégraphiques, vol. 19, pp. 25–28, 1892b.


