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Abstract

Thermal and multispectraémotesensing datfrom low-altitude aircraft can provideigh sptial
resolution necessary faubf i el d ( Oplaht® am)d p ¢ n § O evapotranspiratiana | e
(ET) monitoring. In this study, high resolutiofsubmeter scal¢ thermal infrared and
multispectral shortwave data from aircraft are used tomap ET over vineyards in central
Californiawith the Two Source Energy Balance (TSEBpdelandwith a simple modehaving
operational immediate capabilitiesalled DATTUTDUT (Deriving Atmosphere Turbulent
Transport Useful To Dummies Using Temperaturélhe latterusescontextual information
within the image to scale between radiometric land surface temperétlinaluesrepresenting

hydrologic limits of potentiaET and a norevaporative surface Imagey from five days
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througlout the growing seasois used for mapping ET at the sfibld scale The performance
of thetwo modelsis evaluatedising towetbasedmeasurements of sensibld)(and latent heat
(LE) flux or ET. The comparison indicates thalSEB was able to derivereasonableET
estimaés undervarying conditionsglikely dueto the physicaly basedtreatment of the energy
andthe surface temperature partitioning between the soil/cover creprmtv and vine anopy
elements On the other hand)ATTUTDUT performance was somewhat degragegsumably
because the simple scaling schedoes not considatifferences in thewo sourceqvine and
inter-row) of heat and temperature contributioos the effect of surfae roughness on the
efficiency of heat exchangeMaps of the evaporative fractiokEF=LE/(H+LE)) from the two
modelshad similar spatial patterrs but differentmagnituds in someareaswithin the fieldson
certaindays. Large EFdiscrepanies between thenodelswere found ontwo of thefive days
(DOY 162 and 21p when there weresignificant differences with the towebbased ET
measurementgarticularly usingthe DATTUTDUT model. Thee differences irfeF between
the models traslateto significant variatioa in daily wateruse estimatefor these two dayfor
the vineyards Model sensitivity analysislemonstrate the high degree of sensitivity of the
TSEB modelto the accuracy of th&r data while theDATTUTDUT modelwas insensitiveto
systematicerrors inTr as is the case with contextdzsed modelsHowever,it is shown that
the study domain and spatial resolution will significantly influence the ET estimation tirem
DATTUTDUT model. Future work is planned fateveloping a hybrid approach thaveraes
the strengths of both modeling scheraed is simple enough to be used operatignaith high

resolution imagery.
1 Introduction

As a key compoent of the land hydrologica] energy and biogeochemical cy&le
evapotranspiratio{ET) provides important fiormation abouterrestrialwater availability and
consumption(Evettet al., 2012 Detailed knowledge of sgial ET distributiors (especiallyin
nearreal time) at field or finer scaleis particularly useful in precision agricultural water
managementAndersonet al., 2012, Sachez et al. 2019. This isespeciallyrelevant aghe
need to increase food production for a growing human populaibmdered bythe reduced
availability of freshwaterin many water limited regionsvhich potentially will beexacerbated
with achanging climate.Remote sensing technicgi@reconsidered to bene of the feweliable

method for mapping ananonitoiing ET at watershed and regional scal8s, 2002 Kustas and
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Anderson, 200p since they provide ameans for detertg changes invegetation and soil

moistureconditionsat field scaleaffectingET over space and time.

Over the passeveraldecadesnumeroussatellite products have been used in ET estimatiah
monitoring Among them,medium tomoderatespatialresoltion (100-1000 m) satellite data
e.g, from Landsat and th& ODerateresolution Imaging Spectrometer (MOD]S$)ave been
appliedwith models formappingET at field towatershedand regional scalesith some success
(Anderson et al2012b;Cammallerietal., 2013. [In this paper we define satellite imagery with
resolutionon order of ~100n asi me d i u m r and WOOurdsiindetate resolutianto
distinguish from high resolution imagery with meseale sptial resolution] However aswater
resouces become more limitethere is a greatereed forprecision agricultural managemeatt
the field/subfieldscale particularly for highvalued or specialty crop&ipper and Loheide 1|
2014, and moderate resolution dai®too coarse tanform varialde rate application of water or
nutrients witlin a field. In addition,obtaining bothhigh spatialandtemporalresolutiondata is
not feasible withthe current satellite constellation sinoceediumresolutionearth observations
have along (two or more weks) revisit cycle particularly when considering cloud cover
(Cammalleriet al., 2013

Remote sensing datktom low altitude aircraft, especiallfrom unmanned aerial vehicles
(UAVs), can potentially provide the needed spatial and temporal frequéoicyprecision
agricultureapplications Despite thefact thatdevelopmenof airborne scanneterived thermal
imageryfor irrigation applications had begupackin the 1970s Jacksoret al., 1977, it is not
urtil the last few yearghat very high resolutiordata are being consideredor precision
agricultural applications This isdue to the technological advancethat haveallowed rapid
integrationand processingf highresolutiondata fromcamerasnounted on aircraft and more
recentlyon-board UAVs (ZarcoTejadaet al., 2013 Currentapplications of high resolution
thermal remote sensingataare mainly focused on detecting and mappingrop waterstatus
(Berni et al., 2008 GonzalezDugo et al., 2012;ZarcoTejadaet al., 201 since anopy
temperaturehas historically beenusedas anindicator of water stressldckson et al., B,
Gardneret al., 1981;Fuenteset al., 2012 Sub-meter resolutiorthermal imageryis able to
retrieve pure canopy temperatumgnimizing soil or other background thermalestts (einonen
and Jones, 200ZarcoTejadaet al., 2013
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Spatially distributed ET can be obtainadsing remote sensinased models with varying
degrees oftomplexity andutility (Kalma et al., 2008 In terms of treatment of the ey
exchange withthe surfacethe thermalremote sensinpasedET modek can begenerally
classified as one sourcBgstiaansseet al., 1998; Su, 200Eengand Wang 2013 and two
source Normanet al., 1995; Kustas and Norman, 19B8ng andSingh,2012;YangandShang
2013 parameterizationsdepending on whetherthey treat a landscape pixel as a
compositdumped surfaceor explicitly partition energy fluxesand temperaturebetween soll
and vegetation. These models are based on solving seface energy balance andoat

radiometricsurface temperatur@g) asakey boundary conditiorkKustasandNorman 1999.

A commonly usednethod in one source modé$ the contextual scaling approaethich uses
Tr and vegetatioramount (the normalized difference vegetation indé¥DVI, or fractional
vegetation covelf;) as proxy indicators of ETB@stiaanssent al., 1998; Su, 2002llen et al,
2007; Carlson et al., 1994 Jiang and Islam 1999. Accurate identification ofextreme
hydrologic limits, i.e., potential ET (cold\wdimit) and the largest water stress condition
(hot/dry limit), is essential for proper scalirg the surface conditiore(g., the aerodynamic and
air temperaturdifference,dT, andevaporative fractionEF) of the other pixels between te
extremes. Examples includethe Surface Energy Balance Algorithm for Land (SEBAL)
(Bastiaansseret al., 1998 the Mapping Evapotranspiration withinternalized Calibration
(METRIC) model(Allen et. al., 200y, thetriangle model Carlsonet al.,1994), andthe satelte-
based energy balance algorithm with Reference Dry and Wet [REDRAW) (Feng and
Wang, 2013

With UAV imagery, the pixel resolution can be verfine (i.e., 18 cmi 10° m) in order tomap

the variability in crop condition within a field. This tgailly restricts the size of the area or field
being monitored and hence reduces the likelihood of sampling the extremes in ET rates (i.e., ET
~0 and ET at potential). This issue was raisedipyper and Loheide 11(2014) who indicated
thatthermalbased E models relying on extreme limits are ragiplicableat field scalessincein
agricultural landscapes vegetation cowathin afield is fairly homogeneous and ideal extreme
limits may be difficult to idently, especiallyduring mature crop periods whehet canopy is

nearly closed Theydevelopeda mixedinput approach combining high resolution airborne and
Landsat imagery with local meteorological forcing isuaface energy balance modety called

High Resolution Mapping of EvapoTranspiration (HRMETHIRMET combines a twsource
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modeling approacfor estimating available energy between the soil and vegetalements but

uses a singlsource scheme for estimatitige soil+canopy systei, with LE solved by residual.

