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1  Introduction 1 

Some of the formidable challenges that the Nile Basin faces include: floods and droughts due to 2 

climate variability, restive trans-boundary management issues, widespread poverty, high 3 

demographic growth rates, food insecurity resulting from a combined effect of rainfall variability 4 

and the unswerving dependence of majority of the population on subsistence and rain-fed 5 

agriculture, etc. To deal with these challenges, sufficient planning and management of the River 6 

Nile water resources is required. One form of support to such requirement is the enhanced 7 

comprehension of the historical patterns of flow variation and their spatial differences across the 8 

entire Nile Basin as done in this study. So far several investigations were made on the variability 9 

of flow and hydro-climatic variables for the Nile Basin. 10 

Although the variation of river flows in the Nile Basin may be ascribed to the changes in rainfall, 11 

a number of studies based on remotely sensed land cover or satellite data (see e.g. Elmqvist, 2005; 12 

Rientjes et al., 2011) or aerial photographs (Bewket and Sterk, 2005) have reported on the effects 13 

of anthropogenic factors on river flow regimes. According to Rientjes et al. (2011), forest cover 14 

decreased from 50 to 16% in the Gilgel Abay catchment in the Lake Tana basin over the period 15 

1973–2001. Elmqvist (2005) noted that the cropland per household reduced from 0.4 to 0.1 km2 16 

over the period 1969–2002 in Sararya Makawi, Sudan. Bewket and Sterk (2005) concluded on an 17 

increase in cultivation area in the Chemoga catchment for the period between 1960 and 1999. 18 

Flow changes were in these studies attributed to the land use changes. Bewket and Sterk (2005), 19 

for instance, related the identified decrease of 0.6 mm/year in the Chemoga catchment flows 20 

during the dry season (October to May) between 1960 and 1999 to the increase in cultivation area. 21 

The main problem with such flow change attribution studies is that for an accurate analysis, 22 

archives are required of aerial photos or satellite images of land cover with high spatial and 23 

temporal resolutions and with good quality for long time periods. Such archives are difficult to 24 

obtain for the study area. To partly meet the limitation of such archives, some studies 25 

complemented the available land use and cover data from satellite images with catchment 26 

hydrological modelling. The effect of the change in catchment characteristics on the watershed 27 

hydrology can indeed be investigated using hydrological models, by preference to fully distributed 28 

process-based models. However, the input data required by such detailed hydrological models are 29 

of large amount. Besides, due to their structural complexity and over-parameterization, the 30 

parameters of such models are difficult to optimally estimate. Alternatively, conceptual models 31 

that are more parsimonious hence with fewer parameters than the physically-based models can be 32 

applied to assess changes in catchment response in a meteorological-river flow data-based way, 33 

but at a lumped catchment scale. Such modelling studies were conducted by Mango et al. (2011), 34 

and Olang and Fürst (2011) for the equatorial region; Legesse et al. (2003, 2004), Bewket and 35 

Sterk (2005), Rientjets et al. (2011), and Gebrehiwot et al. (2013) for Ethiopia. Based on the land-36 

use scenario investigation using the Soil and Water Assessment Tool, Mango et al. (2011) 37 
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concluded for the Mara catchment that the magnitude of the extreme low/high flows would 38 

reduce/increase if the conversion of forests to agriculture and grassland in the headwaters of the 39 

catchment continued. Olang and Fürst (2011) used the HEC-HMS rainfall-runoff model to 40 

investigate the effect of the land-use changes over the period between 1973 and 2000 on the 41 

hydrology of the Nyando catchment. The authors found an increase of 16% in the peak discharges 42 

over the entire period considered. Using the PRMS model, Legesse et al. (2003) found that flow 43 

would reduce to about 8% if the dominantly cultivated/grazing land of South Central Ethiopia was 44 

to be converted to woodland. Similarly for Lake Abiyata, Legesse et al. (2004) noted a remarkable 45 

mismatch between the observed and PRMS-modeled lake level over the period 1984–1996 46 

compared with  that for 1968–1983. The authors ascribed this discrepancy to human influence on 47 

the lake in terms of the direct use of the influent rivers. By dividing the time series over the period 48 

1960–2004 into three parts based on either the political and land management policy changes, 49 