On the other handhe contextualscalingapproactcan greatlysimplify modelcomputationsand
input datarequirementgCarlson 2007, and can reduce ET retrievarorsdue tobiaserrors in
Tr and meteorological inputsuch asair temperature and wind speegtllén et al., 200). This
facilitatesnear reatime operational applicationfor ET monitoring In the DATTUTDUT
(Deriving Atmosphere Turbulent Transport Useful To Dummies Using Tempeéerataceing
schemeintroducedby Timmermanset al. (2015, land surface temperature is thelyomput
needed for ET estimationDATTUTDUT solves for ETby scalingthe evaporative fraion, EF,
betweenthe extreme valuesissociated witlpotential (cool/wet pixel) and zero (hot/dry pixel)
ET. The main concept of DATTUTDUT is similar to theSEBI (the Simplified Surface Energy
Balance Index) proposed bioerink et al.(2000; however, DATTUDDUT has amore
simplified scheme to obtain radiometric temperature-eranbers and radiatienelated factcs.
Although these typeof contextuakcaling methosl have been seedover a variety ofandscapes
using mainlymoderateresolution remote sensing datheir applicability and performance in
retrieving surface fluxes and Bl the high resolutioslibfield scale and potential problemsr

behavior at theubfield scale havaot been adequately tested

The Two SourceEnergyBalance(TSEB) schemeriginally proposed byNorman et al(1995

and modified by Kustas and Normaf(il996, 1999 2000, hasproven to be fairlyobust for a
wide range of landscape amgtather conditionsL{ et al., 20®%; Kustas and Anderson, 2009;
Colaizziet al., 2013). Unlike singlesource modslbased orcontextualscalingapproacheghe
TSEB model contains a more degaitreatment of the radiative and flux exchange between soil
and vegetation elements without the requiremergxtfemehydrologicallimits existing within

the scene. ConsequentlySEB is still effective when applied ovehomogeneousandscapes

and environmentalondiions.

The performanceof TSEB andsinglesoure mode$ using TR/IET extremes(e.g, SEBAL,
METRIC, Trapezoidinterpolation Mbdel (TIM)) hasbeen comparedver a corn and soybean
region in lowa during SMACEXHrenchet al., 2005, Choi et al., 2009, subhumid grassland
and semarid rangelandiuring SGP '97 andMonsoon '9Q Timmermanset al., 200Y, as well as

a cotton field in Maricopa, Arizond(enchet al., 2015 These studiedemonstratedhat both
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TSEB andthe singlesource modalcan reproducéluxes with similar agreememnt towerbased
observéions, yet they did reveal significant discrepancies irthe ET patterns orspatial
distributiors especially in areas with bare soil or sparse vegetationgeneral,these model
inter-comparisonshave mainly used mediumresolution satellite imagery sucls dandsat and
Advanced Spaceborne Therntamission and Reflection radiometer (ASTERrenchet al.

(2015 conducted model comparison using both Landsat and aircraft data, and concluded that

daily ET estimatioawere similar ahigh andmediumspatialrelutions.

However more detailed comparisons betwesimple onesource contextuabased schemes
versus more complex twaource modelsising high resolutiommagery over different surfaces
are still needed to fully understand trstrengths and weaknesseshofth modahg schemes
Such intercomparisons can facilitate developmeritybirid schemes thaeverag the strengths
of different methodologiege.g.,Cammalleriet al, 2012, while incorporating simplicationfr
routine application with airborne imary. The purpose of this paper is wonduct an inter
comparison ofTfSEB with the very simple contextuabasedDATTUTDUT modelthat can be
easily applied operationallysing high resolution thermal and multispecshbrtwaveimagery
for subfield scaleET estimation. The inte-comparison is conducted ovevo vineyardfields
having significantly different biomada central California. ET estimatedrom the TSEB and
DATTUTDUT modek are comparedn detail within the contriluting sourcearea of theflux
towerin each field andthe spatial patterns ahodeledET are comparedhroughout thevhole
vineyardfield. Additionally, a sensitivity analysis of key inputs the two models is conducted
providing insight intothe potential for precision agriculturalater resource management

applications using such high resolution earth observations.

2 Model overview

2.1 TSEB model

The TSEB model,developed byNorman et al(1995, partitionssurface temperature and fluxes
into soil and vegetation component®etailed fomulations used in TSEB can be found in
Kustas and Norma(il999 andLi et al. (2005, 2008. In the TSEB modelthe surface energy
budgets arbalanced for botkhe soil and canopgomponents of the scene

R =R_+R =H+LE+G (1)
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Rns:Hs-H-Es-l-G (2)
Rnc:Hc-'-LEc (3)

whereR, is ret radiation\W m?), H is sensible heat flux (W 1), LE is latent heat flux (W ),
and G is soil heat flux (W rf). Subscrips s and ¢ representthe soil and canopyflux
components, respectively Componat R, is combined with the component temperature
(Colaizzi et al., 201250ng et al.2016:

|:%s:tll'l‘j _(1 _It) [ é‘(-:AS s T;@ ss(-l [s) _Sc (4)
Re=( 4)(L T 2- &)s(1+)(dr )s, (5)

where Lg and & are incoming longwave and shortwasadiation (W m?), | alh @ ardJthe
longwave and shortwavediation transmittances through the canoy {) Uand T aresurface
emissivity €), surface albedo-Y and surface temperature (K) with subscrigptndc represent
the soil and canopyl is the StefanBoltzmann constan{~5.67108 W m? K%). S is either
computed usingsurtearth astronomical relationshipsider cleasky conditions as done by
DATTUTDUT (see below) or measured from a nearby weather statior,,qaseither measured

or often computed usinfprmulas based on weather station observations of air temperature and

vapor pressure ( i.eBrutsaert, 197p

Tr is partitionedinto componentsoil, Ts, and canopy T, temperaturg based on théractional
vegetation coverfq):

To o [rlars + @ (o] ©)

wheref¢(d) is the vegetation cover fraction at the thermal sensor view ahgle clumping
factor, q, is adopted irthe f¢(d) calculation to account for th®w structure of vineyards (i.e.,
vine biomass concentrated along trellises) using a formuldtamn Campbell and Norman
(1998:

_1 & 05Wg)LAI
f.(g)=1 eng—CO {q) Y (7

where LAI is leaf area index, which ioften estimatedfrom NDVI using an empirical

LAI~-NDVI relation (Andersonet al., 2004. When calculatinghe flux componentH, fiserie®
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andfparalleb schremes areadopted for the resistance netwadparatelyfor unstable and stable
conditiors. Detailed formulations for the two schemes can be foudbirman et al(1995 and

Kustas and Normaf1999. LEis initially estimated using BriestleyTaylor formulation:
- @
LE, = U, g o R 8

wherelbr is PriestleyTaylor parameter, which may vary within different vegetation and climate
conditions Norman et al.1995; Kustas and Norman, 199QustasandAnderson 2009. In this
paperthe initial value oflbris 1.26. fc is the LAl fraction that is green with active transpiration.
o is the slope of the saturation vappressurdemperature curvgPa K!) and 2 is the

psychrometriconstant (Pa K). Gis parameterized asfiaactionof Rnsby:
G=cR, ©)

wherec is the empirical coefficientwhich tends to be constant during midmorning to midday

period.

With the above model formulations, energy fluxes for both soil and canopy can be solved.
Importantmodelinputs for TSEBinclude Tr, fradional canopycovercondition pften related to

NDVI), andaland use map providing canopy characteristics (mainly vegetation height and leaf
width) obtained usingemote sensing imagernAncillary meteorologicatata required in TSEB

includeair temperaire, \aporpressureamospherigressureand wind speed.

2.2 DATTUTDUT model

The DATTUTDUT model is an energy balance motteltestimats surface energy fluxesolely
from radiometric surface temperatwieservationscquired over the area of intere$tis model
assumes thatr is an important indicator for the surface status, and skalgparameters for
flux estimation byTr betweerthe extremesf a cool/wet pixel with ET at the potential rate and
hot/dry pixelwhere there is essentiaino ET. Detaied model formulationsire descrbed in
Timmermanset al. (2015. Similar to other energy balance mageR, is estimated by

computingthe net shortwave radiation and the net longwave radiation:

R =(1-a)S,+eaT -3 (10)
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where { is the atmosphereemissvity (-) and Uis the effective (integrated soil + canopy
emissivity) emissivity The value ofS is obtainedfrom thesunearth astronomical relationships
under cleaisky conditiongAllen et al., 2007 Timmermanst al.,2015. In the DATTUTDUT

model,nominal values are taken fatand ( for simplicity: ( is set to be 0.7 andis taken as
0.96. Air temperatureTa(K), is assumed to bequal tothe minimum Tr identified within the

scene of interest U is scaled withTr between extreme values of B.@nd 0.25ased on the

assumption that densely vegetated objects are likely to be darker and cooler while bare objects

tend to appear brighter and hotter

aT.-T

a= oomﬁmgoz (12)

whereTmax IS the maximumTr within the image, and@minis the 0.5% lowst temperature in the
scene.Soil heat flux is calculatedrom R, with the coefficientcs scaledbetweena minimum
value of 0.05 for fully covered condition and maximum value of 0.45 for bareRsmakifk et al.,
200Q SantanellandFriedl, 2003:

‘_'005+%rT T © 804 (12)

Similar toUandcg, evaporative fraction, EF, is assumedb&inearly related tdr:

LE LE LE T.-Th

j— “4nax

TLE+H R G A T. T

(13)

where A is available energy (W 1), i.e., the difference betweeR, and G. With the above
formulations, LE ca be calculated fromA and EF, andd can be estimated dse residualto the

energy balance equation.

2.3 Daily flux calculation

A commonapproachusedto extrapolateET from instantaneougtime of satellite overpassp

daily time scalels to assume the ratiof instantaneoutE to some reference wiable remains
constant during the day, which is describedisadf-preservation by BrutsaertandSugita(1992).
The referenceariablestypically usedncludeA (Andersoret al., 2012 standardizedeference

ET (Allen et al., 200Y, solar radiationZhangandLemeur 1995, top-of-atmosphere irradiance
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(Ryu et al., 2012 Cammalleri et al(2014 compared the performances of the scale factors

derived by these four reference valuables in ET upscalii@ &merFlux towers drawing a
conclusion that solar radiation was the most robust referer@blefor operational applications,
particularly in areas where the model& component ofA may have high uncertainties

However, theapplicability of the variousreference variables may differ within areas, sitite

energy budget is significantly influenced by surface characteristics such as soil moisture,

vegetation condition(rago, 199k In thisstudy, EF (defined as the ratio of LE foor H+LE)
is assumedcongant during the dayme periodwhen solar radiationis larger than 0.The
extrapolation to daytime ET usiregconstanEF is reasonabl® applyduring themain growing

seasorperiod Cammalleri et al., 2004

The ratio of hstantaneout daytimeA at theflux tower site is used to obtain daytirAdor each
pixel within the study areldy assuming that tha ratio between pixel and flux tower é®nstant
during the daytime. Therefore, daytim& for the pixel(Apd) can be derivedrom the pixel-

basednstantaneous\ (Ap,), andflux tower sitevalues ofinstantaneous and daytirde(As, and

Asd) using the following expression

_ A

Ap,d _E'A&d

(14)

Then daytime ET for each pixel (Ed) can be calculated ktpwer observediaytimeA andthe
EFretrieved by either TSEB @ATTUTDUT:

ETMI = Ap’ EF (15)

and daytimeH is computed atheresidual in the energy balance equation.

In this study, the observed available energy fromtwheflux towers during the daytimeeriod
for all five days was usedo extrapolate instantaneondel estimate® daytime ETtotals.
However, in practice tower measurementé @fould not be available, so results using solar

radiation to extrapolate to daytime ET will alsoeyaluated

10
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3 Data and site description

3.1 Study site

The model comparison was conducted owen vineyard sites located near Lodi in central
Californiag, usirg data collected as part tife Grape Remote sensing Atmospheric Profiling and
Evapotranspiration eXperiment (GRAPEustas et al., 2I4). With a Mediterranean climate,
this areahasabundant sunshinand large dayandnight temperature differengsemaking it a
primary winegrape produag area in California This studyfocuseson two drip irrigatedPinot
Noir vineyards trainecbn quadilateral cordos with a 1.5m space between vines and 3.3m
distance between rowsThe north field(Site 1)has an area of abo@6 hawith the flux tower
locatedapproximately halvay northsouth along the eastern border of the fig88°17.3N,
121°7.10N), while the southvineyard(Site 2)is smallerin size at about21 hawith the flux
tower alsoapproximately halvay northsouth along the eastern border of the f(@&16.8N,
121°7.18N) (seeFig. 1). The towers were deployed at these locatiommaaimize fetch for the
predominat wind direction during the growing seasawhich is from the west. The vinas
north field (78 years oldaremore mature than dsein south field (45 years old), resulting in a
greater biomass/leaf area in the ndigfd (see the LAl map for IOP2 iRig. 4). Vine height is
similar in both fielé and reaches ~2.5 m in heighthe vinestypically leaf out inlate March
and grow througtate August before the grapes are harvested in early Septeiigen winter
rainsand soil moisture are adequaterasscovercropflourishes earlyin thegrowing seasom

the interrow until becoming senescestarting in lateMay, which istypically the beginningf

the dry season.During the growing season in 2013, the averagdeanperaturewas nearly

20 € and the total precipitatiomasonly about 15 mm.

3.2 Micrometeorological data

Micrometeorological instruments for measuritg meteorological and flux data were installed
at both thenorth and south field flux tower sit@s late March, 2013 The neteorological data
needed forrunning the TSEB model include air temperatureapor pressure amospheric
pressurewind speed, and incomirgglar radiation Thesewere allmeasured approximatelys

m above local ground level (AGland recorded as 15 minute avesag&he eddycovariance

11
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(EC) systenrcomprisedof a Campbell Scientific, Iné.EC150 water vapor/carbon dioxide sensor
anda CSATS3 threalimensional sonic anemometbpoth collectingdata at 20 Hproducing 15
minute averges A Kipp and Zonen CNR1 fouromponent radiometeneasured net radiation
at 6 m AGL. Hve soil heat flux plates (HFB, Radiation Energy Balance Systems, Bellevue,
Washington) burieadrossrow at a depth of 8 cmecorded soil heat flux. Each heat fuplate
hadtwo thermocouples buried at 2 and 6 cm depths and a Stevens Water Monitoring Systems
HydraProbe soil moisture sensor buried at a depth of &ised to estimate heat storage above
each plate Bothmeteorological and fluxes data were measureautfh the whole/ine growing
season (April to October) in 2013. During this per{otluding both daytime and nighttime
observationg the slope betweeA and H+LE is 0.83 for both two sites witkoefficient of
determination R%) on order of 0.97. This suggests an average enelgyance closure of nearly
85%. In this study, the EC fluxes were closed using bothRasidual (RE) and Bowen Ratio

(BR) method describd in Twine et al.(2000 to ensurenergy conservation.

3.3 Airborne campaigns

ThreelntensiveObservation Periods@P9 were conducted through tl2©13growing seasoas
part of GRAPEXto capturedifferentvine and interow cover crogphenologicaktageshat may
affectET rates During IOP1 April 9-11, 2013 Day of Year (DOY) 99101) the vines were just
starting toleaf outand the covecrop in the interow was greerandflourishing By the time of
IOP2 (June 1113, DOY 162-164), the vineswere fully developedvith immaturegreen graps,
while thecover crop was senescenGrapes werdegnning to rip@ and reachmatuity while

the vines were still green and growidgringlOP3 (August 63, DOY 218-220).

Airborne campaigns were conducted on five day®YDL00, 162, 163, 218 and 218Yerthe

threelOPs. Multispectral and thermahagery wee acquired over the two vineyards with the

Utah State University airborne digital system installed in a single engine Cessna TU206 aircraft
dedicated for research. The system consists of four ImperX Bobcat B8430 digital cameras with
interference filterdorming spectral bands in the Blue (0.Z6375¢m), Green (0.54% . 555 & m) ,
Red (0644 . 655 & m) and Ne ar2.8R0em)rwavelengths.( WNhie Bhgrma( 0 . 7 8 |

! The use of trade, firm, or corporation names in this article is éoinflormation and convenience of the reader.
Such use does not constitute an official endorsement or approval by the United States Department of Agriculture or
the Agricultural ResearcBervice of any product or service to the exclusion of others that may be suitable.
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infrared (TIR) images were acquired with a ThermaCAM SC640 by FLIR Systems Inc. in the
7.513 em range. The aircraftbased TIR images were provided in degrees Celsius and used in
this analysis without performing atmospheric correctioDetails of image acquisition and
processing can be found Mealeet al. (2012. In Table 1 overpass timeTC), multispectral

and thermal pixel resolutiomformationand aircraft altitude are listed for the overpass dates
The high spatial resolution diie visible banag (0.05 or 0.1 m, se@able ) madeit possible to
distinguish vegetation pixels from newegetaéd pixels to some extentHowever, with the
coarser thermal pixel resolutions it was difficult to reliably distinguish pure vine canopy
temperatures from background soil and/or ntev cover crop temperatur€sig. 1). Since the
imageryfor the different overpass datdsve different spatial resolutionand the TSEB model
resistance and radiation formulations for the turbulent and radiative exchange for the seil/cover
cropvine system are appropriate at the plot/micrometeorological,dvalle nultispectral and
thermal bands were aggregated to 5 m resolditiooreating TSEB input fields to compuis .

This spatial resolution ensured both an wntev and vine row would be sampled within the pixel.

The original or native pixel resolution of the thermal imagerywas also usedas input to
DATTUTDUT.