Gebrehiwot et al. (2013) applied the HBV model to investigate the effect of land-use changes on 50 

the runoff flows in the  Birr, Upper-Didesa, Gilgel Abbay, and Koga catchments of the Blue Nile 51 

Basin. According to the authors, although six out of nine parameters of the HBV model changed 52 

significantly over the three periods during the rainfall-runoff modeling, the integrated functioning 53 

of the watersheds showed minimal changes. 54 

The problem with the above studies each of which applied only one hydrological or rainfall-runoff 55 

model lies in the lack of insight about the influence of the model selection on the conclusive flow 56 

variation attribution. Based on the model complexity and set of parameters for calibration, the 57 

judgment of the confidence in the selection of a particular model to investigate the effect of land-58 

use change on the flow variation is not a simple task. Moreover, other factors such as the change 59 

in meteorological conditions need to be addressed as well. Studies by Abtew et al. (2009), 60 

Camberlin (1997), Taye and Willems (2013), Tierney et al. (2013) gave evidence that the 61 

variability in hydro-climatic variables such as rainfall over the study area can be explained by the 62 

variations in large-scale ocean-atmosphere interactions. 63 

In this study, because of the data limitation and quality problem for rainfall-runoff modeling in the 64 

Nile Basin, three rainfall-runoff models NAM (Danish Hydraulic Institute DHI, 2007; Madsen, 65 

2000), HBV (Bergström, 1976;  AghaKouchak and Habib, 2010; AghaKouchak et al., 2013) and 66 

VHM (Willems, 2014; Willems et al., 2014) were applied. These three models were adopted in 67 

this study because they have been recently used by Taye and Willems (2013) (for NAM and 68 

VHM), and Gebrehiwot et al. (2013) (for HBV) to successfully investigate the effect of land-use 69 

change on the flow regimes in the study area. To limit the influence of subjectivity in the model 70 

calibration process and the address the models’ uncertainties, the Generalized Likelihood 71 

Uncertainty Estimation (GLUE) of Beven and Binley (1992) was adopted. The model-based 72 

findings moreover were complemented with the analysis of trends and temporal variations in the 73 

observational time series to support the hypothesis of flow variation attribution. In explaining the 74 



3 
 

identified trends and temporal variations, special attention was given to the co-variation of flow 75 

and rainfall. The final goal was to provide new insights in the spatiotemporal variation of annual 76 

and seasonal flows along the main rivers, considering the entire Nile Basin as study region. 77 

More specifically, this study aimed at: 1) analyzing the spatiotemporal variation in annual and 78 

seasonal flows along the main rivers of the Nile Basin, 2) investigating the co-variation of flow 79 

and rainfall, and 3) rainfall-runoff modeling to investigate the evidence of changes in rainfall-flow 80 

catchment response behavior. 81 

 82 
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3.4	Detection	and	Attribution	of	Changes	in	the	Flow	98 

According to Merz et al. (2012), the flow change attribution to assumed drives can be done 99 

quantitatively in either data-based or simulation-based way. Both ways were considered and 100 

combined in this study. 101 

3.4.1		Data‐Based	Approach	102 

A data-based approach was implemented at both regional and catchment scales by comparing the 103 

correlation between the variation of flow with that of the rainfall series. High correlation means 104 

that the influence of the anthropogenic factors on the catchment runoff generation processes are 105 

limited. 106 

3.4.2		Simulation‐Based	Approach	107 

The data-based approach was complemented with a simulation-based approach, where three 108 

models were applied to study the catchment rainfall-runoff flow co-variation considering a 109 

lumped catchment approach. In case of an unchanging catchment behavior, hence in case of 110 

insignificant anthropogenic factors, the temporal flow variations are assumed to be fully described 111 

by the variations in the meteorological model inputs (rainfall and evapotranspiration) after 112 

keeping the model parameters constant over time. On the other hand, in case of a change in 113 

catchment behavior due to anthropogenic influence, there would be a temporal change in the 114 

difference between the observed and modeled runoff flows and sub-flows when model parameters 115 

are kept constant. Anthropogenic influences such as deforestation, overgrazing, significant 116 

expansion of urbanized areas etc over a given catchment would: 1) affect the amount of 117 

infiltration into the soil, 2) alter the amount and velocity of the overland flow, 3) modify the rate 118 

and amount of evaporation, etc. Hence, these would alter the catchment response to the rainfall 119 

input. This difference in response should be visible through the changes in runoff volumes, sub-120 

flow volumes, ratio between sub-flow volumes, model parameters describing the sub-flow 121 

response to such times such as the recession constant.  122 

Because of the importance to study the runoff sub-flows and more specifically the overland flow 123 

separately, a numerical digital filter was applied to split the flow into the various sub-components. 124 