3.4 Model input from aircraft data

The keyTSEB modelinput datafrom the aircraft observations inclusgeaps ofNDVI, LAI, f,

and Tr. Auxiliary remote sensing dateere requiredto produce multispectrakflectance and

LAl maps. The original multispectral imagery fraarcraft wasin digital numbes (DN) and

needed to be converted into reflectan&mith and Milton(1999 introduced an empirical line
method to calibrate remote sensigrived DN to refctance with errors of only a few percent

in their case studyBerni et al.(200%) applied the empirical line method bigh resolution date
obtairedby UAV yielding calculatedeflectance thatagreed well with measurements (RMSD =

1.17 %).Since grounébased reflectance measurements were not collected for some of the
airborne acquisition dates, Landsat multispectral band reflectance in the corresponding spectral

bands were used to derive the empirical-@Rectance relationships for this analysis.

Three Landsat images were used to match the three I0R: daedsat 7 orDOY 98 from
path44row33, Landsat 8 oOY 163 from path43row33, and Landsat 8 ddOY 218 from
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path44row33. Reflectancefor Band 5, Band 4, Band 3 frothe Landsat 8 image and Bandi,
Band 3, Band2 from the Landsat 7 image were used to derive the-iefiectance relatiship
for NIR, red and green bamsgd separately.All shortwave bands were calibrated and
atmospherically corrected by tHeandsat ecosystem disturbance adaptive [gging system
(LEDAPS) proposed biasek et al(2006).

The DN valueswith the originalaircraft pixelresolution {able ) wereaggregatedip to30 m
resolution to match the Landsat multispectral bands resoluiwh the DN-~reflectance
relatiorshipwas deived. Visible band reflectanceneasurements were takdaring the I0Ps on
DOY 162 218 and 21%o0th abovehevine row andovercover crop interow for both north and
south fields Estimated NIR, redand green band reflectance atcraft pixel resoluton are
compared withreflectancemeasurements ifig. 2. Using 54 datapoints including the three
bandsfor three daysat both sites,estimatedrefledance fromaircraft data agree well with
observationfiaving abias(observeemodel)of -1.1 % and rob mean squareifference(RMSD)
of 4.5 %. This accuracy is comparable with tHat few percentfound by Smith and Milton
(1999 andBerni et al.(2009).

NDVI wasassumed to beorrelated witHfractionalvegetation coveand related ta.Al (Carlson
andRipley, 1997. The MODIS Terrdour-day composite LAl product (RID15A3) was used to
derive LAl maps at 30 m resolution using the regression tree approach introduGed étyal.
(2012. NDVI maps weregenerated fronNIR (Band 5) and red (Band 4) bandlL@indsat 8 data.
This permitted the derivation of a LAI~NDVI relation at 30 m resolution which was used to
create a LAl map at aircraft pixel resolutiom’An exponentialequationwas used to fit the
LAI~-NDVI relationship, whichwasable toaccommodaté¢he effect of NDVI saturation ahigh
LAl values(Carlsonand Ripley, 1997; Andersonet al., 2004 In Fig. 3, the LAI~NDVI
equationis compared witlgroundbased LAImeasurementssing LiCor LAF2000on DOY 163
and DOY 218 The grounebased LAl measuremenigere derived from 5 transects running due
west of the tower at 205 m intervalsandacross 4 row$rom south to north. The average LAI

from 5 transects represented a gdimgy area that was withii5 m due west of the flux tower

sites. Four below vineanopy measurements were made and consisted of a LAl observation

directly underneath vine plants along a row, and ¥4, % and % distance from the videlLrAw.
image from IOP2 idisplayedin Fig. 4 illustrating the significant spatial variation in LAl

particularly for the north field.
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Values offc werederived by thaircraftbasedvisible bands taking advantage of the higlatial
resolution(0.05to 0.1 m, seelable 1landFig. 1) which allowedseparation of th@ine canopy
from the intefrow area Pixelswereclassifiedinto vegetation and newvegetationcategoies by
ENVI image processing softwatg&xelis, Boulder, CQ)andthenthe percentagef vegetation

pixels wagquantifiedwithin each5 m resolution pixel.

4 Results and discussion

4.1 Comparison of model estimates and tower data

Fluxes were modeletly both TSEB and DATTUDUT at 5m resolutionusing the spatially
aggregatedircraftbasedremotelysensedobservations In addition DATTUTDUT usedthe
native pixel resolutionof the thermalmagerysince thee is no specific spatialcalerequired by
the model parameterizatiansTSEB additionally estimates soil and canopy temperatures.
two-dimensionalflux footprint modeldescribedby Li et al. (2008 based orHsiehet al. (2000
was used tocompute footpnt-weighted aggregatednodel outpud for comparisonwith the
towerbased measurementEhis footprint model contains a lateral dispersion formulation to

obtain atwo-dimensionalveighted sourcarea of fluxfrom the upwind direction

Average soil and capy componentemperature from TSEB were comparedto the aircraft
basedobservationdor the pixels within the flux contributing source area of the toleis 5).
The aircraftbased temperature observatiamsre extractedisinga classification of vegetion
and norvegetaed areagienerated witlthe high resolution visible bands identify appropriate
pixels in the thermal imageryThe aircraftthermal band Idha pixelresolutionon the order of
0.5 m (se€ able ), whichwas often slightlycoarsersale than the width of the vine canogayd
hence frequently resulted innaixed pixe| combiningboth soil and canopy temperaturé&ince
obtaining purely vegetatesuirfacetemperatur@bservationsincontaminated by background soill
or cover crop temperaturevas difficult given the resolution of the thermimhagery the
minimum of the vegetated temperatudetectedvithin the 5 m pixel was assumed to be a pure
vegetated pixel temperatureThen wthin the footprint source aredhe average of theon
vegetaedtemperature (assumed to primarily consist of shaded and sunlit areas in theaater
wastaken as th@bservedls andaverage of theninimum vegetag¢d temperatuefrom all 5 m

pixels within the source area wastimaedto represent thebservedl.. TSEB estimates oOfs
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andT. agreel well with the aircraft thermabbservations yielding a bias of @5 and RMSDon
theorder of2.5€C . This accuracyvascomparablewvith similar types of comparisonreported
by Li et al. (2005, Kustas and Normafil99, 2000, andColaizzi et al.(20123 which had
RMSD valuesranging from2.4-5.0€C for Tsand0.836.4€C for Tc when comparing observed to

TSEB-derived component temperatures

To assesshe utility of the TSEB and DATTUTDUT modaslin reproducing the obseed fluxes
from the tower obsenationsin the north (site 1) and south (site 2) vineyaldstantaneous
modeled fluxes are compared with measurements (adjtstetbsureusing theRE method) in
Fig. 6. Table 2lists the statistics of model performanammpared with both original and
closureadjusted measurementSince the vines were at the very eajtpwth stageduring I0H,
andthe inter-row cover crop was the masource ofvegetation coverthe observeds on DOY
100 wassignificantlylarger tharotherlOPs(Fig. 6).

Table 2clearly shows thathe RE closure adjustmeninethodyields better overall agreement
between measured and modeled fluxes Withaverageerror computed as the ratio RMSD
and avereagebservedlux valueof ~27% forH and LEfor thetwo sites, whilehe BR method
hasan errorof ~37%; Instantaneous flies from TSEB {H and LE adjusted by RE method)
agreed well withobservatiors with RMSD rangng between B-60 W m?, which is considered
acceptable andimilar to prior studies (g., Nealeetal., 2019. DATTUTDUT gave estimated
fluxes with relatively large errors particularly f& (RMSD =~65W m?) and LE (RMSD =
~105W m?) for Site 1 The largr discrepancies iR, from DATTUTDUT might be attribute
to thesimplificationsin the net radiation computatigeeeSection 2.2. For DATTUTDUT, the
resultsusing 5 m pixel datandicatethe significanterrorin LE predominantly resal from poor
performanceon DOY 162 and 219 Kig. 6b and 6e), likely becausethe extreme pixels
aubmatically selectedn these two days failed to represent the dryest/wettest comsdatithrin

the imaggsee discussion below)

Daytime integratedfluxes are compared withthe towermeasurements iftig. 7 and Table 3
Available energyvasslightly overeimatedby the modelgor all the caseswith biasesbetween
-0.5 and-1.7 MJ mi2 d1. Again, the RE methodyielded better agreement with the model
estimates oH and LE onadaytime scale.The LE valuesfrom TSEBat Site 1agreed well with
the observatns with abiasof 0.5 MJ m? d* and RMSD ofl.1 MJ m? d* (Fig. 7aandTable 3.
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However LE from DATTUTDUT hd largerdifferences with the measuremenat Site 1 pias =
-1.1--1.0 MJ m?2 d* and RMSD =1.9-2.0 MJ m? d'}) mainly due to the poaxgreemat in the
instantaneoud E. For 5 m resolution resultshe wo modelswere comparablein their
agreement with.E measurementat Site 2 yielding a smallbiasof -0.5 to ~0 MJ n2 d* andfor
both aRMSD on order of1.7MJ m2 d2.

At both instantaneaianddaytime time scales,application of DATTUTDUT with the native
(finer) pixelresolution thermalmagery yieldeccomparabldgat Site 1)or significantly greater(at

Site 2)discrepancies with the tower measurements than using itinpixel resolutiondata (see
Tables 2 and 3). Changes in the agreement with the tower measureraggtsainly attributable

to thenew hot and coldtemperature pixels selected by the DATTUTDUT procedure with the
finer resolutionTr data.

In practice we will not have observatns of available energyd, from a flux towerfor
extrapolating the instantaneous ET from a single airborne observation to daytime E§{dad
are more likely to have weher station observations of incoming solar radiatian, Besults
using Sfor extrapolating model estimates instead of flux tower measuremedtsuef listedin
Table 4. In generglthe differences between modeled and measured daytime ET (using RE
method) increasalthoughnot significantly for TSEB. On the other hand, discrepaggiwith the
ET measurementior DATTUTDUT at the north vineyard(site 1)increase dramatically due to

the large overestimation of instantaneous LE on DOY 162 and 21Bi(se#).

In general, the TSEB reproducedthe measured fluxesvith higher accuracythan did
DATTUTDUT, both at theinstantaneousand daytimeemporalscales It is hypothesizedhat

this likely results froma better physical representation of the energy and radiative exchange
within TSEB, since it explicitly considers differences Boil and vegetatiorradiation and
turbulent energy exchange and affects on the radiative tempesatunee Frenchet al., 2005
Timmermanset al., 200). Flux estimation fromsinglesource models based time use of ET
extremes willbe sensitive to the selgon of extremeendmemberTr pixels Feng and Wang,
2013; Long and Singh, 20},3andactual extremes might not &t when applying such models to

to smallvineyardsthat are unifomly irrigated and managed asthis study This may be a key

factor that causedhe fluxes from DATTUTDUT using 5 m resolutiomlatato agree well with
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measuements on MY 100, 163 and 218, butot on DOY 162 and Y 219 when the ET

extremegnaynot have beemeadily presentr captured in the image(fgee discussion below)

Fig. 8 showsthe locations ofthe extremeTr pixels selected according tbe DATTUTDUT
modelng approachusing 5 m resolution inpubr the five days. The dark green band in the
lower half of the south field (especially obviousHiy. 8b and8c) is an oldstreambedwhich is
likely to have different soipropertiesthan the surrounding fieldFor DOY 162 and 219, cold
pixels were located at the north vineydFag. 8b and8e); while for DOY 163 and 218 just one
day later or earlier than DOY 162 and 2186ldcpixels were located within ighformer stream
bedor at the tregixel near theparking lotto the north(Fig. 8c and8d). Hot pixels were all

located in bare soilipels near theparking lotor in the north field without vies.

In additionto the issies related to the selection of theendmembersDATTUTDUT does not
consider effects of aerodynamic resistance (surface roughness) on the heat exchagiyerior a
surfaceair temperature difference similar finding wasreportedby Frenchet al.(2006), where
they fourd bias forH from TSEBwas typically within 35 W 3, while bias forH from SEBAL
could reachup to 150 W m?. Nevertheless, the simpl@ATTUTDUT modelng schemeis
much easier tapply to an image withoua priori knowledge or skill equired This is a
significant benefit in operational, realtime applicatiodMdoreover as shown byimmermans et
al. (2019, output of fluxes fromDATTUTDUT often were in good agreement with flux tower
measurements and resulting flux fields had patt@mssisent with more physicalipased
models including TSEB and SEBAL.

Using measuredss from the towers instead of computing from thenearth astronomical
relationshipsroutinely applied byDATTUTDUT, there is onlya minor reduction in the
differences wth the tower fluxes.An overallimprovemenin DATTUTDUT estimation of LE is
acheved by adopting TSEB estimatesRfandG (seeTable5). This is particudrly true for the
north vineyard (site 1). However, even with this better agreement in estirhBtethe
discrepancies with observed LE froRATTUTDUT is still larger than with the output of TSEB.
This indicates that the errors in alaldle energy using thBATTUTDUT formulations are not
the only significant source of error in estimating the LE flux.
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4.2 Comparison of spatial patterns in modeled fluxes

Maps ofinstantaneou&F (@ssumedo be constant during the day) over the two vineyards
displayedin Fig. 9, along with frequency histograns of daytime ET fromthe TSEB and
DATTUTDUT modek expressed imass units of mm-t During IOP1 (DOY 100),He vines
wereleafing out inearly growth stageandthe cover crop in the inteow was the main source of
ET. Howeverthe cover crop in thenterrow forthe north field wasnowedshortly before this
aircrédt overpasswhile the cover cropn the south fieldvas unmowed, andas taller and more
lush. As a resultEF and daytime ET distribution histograms skawimodal shape on DY
100. The histograms become more unimodal in later IOPs as the vine watdregms to

dominate total ET.

While gatial patternsof EF from TSEB and DATTUTDUTwere quite similarfor all the five
overpass datesiriven largely by patterns ifr (seeFig. 8), themagnituds in EF differ between
the modelssome days more significy than otherqFig. 9a-9¢). Use ofthe finer resolution
datahad generallya minorto moderateeffect on the EF an&T distributions except for DOY
163 where the high resolution outpuatlicatesa bimodal distribution in EF an@T compared to
the unimodal distributions using thé& m resolution output fromDATTUTDAT and TSEB.
Since the DATTUTDUT model always scales EF between 0 and 1results from the
DATTUTDUT model generally tcha widerdistribution inEF compared ta'SEB. An example
of a clear diffeence in the width of thEF distributioncan be seefor DOY 162in IOP 2(Fig.
99), while for daytime ET differences in thelistributiors werequite evidenin IOP 2 and IOP 3
(Fig. 91, 9n and 90). A similar result was obtained bghoi et al. (2009, who compared
turbulent fluxes estimated by METRIC, TIM and TSE&ng Landsat imagery ovea corn and

soybean pragktion region in central lowa.

Despitesimilar modelagreemenin instantaneou&T with the tower measuremenisingthe 5
m resolutiondataon DOY 100, 163 and 218r the three IOP$Fig. 6), therearein some cases
where there are significadtfferencesn maps ofEF generated by the two modeda thesedays
(Fig. 9). EF discrepancies were particularly lae DOY 162 duringlOP2 (Fig. 9b), and on
DOY 219 duringIOP3 (Fig. 9¢). These discrepancies are due primarilynodel differences in
partitioning A betweenH and LE within these areasrather than differences IA itself. In

particdar, DATTUTDUT has less sensitivity to dry aerodynanfiicaough surfaces, which the

19



o O A~ W N B

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30

model does not account fotherefore DATTUTDUT schemetends to estimate higher EF
(Timmermans et al., 2015 Similar spatial discrepancies in model output were repdried
Timmermanset al. (2007 andChoi et al.(2009, eventhough therevasgood agreement when
the modelswere compared tdflux tower measuremest The selection of improper extreme
pixels is another crucial factor causing the large discrepancies for the DOY 162 gras219

analyzedand discusseth Section 41.

4.3 Sensitivity of TSEB and DATTUTDUT to the key input, Tr

The sensitivity ofthe TSEB and DATTUTDUT modalto the keyinput, Tr, wasanalyed in
order tofurther investigate the strengths amdaknessesf the two modeling approache3he
aircraft imagey from DOY 163 wasselectedasa case study since input dateere collected in
the afternoon (se€able ) with near maximunradiationand air temperature conditian§ince
Tr is the most important inpub both TSEB and DATTUTDUT,EF and ET values were
calculated with dias inTr (x 3 € ) to evaluate the sensitivity dhese two models tabsolute
accuracyof this key input The £3 degree Ias in Tr was sedcted based on a cormson
between groundbased and the airboriié& measurements for IOP 3For DATTUTDUT, the
influence of extreme pixedelection orthe computed ERNdET was alsanvestigated Values
of EFandET were alscacalculated with d degree deviation in the assignedax/Tmin (1 € ).
In addition,the values offmax/Tmin wereselectedising thenativepixel resolutionTr imagery
Finally, values of Tmax/Tmin were derivedfrom imagery encompassing larger study
area/modelinglomainboth at the aggregated 5 m pixel resolution andTtheative (~0.6 m)
resolution Note that for TSEBusing finer resolutioirwould not be consistent with tmeodel
formulationsfor partitioning between soil @hcanopyconvective energy and radiation fluxes and
kinetic temperatures.A list of sensivity tes conducted, along withthe resulting EFand
daytime ETstatisticsdescribingmodel outpubverthe north and south vineyards providedin
Table6.