This discharge splitting was done based on the sub-flow recession constants as applied in the tool 125 

provided by Willems (2009). The simulation-based approach to search for the temporal changes in 126 

the overland flow was analyzed using three approaches including the Cumulative Rank Difference 127 

(CRD) (Onyutha, 2016a) technique, the Quantile Perturbation Method (QPM) (Ntegeka and 128 

Willems, 2008; Willems, 2013), and the well-known Mann-Kendall (MK) (Mann, 1945; Kendall, 129 

1975) test. The CRD and QPM were applied directly to the annual maxima, annual minima and 130 

annual mean flow. The MK test was conducted on the model residuals. Each of the three methods 131 

CRD, QPM and MK analyzes the given data  in a different way. Whereas the CRD focuses on the 132 
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cumulative effects of the variation, the QPM considers quantile changes, and the MK deals with 133 

trends.  134 

3.4.2.1		The	Cumulative	Rank	Difference	Method	135 

Severe events tend to temporarily occur in the form of clusters above or below the long-term 136 

mean (call it the reference) of the hydro-meteorological variable. The tendency of the variable 137 

over time to cross the reference from below to above or vice versa brings about positive and 138 

negative effects on the trend in the full time series. Because these positive and negative effects 139 

cancel out each other within the dataset, the overall trend from the full time series is consequently 140 

the net effect of such cancellations (Onyutha et al., 2015). The identification and assessment of 141 

the sub-trends (i.e. the short-durational trend directions within the series) is vital to ascertain the 142 

possibility of any intervention of climate fluctuations on the hydro-meteorological variable 143 

(Onyutha, 2016a). Detection of changes in a purely statistical way using the full-time series might 144 

yield results which are meaningless sometimes (Kundzewicz and Robson, 2000) and moreover, it 145 

can disregard the occurrences and significance of the sub-trends (if any) within the dataset which 146 

may be of interest to an environmental practitioner. To graphically reveal the hidden short-147 

durational changes (e.g. jumps in the mean, sub-trends, etc) within the time series, the CRD plot 148 

was used. To construct the CRD plots for observed and modeled flows, the following steps were 149 

taken: 150 

i) rescaling of the given series in a nonparametric way using Eq. (2) to obtain the difference 151 

(D) between the exceedance and non-exceedance counts of the data points; 152 

    ( ) 2 ( )aD i R i n w i    for 1 ≤ i ≤ n      (2) 153 

where Ra is the number of times a data point is exceeded, and w the number of times a data 154 

point appears within the given sample. To determine Ra or w, each data point is counted as 155 

if it was not considered before (Onyutha, 2016b). Considering the hypothetical series (3, 6, 156 

3, 7, 9, 5, 3, 5); n = 8 and for i = 1 to n, Ra = (5, 2, 5, 1, 0, 3, 5, 3), w = (3, 1, 3, 1, 1, 2, 3, 157 

2), and D = (5, -3, 5, -5, -7, 0, 5, 0). 158 

ii) calculating cumulative sum (Sm) of the rank difference using Eq. (3); 159 

  1
( ) ( )m

i

j
S i D j


    for 1 ≤ i ≤ n                 (3) 160 

For the series in Step (i), the Sm(i) = (5, 2, 7, 2, -5, -5, 0, 0); it can be checked that Sm(n) or  161 

1
( )

n

j
D j


 is always zero. 162 

iii) making the CRD plot i.e. plotting the Sm(i) against the time unit of the series;  163 
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iv) identifying the short-durational changes from the CRD using the graphical guidelines 164 

following Onyutha (2016a), in Figure A1 generated based on synthetic series Y of n = 200. 165 

In the CRD plot (see illustration in Figure A1), taking Sm = 0 line as the reference, the values 166 

above or below this reference are considered to characterize sub-trends in the series (Onyutha, 167 

2016a). If the given series is characterized by an increasing trend in the first half and a decrease in 168 

the second half, for example, two curves are formed such that the first one (first half of the period) 169 

is above the reference and the second one below the Sm = 0 line (see case (a) and (1) of Figure 170 

A1). When there is no trend in the data, the CRD curve crosses the reference a number of times 171 

with no clear area over large time period between the curve and the Sm = 0 line (see case (b) and 172 

(2) of Figure A1). For a positive/negative trend, most if not all the scatter points in the CRD plot 173 

take the form of a curve above/below the reference (see case (c) and (3) of Figure A1). For a step 174 

upward/downward jump in the mean of the series (so long as there is no trend in both parts of the 175 

sub-series before and after the step jump), the scatter points take the form of two lines which meet 176 

at a point (call it the vertex) above/below the reference (see case (d) and (4) of Figure A1). For an 177 

upward/downward jump, the slope of the first line is positive/negative while that for the second 178 

one is negative/positive. For further details on the use of the CRD plots to  identify changes in the 179 

series, the reader is referred to Onyutha (2016a). 180 
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 181 

Figure A1 The CRD plots for various forms of changes in the synthetic series, Y of n = 200. The 182 

corresponding CRD plot for the series in a)-d) are shown in 1)-4) respectively. 183 

3.4.2.2		The	Quantile	Perturbation	method	184 

Unlike the CRD method which relies on rescaled series, the QPM uses the given series directly 185 

(i.e. without rescaling) to obtain quantile anomalies. This allows the QPM outputs to be 186 

importantly applicable, for instance, in revising design quantiles to account for the decadal or 187 

multi-decadal oscillations or variability in the hydro-meteorological variable. To apply the QPM, 188 

two series are derived from the same data set. One series (call it y) is the full series, and  the other 189 

(denoted by x) is a sub-set extracted as a sub-period from the full series. The sub-series are 190 

contained in a moving window of a specified block length (taken as 15 years in this study). The 191 
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moving window is first put at the beginning of the full time series and afterwards moved by 1 year 192 

at a time. For each moving window, quantile perturbation factors are computed as the quantiles 193 

above a selected exceedance probability threshold selected from x and divided by their 194 

corresponding counterparts from y. The ultimate anomaly for the window under consideration is 195 

determined as the average of the perturbation factors for all empirical quantiles above a given 196 

threshold. The ultimate anomalies from the different moving window positions are considered to 197 

characterize the variability of the extreme quantiles in the series. An elaborate and systematic 198 

description of the QPM can be obtained from Ntegeka and Willems (2008) and Willems (2013). 199 

3.4.2.3		The	Mann‐Kendall	Test	200 

For the MK test, the data points were assigned scores based on the comparison of their 201 

magnitudes. A score of +1 (or -1) was assigned if the most recent data point was larger (or 202 

smaller) than the previous one. If the two consecutive data points were equal, a score of zero was 203 

assigned. The sum of the scores for the full time series was taken as the MK test statistic S. A 204 

positive/negative value of S was taken to indicate an increasing/decreasing trend. The influence of 205 

auto-correlation on the variance of S was corrected based on the procedure suggested by Yue and 206 

Wang (2004). Next, the statistic S was standardized to obtain Z which follows the standard normal 207 

distribution with the mean of zero and variance of one. Trend in the series was considered 208 

insignificant if Z was less than the standard normal variate Zα/2 where α% is the significance level; 209 

otherwise, the trend was significant. In the simulation-based procedure, with the premise that the 210 

models fully capture the catchment behavior, any deviation between observed and simulated flow 211 

can be attributed to internal disturbances which may include forest cover change, urbanization, 212 

river engineering, dam construction, etc (Harrigan et al., 2014). In this study, any persistent 213 

deviation between the observed and modeled flow was deemed to be reflected in the occurrence of 214 

significant trend in the model residuals. 215 

 216 

The block of text below on the MK test results will be inserted in line 19 (page 12186) of Section 217 

4.6 in the Discussion Paper. 218 

 219 

Table 10 shows the statistic Z values of the MK test conducted on model residuals computed 220 

based on the annual maxima, annual minima and annual mean flow. At the significance level of 221 

5% level, the threshold Zα/2 is ± 1.96. For the Blue Nile Basin, it is noticeable that that the 222 

magnitude of Z was less than the absolute value of 1.96 for all the models. This shows that the 223 

trends in the residuals was statistically insignificant at 5% level. The trend in the residuals from 224 

the annual mean flow of Kagera was significant at 5% level for NAM. Although this might 225 

suggest changes in catchment behavior, it was not deemed conclusive since the results from the 226 

two other models i.e. HBV and VHM were insignificant. Generally, the magnitudes of Z for 227 