Results for the various tests of sensivity of output from TSEB and DATTUTDWiases infr
inputs indicatethat the error/uncertaintyin EF and ET edimation can be fairly significant for
TSEB (Fig. 10a10candFig. 10l) with an uncertainty in field average ET of ~1 mm dayhile
there is no real impact on the output from DATTUTD(Hig. 10d-10f and Fig. 10m). For

TSEB, the shape of the ET distrilmrt remains essentially unchanged, just the mean/centroid of

20



© 00 N o 0o b~ w N

o e e N S N
o U0 M W N B O

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

the distribution and max/min E@re shifted This result is not unexpected based on prior
sensitivity studies of both modeling approaches (@igimermans et al., 200.7 The+ 1 degree
changen the max/minTr also does nammpact the output oET with DATTUTDUT (Fig. 10g-
10h andFig. 10n). However, changing the size of the modeling domain for defining maXinin
and/or the pixel resolution has a measurable impadhenspatiallydistributed output from
DATTUTDUT in these test¢Fig. 10i-10k and Fig. 100). Similar to TSEB,the uncertaintyin
field average ETs ~ 1 mm day. With a larger study domairthe selectechot pixel is likely to
have higheiTr while the cold pixelwill tend to havdower Tr (seeTable6) since thenumber of
pixels available for selectioof the extremesare increasedThis causes the ET estimation from
larger domain (Case D5 and D7)have anarrower distribution compared T from smaller
domain (Case DO and D@eeFig. 100). The finer (native)lr resolution alsaesults ingreater
temperature extremes in the hot and cold piXélsble6) since the pixels available for selection
of the endmemberswere less contaminated containing a mixture of canopy andsabitrate
surfaces.Owing to thelikely differenceLE ratesfor the bare soilsenscent cover crogersus the
irrigated vire vegetationthe ET estimation fromfiner resolutionTr data(Case D6 and D7)
tended to be more bimodal than that froourserresoldion Tr (Case DO and D5) (séeg. 100).

These tests confirrtihat simple scaling schemes lIERATTUTDUT benefit from insensitivity to
biases inTr, but are sensitive to pixel size and range of conditions present within the modeling
domain. This is in contast to results reported lfyench et al(2015, where they concluded that

no significant differencein daily ET estnation accuracyvas observed runninghe METRIC

model athigh (aircraftbased)and medium (Landsat) pixelresolutions. Their studyixed
extreme pixelausing anobjective criteria based on clusted meansrather thansingle pixels

which may reduce the likelihood of aerrorin selecting an outlier as an extreirnet or cold

pixel. Moreoverthey conductedthe inter-comparisonof model outpti at the two resolutions
focusedon field-averaged ETn comparison to water balance estimathsreforethe effecs on

ET distributions or variability wrenot evaluatedn detail Lastly, the sources of théenput data

at the two spatialresolutionswere provided bythe different platforms aircraft and Landsat
however, the effects of changitige pixel resolution of either the aircraft or sateltitgtawere

not evaluatedWhile more automated approaches are being developed for determining extreme
Tr-valuesin applying contextuabased methods such as METRIMofton et al., 2018 the

current study demoiraitesthat pixel resolutionof Tr and sampling arewvill influence the
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selection of extreme limitg the approach used by DATTUTDUTtesulting indifferences in

spatial distribution/patterns BT from DATTUTDUT within a given study area.

4.4 Water consumption analysis

Water consumptionestimatesat the field scale provide important information for water
managementdecision making In this section estmates of field-scale a@ytime water
consumptiorfor the north and south fieklwere calculatedoy aggregatinglaytime ETtotals for

all pixels encompassedithin eachfield and thernconvertingto a volume(in liters) by the area

of the correspondinfield. When usinghe observed ET (from the flux towers), the field scale

water consumption was computed by simply multiplying the tower measured daytime ET

(forcing closureby residual) by the area (siz&f)the vineyard.The volume of water use for each

field for the five overpass datesillustratedin Fig. 11.

The discrepanes between field water consumption from TSEB and DATTUTDWére
relatively small (3% - 6%) on DOY 100, 163 and 21&ince the instantaneous and daytigile
estimatedrom the two mode$ weresimilar. However, the water use estimated from TSk
25% and 336 lessthan thatcomputed byDATTUTDUT on DOY 162 and 219respectively.
Water consumptioncalculated by TSEBended to agree witbhbserved daytime E€&stimated
from the tower obserti@mns but oftenhad slightlylower ET estimates This is consistent with
the fact that, partidarly for the north (site 1) vineyard, the flux tower footprint generally came
from the center area of the field with highest&fET (cf. Fig. 1andFig. 9). On the other hand
DATTUTDUT tendedto estimate higher field scale ET than TSBBd tower measurements
particularlyon DOY 162 and 219Theoverall higher estimated water use o2 andOP3 by
DATTUTDUT s likely dueto the simplied parameterizatio of heat exchange based solely on
Tr and thepixel seletion criteria for the hydrologic extremess analyed in Section 4.1and
Section 4.2

Water use from TSEB wasseparated into sdihter-row evaporation (E) andineiegetation
transpiration T) for each dayby assuminghe E/T ratioestimated at the aircraft overpass time
wasconstanduringthe daytime perio@see the red lines iRig. 11). The variation of Ebetween
dayswassmallerthanthe variability inT, with standard deviatianin E of 95 and55 kiloliters

for the north and south fields, respectively, canpared197 and 173 kiloliterdor T. On
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averageoverthe 5 daysthe EET ratios for site 1 and 2 were estimated by TSEB te(83 and
0.35, respectively Although observations of E/ETrea not available to validate the TSEB
estimates of partitioning,tieer studies in driirrigated vineyards report E/ET ratios of ~0.3
+0.12 (Yunusa et al., 200&erreira et al., 2012 obleteEchevera et al., 2012Kerridge ¢ al.,

2013, indicating TSB estimates of E/ET partitioning are not unreasonable.

While some level of discrepancy is expecheEiween modeldand measuikvineyard water use

due to model errors and measurement uncertajittiese are additional factors which may play a
role when tlereappears to be a fairly large difference in water consumption estimated from the
tower measurementgersusthe models, particularly with the TSEB model which tendkaee
better agreement with the tower measuremeiitse climate in this region is quétarid during

the growing season witihe drip irrigationbeingthe only water source fahe vines As a result

the water availability (or sowater contentconditionin the vine root zonplays a crucial role in

the vegetatiobiomass Therfore it is reasonable tassume there would be a strong correlation
between ET and vineAl as representate of the water availabilityn the root zoneThe spatial
variation in vine LAl is likely due to variation in the amount of irrigated water and/or vanabilit

in soil water holding capacitySpecifically,on days likeDOY 162 and 163 for thaorth field

and DOY 100 for thesouth field where there are significantlifferences betweerower
observations and TSEB estimatéisere are also large differences obsdrbetween the LAl
within the tower source area attte field average. The lower (higher) LAI of the flux tower
source area is associated with the lower (higher) daytime ET estimated from the flux tower
observationsersushe spatiallydistributedET ouput from the TSEB modelThe differences in

LAI from the source area and field amge are not large (sé@&ble7), butthey do supporthe

idea that a single measurement of water use within a vineyaaod always representative of the
total vineyard wger consumption

In a comparison of ET measurements acquiedr irrigated cotton eddy covariance, water
balance and lysimets, Kustas et al(2015 show how variability in LAlwithin the different
source areaassociated with each measurement dewiascorrelated to discrepanciégtween
the measureglaluesT. In the current study, if the ratio of the fiel@rsusflux tower source
area average LAl is used to adjust the water consumption estimates froBEir thewer
measurements for thsvo fields, in all case except ongDOY 100 at site 2 thereis closer

agreement with TSEB estimates ($eg. 11). The continued discrepancy for DOY 100 site 2
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has more to do with the fact that tBevalues from the tower site were significantly higher than
modeled (se Fig. 6) andare suspect since the ratio GfR, for much of the daytime period
ranged from 0.3 to 0.45 which are values expected for bareSsoitgnello and Friedl, 2003
This resulted in the daytime available enef@yG for the tower siteto be ~0.7 of the value
estimated by TSEBTherefore closure of the towebased ET flux did not significantly boost the
observed value for DOY 100.

With the ET distributiongrom the modelsllustrated inFig. 12, one seeshat often the tower
measurements fallgnificantly away from the center/mean of the modeled ET distributitims

is a major advantage with remote sendiaged ET approaches using high pixel resolution data
which can capture the actual vaiga in key surface conditionsegetation cover,al moisture)
affecting ET. While in most cases the LAl adjustment to the ET tower measurements improved
the agreement with model estimated field scale water consumptiocghbility of the remote
sensingbased surface energy balance models in mapphgprovides a unique tool for
identifying areas in the field potentially

micrometeorological methods.

Current operational techniques for estimating water use of crops primaglymethe crop
codficient technique bal on the FAG6 publication Allen et al.,1998. The actual ET of the
crop is estimated by first computing a reference EToYEvhich is then multiplied by the crop
coefficient (Kc). This singlecrop coefficient isoften divided (called the dual crop coefficient)
into a basal crop coefficierfKcy), which is associated with the crop transpiration and has been
related to remotely sensed vegetation indidésa(e et al., 198%nd a soil surface evaporation
coefficient (K). There & also included a &coefficient to reduce crop transpiration for a deficit
in water availability in the root zonso the expression has the form ET={Ks + Ke)ETo.
Determining k and Ks requires running a soil water balance model for the surface ahdaoe.