Kagera was greater than those of the Blue Nile. This might be due to the poor performance of the 228 

models for Kagera especially in the validation process. In some cases, the residual trend directions 229 
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were also different among the models. This could be because of the difference between the 230 

models in terms of their structures and sets of parameters used to capture the runoff generation 231 

dynamics. 232 

Table 10 Statistical results of trend in the model residuals 233 

Catchment 
Annual maxima 

residuals 
Annual minima 

residuals 
Annual mean 

residuals 
VHM HBV NAM VHM HBV NAM VHM HBV NAM 

Blue Nile -0.32 -0.73 -0.87 -1.05 1.00 -1.89 -1.05 1.00 -1.89 
  Kagera -0.75 1.56 -1.09 1.40 1.21 1.74 -1.50 1.89 2.08 
Bold value is the statistic significant at the level of 5%. 

According to Harrigan et al. (2014), despite the statistical detection of trends, rigorous attribution 234 

is required in decision making on long-term management and adaptation strategies. Additional to 235 

the call by Merz et al. (2012) for increased rigor in attribution through consistency, inconsistency 236 

and provision of confidence statement, Harrigan et al. (2014) suggested the method of Multiple 237 

Working Hypothesis (MMWHs) as a systematic examination of known drivers to explain the full 238 

signal of change. In line with the MMWHs, some of the working hypotheses (which were not 239 

investigated in this study) but deemed to potentially influence the catchment behavior (though 240 

insignificantly) across the study area and should be considered for further research in a combined 241 

way include: urbanization, forest cover transition, agricultural land-use and management change, 242 

etc. Another factor which cannot be ruled out in influencing the change detection is the 243 

questionable quality of hydro-meteorological data in the study area. Once the large data 244 

requirement for attribution become manageable in future, an interesting attempt would be to 245 

expose the interaction (if any) of the drivers of the flow changes in the various catchments of the 246 

Nile Basin.  247 
 248 
 249 
 250 
 251 
 252 
 253 
 254 
 255 
 256 
 257 
 258 
 259 
 260 
 261 
 262 
 263 
 264 
 265 
 266 
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Table 2Daily and monthly rainfall stations for selected catchments 267 

 Station Location Data period Statistical metric 
 Paper ID Name Long. Lat. From To Ck [-] Cs [-] Cv [-] 

K
ag

er
a 

B
as

in
 Kag1 Mugera (Paroisse) 29.97 -3.32 1940 1990 0.98 0.73 0.78 

Kag2 Muyinga 30.35 -2.85 1940 1992 -0.17 0.44 0.72 
Kag3 Igabiro Estate 31.55 -1.82 1940 1994 0.47 0.78 0.80 
Kag4 Musenyi (Paroisse) 30.03 -2.97 1940 1994 1.34 1.06 0.83 

A
tb

ar
a 

C
at

ch
m

en
t Atb1 Atbara 33.97 17.70 1907 1995 36.39 5.18 3.06 

Atb2 Ungwatiri 36.00 16.90 1950 1981 22.60 4.26 2.66 
Atb3 Abu-Quta 32.70 14.88 1948 1987 8.65 2.81 2.06 
Atb4 Haiya 36.37 18.33 1950 1981 33.39 5.10 2.67 
Atb5 Gedaref 35.40 14.03 1903 1996 3.07 1.78 1.50 
Atb6 Ghadambaliya 34.98 14.20 1948 1988 3.88 1.95 1.65 

B
lu

e 
N

ile
 

B
as

in
 

Blu1 Bahr Dar 37.41 11.60 1964 2004 0.95 1.36 1.30 
Blu2 Debremarcos 37.67 10.33 1964 2004 -0.46 0.86 1.00 
Blu3 Gonder 37.40 12.55 1964 2004 1.54 1.44 1.21 
Blu4 Addis Ababa 38.75 09.03 1964 2004 -0.06 0.95 1.02 
Blu5 Kombolcha 39.83 11.10 1964 2004 2.32 1.56 1.11 

K
yo

ga
 

B
as

in
 Kyo1 Imanyiro 33.27 0.29 1950 1977 3.51 1.34 0.65 

Kyo2 Kapchorwa 34.43 1.24 1950 1995 3.07 1.15 0.69 
Kyo3 Buwabwale 34.21 0.54 1950 1977 4.73 1.61 0.69 
Kyo4 Ivukula 33.35 0.57 1950 1997 2.12 1.24 0.68 

M
on

th
ly

 r
ai

nf
al

l s
ta

tio
ns

 a
do

pt
ed

 fr
om

 O
ny

ut
ha

 a
nd

 W
ill

e
m

s 
(2

01
5)

 

A Kabale 29.98 -1.25 1917 1993 0.49 0.07 0.17 
B Namasagali 32.93 1.00 1915 1978 1.89 6.12 0.19 
C Igabiro 31.53 -1.78 1931 1982 0.82 0.80 0.24 
D Kibondo 30.68 -3.57 1926 1978 2.47 9.50 0.29 
E Ngudu 33.33 -2.93 1928 1971 1.61 3.88 0.33 
F Shanwa 33.75 -3.15 1931 1985 0.68 0.28 0.24 
G Tarime 34.37 -1.35 1933 1975 1.48 1.94 0.20 
H Bujumbura 29.32 -3.32 1930 2004 0.27 0.09 0.18 
I El-Da-Ein 26.10 11.38 1943 1990 0.27 0.17 -0.03 
J El-Fasher 25.33 13.62 1917 1996 0.43 1.22 1.92 
K El-Obeid 30.23 13.17 1902 1996 0.32 0.53 0.39 
L En-Nahud 28.43 12.70 1911 1996 0.28 0.39 1.00 
M Er-Rahad 30.60 12.70 1931 1984 0.31 0.80 3.21 
N Fashashoya 32.50 13.40 1946 1988 0.32 0.04 -0.11 
O Garcila 23.12 12.35 1943 1986 0.30 1.97 6.75 
P Hawata 34.60 13.40 1941 1988 0.23 -0.19 1.35 
Q Jebelein 32.78 12.57 1927 1988 0.29 -0.50 -0.40 
R Kassala 36.40 15.47 1901 1996 0.30 -0.04 -0.18 
S Kubbum 23.77 11.78 1943 1985 0.27 -0.01 -0.23 
T Kutum 24.67 14.20 1929 1990 0.40 0.16 0.28 
U Nyala 24.88 12.05 1920 1996 0.29 0.11 -0.30 
V Renk 32.78 11.75 1906 1987 0.20 0.35 -0.09 
W Shambat-Obs. 32.53 15.67 1913 1993 0.94 2.99 11.31 
X Shendi 33.43 16.70 1937 1990 0.74 1.16 2.08 
Y Talodi 31.38 10.60 1916 1987 0.23 1.12 3.57 
Z Talodi-M-Agr. 30.50 10.60 1942 1985 0.21 0.41 -0.35 

AA Umm-Ruwaba 31.20 12.80 1912 1989 0.32 1.93 9.26 
AB Wau 28.02 7.70 1904 1990 0.16 0.26 -0.34 
AC Combolcha 39.72 11.08 1952 1996 0.17 -0.84 0.69 
AD Debremarcos 37.72 10.35 1954 1998 0.11 0.82 0.59 
AE Gambela 34.58 8.25 1905 1993 0.22 0.00 0.25 
AF Gore 35.55 8.17 1946 1996 0.20 1.40 2.15 
AG Wenji 39.25 8.42 1951 1994 0.28 -0.76 1.92 

Long. and  Lat. stand for  longitude [°] and  latitude [°] respectively 
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Table 3 Coefficient of variation of annual flows at the various stations 268 

St. 
no. 

Group 1 
stations 

Cv [-] 
St. 
no. 

Group 2 
stations 

Cv[-] 

1 Kyaka Ferry 0.35 10 Sennar 0.23 
2 Jinja 0.42 11 Khartoum 0.22 
3 Paara 0.48 12 El Diem 0.19 
4 Kamdini 0.31 13 Babu 0.26 
5 Kafu 0.73 14 Kilo 3 0.35 
6 Aswa 0.77 15 Tamaniat 0.15 
7 Panyango 0.55 16 Hud. + Hass. 0.16 
8 Mongalla 0.40 17 Dongola 0.17 
8 Malakal 0.40 18 Aswan Dam 0.15 
9 Sennar 0.20    

 269 