A recent application of this methodologyenworn and soybeatroplands is given bonzalez
Dugo and Mateog2008 where they find this reflectand®sed crop coefficient technique can
significantly overestimate ET during a prolonged doyvn geriod. There also appears to be no
consistent or universal relationship between crop oweffts and vegetation indicesdaso this
approach isiot readilytransferableo different crops and climatic conditionSgnzalezDugo et
al., 2009.
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As an examle, thespatial distributiorof Kc was computedising FAO 56 estimated Band the

ET map from TSEB from DOY 163-(g. 13). There is a significargpatialvariation in Kc due

in part to the know effect of leaf area/fractional cov@nqudhury et al., 199, which is seen in
the correlation between thecknap and LAl map oFig. 4, but there are other factors including
the vine variety anthe possibility of some level of stress in areas of the vinefatcannot be
reliably detected by this approachlsing the ET measurements from the flux towers and FAO
56 estimated Edl for the north vineyard site 1, the value af tanged from 0.55 for DOY 100 to
0.760.82 for the other days. Fdne south vineyard (site 2iKc values ranged from 0.59 for
DOY 100 t00.62-0.65 for the other days, indicating little variation i@ With vine phenology.

In contrast, the FAO 56 manual recommendsvKlues for vineyards at early, peak and end of
the growing seasoaf 0.3, 0.7 and 0.45. Clearlg, calibrationwith this agproachis required
which is not only dependent on vine variety but also on vine managemenb(uetientation

and spacing, prungj irrigation scheduling, etc.)
5 Conclusions

High resolutionmultispectraland thermaimagery obtainedby aircraft mountedsensorswvere
used tomapevapotranspiratiofET) overtwo vineyards in central California using bdtre Two
Source Energy Balance(TSEB) andsinglesourcecontextualbasedDATTUTDUT (Deriving
Atmosphere Turbulent Transport Useful To Dummies Using Terpeyanodelwhich scales
evaporative fraction (EF) between 0 andsing only theradiometric surface temperaturéx)
extemes of cold/wet and hot/dry pixels in the remotely sensed.s¢amegudy focusedon five
aircraftoverpasslatesDOY 100, 162, 63, 218 and 219)verthe vine growing season in 2013.

Componentsoil and canopytemperature from TSEB agree well with the airbornebased
observationderived within the fluxtower sourcearea yielding diason the ordeof 0.5€C and
a RMSD-value ~2.5 °C for both soil/cover crop and vine canopy temperaturestantaneous
and dagime integrated lfixes from the TSEB and DATTUTDUT modealwere validated with
flux tower measurementsThe TSEB modelwas able to derivesatisfactory estimates of both
instantaeousand daytime sensible heat fluk)( and latent heat flux (LE) for all the five
overpass dateswhile overall the DATTUTDUT model output of H and LE were in less

agreement with the tower measurements, particualrlp@y 162 and 21%verpass dates
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Spatial distributions ofevaporative fractionEF, and daytime ET from the two modelgere
compared for all the fiveverpasdates While the spatial patterns of relatively high and low
values ofEF mapped byTSEB and DATTUTDUTfor the two vineyard fieldsveresimilar, the
magnitudeand range irthe EF valueswere quite differert on certain days Specifically, the
distributions of EF values from DATTUTDUT often yieldeda wider range due to the
requirement that each image contdfiisatthe extremes of potgial and ET=0 This resulted in
EF and daytime ETagnituides and spatial patterns generated bywbemodelsbeingfairly
similar on DOY 100 163 and 218, whildavinglarge discrepancies on OY 162 and 219In
general, intecomparisons between therformance of TSEB and DATTUTDUT using high
resoultion (metescale) data terd to yield conclusionsconsistentwith results fromprior
studiescomparing TSEB withsinglesource modeslbased orcontextualscalingof maximum
and minimum ETusing moderate esolution data (see.g., French et al., 2005 2015
Timmermanset al., 2007; Choi et al.,, 2009 With a morephysicaly-basedtwo-source
formulations explicitlytreaing soil and vegetatioenergy and radiation exchangasd reliable
Trdatg the TSEB malel isfairly robust and able to deriveliableET patterns at sukield scale
under a wide range @nvironmentakconditions. The performance of DATTUTDUT model
computing reliableET and generating distributions and patterns over the vineyeadsimilar
to TSEB on some of the overpass dates, but for other timeD&ETUTDUT model
performanceavasless than satisfactofgrgely depending on whethtitere actually existd pixels

in the scene thatvere representative of thextremeET conditions, namglfi ma x i nEd@ mo
(LE=RN-G) andno ET (LE= 0).

Differences in daytime ET estimat from the two modelsdirectly contribute to the

discrepancies in fieldcale water use estimates, which on certain days was quite significant. The

discrepancies in field scaleater consumption calculatioffdm the two models ranged fro&%
to 33%, whichtranslate to differences in field scale water use between the two models ranging
from approximately68 to 899kiloliters. Field-scale vater consumptiomstimatedrom TSEB

agreed more closely with estimates based on tower @Eervations, while DATTUTDUT

tended to estimate higher water use. Disagreement between modeled and measurements is partly

due to the difference with LAI of the tower source area and the whole fieldgevekarge
differences inwater use occurred when source area LAl failed to represent thaveldge A

simple adjustment using the ratio of average LAI from the field and the tower soeacgreatly
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reduced the discrepancy with th@EB model outptt Comparsion between tower measured ET
and ET distributios from the modelsshows that tower measuremegenerally do not have a

value thats representative of theenter/mean of the modeled ET distributions.

Compared with water consumption informatjmovided by flux tower observation$ettype of
spatially-distributed ETinformation provided by thermddasedenergy balancenodels has clear
advantages, grticularly when imagery is dine pixel resolution. ET observed by flux tower is
sampling a reltively small area of the field, while the ET models with Tireimagery can
provide spatiallydistributed water use information over the entire vineyard and consequently
identify the spatial distribution of plant water status, a required input for pracigiigation
systems Two-souce schemes like TSEB are able to provide reliable ET estimation as thell as
partitioning betweenE and T since the model explicitly parameterizes the radiative and
convective exchanges betwethe soil and canopy systems.

However,the senstivity analysis indicates that higlality Tr input data are needed for TSEB.
The DATATTUDUT mntextualscalingapproachwith automatic pixel selection, it sensitive

to errors inTr and requirs only very basic information as modaput, making itrelatively easy

to apply operationally Nevertheless, such ors®urce approaches fail to providstimates of the

E and T partitioning and the ET estimation at least for DATTUTDUT can be sensitive to

domain size and spatial resolutioredo the simple modg@arameterizations

With UAV technology rapidly developing to provide remote sensing products in near real time
(Berni et al, 200%) , the DATTUTDUT schemecan provide real tim&T maps at sulfield

scale that will in many cases yiaigliable patterns, but not in all cases appropriate magnitudes in
ET. In cases where the landscape is aerodynamically rough and dry, an adjustment te the end
member selection for thBATTUTDUT scheme appears to be necessaignifnermans et al.,
2015. If routine highresolution imagery from UAVs become operational, hybrid
methodologyintegratinga very simple ET modeDATTUTDUT) with a more robust modeling
scleme (TSEB)should be developedMoreover, to ensure continuous and reliable daily water
use ad vegetation stress monitorimgcorporating the crop coeffcient based technique linked to
a water balance modelith the thermabased ET approach usimigta assimilatiolhas shown
utility and addresses to a large extent the shortcomings in estimatiayigpdhe crop

coefficientand the impact of plarstresgNeale et al., 2012
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1 Tables'

2 Table 1. Flight and pixel resolutiorinformation concerningthe images obtained from the

3 airborne campaigns.

Original gatialresolution (m)  Flight height

IOP Date (DOY) Flight time (UTC) Multispectral Thermal (m)
1 April 10 (100) 18:2918:43 0.09 0.7 430
2 June 11 (162) 18:2018:26 0.05 0.42 240
2 June 12 (163) 21:1121-16 0.05 0.38 240
3 August 6 (218) 18:3418:37 0.1 0.66 480
3 August 7 (219) 18:4618:49 0.1 0.65 480
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Table 2. Difference satisticsdescribing comparisonsetween modeled fkes from TSEB and

DATTUTDUT at the overpass timend observations (original awdth adjustments using the
RE and BR methaifor energy balance closyii@Vv m?).

_ DOY Mean TSEB DATTUTDUT DATTUTDUT
Site Flux No. Obs _ (5 m pixel res. _ (5 m pixel res.) _(natlveplxel res)
' " Bias MAE RMSD Bias MAE RMSD Bias MAE RMSD

Rn 5 593 0 26 33 -43 64 66 -61 61 65
G 5 85 5 28 33 -18 35 40 -24 35 38
Sj H 5 195 13 37 42 48 53 68 41 57 68
|1te LE 5 268  -63 70 87 -117 117 150 -123 139 157
LEre 5 313 -18 32 37 -73 76 105 -78 100 106
Her 5 215 33 55 62 68 71 89 61 76 91
LEer 5 293  -38 50 58 -92 94 125 -98 119 129
Ra 5 590 6 15 23 -19 26 27 -40 40 42
G 5 132 41 43 59 6 47 61 12 42 55
Site H 4 195  -23 43 45 8 31 39 21 53 59
5 LE 4 186  -90 90 102 -106 106 119 -149 149 163
LEre 4 253  -23 43 51 -38 55 63 -81 90 101
Her 4 231 13 33 48 44 59 68 57 81 90
LEgr 4 217  -59 61 77 -74 77 93 -117 117 136
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Table 3. Difference satistics describing comparisonsetween modeled daytime fluxesom
TSEB and DATTUTDUT modl and observations (original amdth adjustments using thRE
and BR methog) (MJ m2 dl).

_ DOY Mean TSEB DATTUTDUT DATTUTDUT
Site  Flux No. Obs (5 m pixel res.) (5 m pixel res.) (native pixel reg.
' " Bias MAE RMSD Bias MAE RMSD Bias MAE RMSD

R-G 5 150 -05 0.7 09 -12 1.2 15 -1.2 14 1.6
H 5 44 -10 1.2 14 -01 1.0 1.2 -0.1 1.2 1.3
Site LE 5 85 -1.6 1.6 1.8 -3.2 3.2 3.6 -3.1 3.2 3.6
1 LEre 5 106 0.5 1.0 11 -1.1 14 1.9 -1.0 1.9 2.0
Her 5 9.9 4.4 4.4 51 54 5.4 6.1 5.4 5.4 6.0
LEer 5 51 -49 49 54 -6.6 6.6 7.1 -6.5 6.5 6.9
R-G 5 139 -14 15 19 -11 15 2.3 -1.7 2.0 25
H 4 52 -1.8 1.8 2.2 -0.8 11 1.3 -0.3 11 1.3
Site LE 4 6.2 -2.6 2.6 29 31 3.1 3.5 43 4.3 4.6
2 LEre 4 8.8 0.0 1.7 1.7 -0.5 1.7 1.8 -1.6 2.2 2.3
Her 4 7.6 0.6 1.9 1.9 1.6 1.6 1.8 2.1 2.1 2.3
LEgr 4 6.4 -24 3.0 34 -29 2.9 34 40 40 4.2
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Table 4. Difference statistics for daytime ET (MJ3rd?) extrapolated from instantaneous

estimates using observed available enekg¥pbs A) from flux towers versus using incoming

solar radiation measuremeng)(

<i St TSEB DATTUTDUT
e a Obs.A S Obs.A S

Bias 05 1.4 ER 3.4

Site 1 MAE 1.0 1.4 1.4 3.4
RMSD 1.1 16 1.9 41

Bias 0.0 08 05 1.3

Site 2 MAE 1.7 15 17 13
RMSD 1.7 1.8 1.8 1.8
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2
3

Table 5 Difference statistics comparing instantaneous output of LE from TSEB and

DATTUTDUT with current DATTUTDUT algorithms for estimating the available energy versus

using the estimates from TSEB.

TSEB

DATTUTDUT usingR,

Site  Flux DN%Y '\éiin DATTUTDUT (5m) ™ 514G from TSEB
' " Bias MAE RMSD Bias MAE RMSD Bias MAE RMSD

H 5 195 13 37 42 48 53 68 52 59 75

LE 5 268 -63 70 87 -117 117 150 -101 101 123

Stel LEre 5 313 ~-18 32 37 73 76 105 -56 56 77
Mee 5 215 33 55 62 68 71 89 72 77 96

LEek 5 293 38 50 58 92 94 125 -76 76 97

H 4 195 23 43 45 8 31 39 1 30 37

LE 4 186 -90 90 102 -106 106 119 -114 114 123

Ste2 LEre 4 253 23 43 51 38 55 63 -47 47 59
Mee 4 231 13 33 48 44 59 68 37 46 62

LEee 4 217 59 61 77 74 77 93 83 83 95
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1 Table®6. Statistics describing EF and daytime ET produced by TSEB and DATTUTDUT over the north and south vineyards for each

2  sensitivity test described in the text.

Tr of extreme

Model ~ Cases  Input setting limits (€ ) EF Daytime ET (mm)
Tmax Tmin Meart Med? Std3 Max* Min.® Mean Med. Std. Max. Min. RMSD?
TO Original Input - - 06l 062 012 091 001 43 44 10 68 01 06
TSEB T1 Trt3 ; - 046 048 014 080 002 32 33 11 59 01 20
T2 Tr-3 - - 073 074 011 099 002 53 53 10 76 01 03
DO Original Input  54.7 31.4 067 067 011 1 0 45 45 13 89 0 05
D1 Trt3 577 344 067 067 011 1 0 44 43 12 87 0 06
D2 Tr-3 517 284 067 067 011 1 0 47 46 13 91 0 04
D3 Tmax+1 557 314 068 068 011 1 004 47 46 12 89 01 04
DATTUTDUT D4 Tmin-1 547 304 064 064 011 09 0 43 42 12 83 0 08
D5 Whole Area 584 234 055 055 008 077 011 34 33 08 59 03 1.6
D6 Native Resoluton 585 257 0.62 0.64 017 1 0 42 42 18 93 0 07
D7 Whole Aeaand ¢, 553 057 058 013 087 007 36 36 14 74 02 1.3

Native Resolution
IMean: mean of the EF or ET distribution

°Med.: median of the EF or ET distribution
3Std.: Standard deviation of the EF or ET distribution

“Max.: Maximum value of the E6r ET distribution
5Min.: Minimum value of the EF or ET distribution
®RMSD: the RMSD of the modeled daytime ET at Site 1 and Site 2, RMGDsM1)%+ (0-My) Z/2} /2,

© 00 N o 0o b~ W
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Table 7. Average leaf area index (LAI) estimated for the flux tower source anedditprint

versus the whole field derived from the aircraft imagery (NDVI relationship with LAI). The LAI
values in bold are associated with the days where differences in water consumption estimated by
TSEB versus using the tower measured ET are signffior site 1 (North vineyard) and site 2

(South vineyard).

. LAl

Site DOY Source Area Whole Field
100 1.3 1.3
162 2.0 15

1 163 1.8 15
218 1.6 1.5
219 1.7 1.5
100 1.7 1.9
162 1.5 1.5

2 163 1.5 1.5
218 1.2 1.2
219 1.3 1.2
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Figure 1. Location of study area overthbn afalse color composite of nearfrared (NIR), red,

and green bands with 0.1 m spatial resolution (a) and thermal band with 0.66 m spatial resolution
(b) obtained by aircraft oAugust § DOY 218,2013. In he visible band image (a), red and

gray colors denote the vine and bare g¢sénescent cover crop in the intew, respectively,

while in the thermal band image (b), blgeeenand yellowred colors represent vine and bare
soil/'senescent cover crop in theerrow, respectively The blackline denotes thbéoundaryof

north and south fields, and thkie stars are the locations of the flux tower sit€he twophotos

of the north and south fields (c and d) were taken on June 11 ira@tdines had fully leafed

out.
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Figure 2. Comparison between observfd) and modeled i) visible band reflectance. The
statistics(for the sample siza=54) listed in the figure aréhe Bias( FO-M)/n), mean absolute
error (MAE=E ®-M|/n) and rootmean square difference (RMSD=[E(O-M)%n]*?) where the

symbolE representa summatiorover the sample size
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Figure 3. Validation of the LAI~NDVI relation using thgroundbasedLAl measurements on
DOY 163 and 218.
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Figure 5. Comparison between model&gandT. from TSEB andralues extracted from the

aircraft imageryon the fiveacquisitiondays. All the statistics (Bias, MAE and F8D) have

units of T .
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Figure 6. Scater plot of observed and modeled fluxes fr@anTSEB (5 m pixel resolution),(b)
DATTUTDUT (5 m pixel resolution) and (APATTUTDUT (native pixel resolutionjat the
aircraftoverpass timéor the five days in 2013. The observddand LE use th&®E methodor

energy balance closureNote for DOY 162, there were no flux data from site 2 due to an EC
sensor malfunction.
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Figure 7. Scatter plot of observed and modeled daytime fluxes f(@mTSEB (5 m pixel
resolution), (b) DATTUTDUT (5 m pixel resolubn) and (c)DATTUTDUT (native pixel
resolution)for the five days in 2013. The observed energgnponerd are adjusted for energy

balanceusing theRE method.
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