
1 
 

A comprehensive evaluation of input data-induced 1 

uncertainty in nonpoint source pollution modeling 2 

L. Chen1, Y. Gong2, and Z. Shen1,* 3 

1. State Key Laboratory of Water Environment, School of Environment, Beijing 4 

Normal University, Beijing 100875, P.R. China 5 

2. Key Laboratory of Urban Stormwater System and Water Environment, Ministry of 6 

Education, Beijing University of Civil Engineering and Architecture, Beijing, China 7 

100044. 8 

Corresponding author: Zhenyao Shen Tel/fax: +86 10 58800398. 9 

E-mail address:zyshen@bnu.edu.cn; chenlei1982bnu@bnu.edu.cn 10 

11 

mailto:zyshen@bnu.edu.cn
mailto:chenlei1982bnu@bnu.edu.cn


2 
 

Abstract 12 

Watershed models have been used extensively for quantifying nonpoint source (NPS) 13 

pollution, but few studies have been conducted on the error-propagation from 14 

different input data sets to NPS modeling. In this paper, the effects of four input data, 15 

including rainfall, digital elevation models (DEMs), land use maps, and the amount of 16 

fertilizer, on NPS simulation were quantified. A systematic input-induced uncertainty 17 

was investigated using watershed model for phosphorus load prediction. Based on the 18 

results, the rain gauge density resulted in the largest model uncertainty, followed by 19 

DEMs, whereas land use and fertilizer amount exhibited limited impacts. The 20 

simulation errors, in terms of coefficient of variation, related to single rain gauges-, 21 

multiple gauges-, ASTER GDEM-, NFGIS DEM-, land use-, and fertilizer amount 22 

information was 0.390, 0.274, 0.186, 0.073, 0.033 and 0.005, respectively. The use of 23 

specific input information, such as key gauges, is also highlighted to achieve the 24 

required model accuracy. In this sense, these results provide valuable information to 25 

other model-based studies for the control of prediction uncertainty. 26 

27 
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1. Introduction 28 

Nonpoint source (NPS) pollution has become the major obstacle in sustaining 29 

high-quality water supplies in developed countries, such as the United States, as well 30 

as in developing countries, such as China (Zheng et al., 2011). Hydrological models, 31 

such as the Agricultural Non-Point Source Model (AGNPS) and Soil and Water 32 

Assessment Tool (SWAT) (Arnold et al., 1998), provide important tools for 33 

quantifying NPS loads and understanding their perturbations to water quality. 34 

Nevertheless, due to the complexity of watershed systems and substantial 35 

requirements for input data, uncertainty becomes an inevitable part of model-based 36 

research and thus management plans (Beven, 2006; Xue et al., 2014). Typically, 37 

model uncertainty comes from its structure, parameter choice and input data. 38 

Structure uncertainty results from incomplete knowledge of watershed processes or 39 

different assumptions during model setup, whereas parameter uncertainty arises due 40 

to the imprecise representation of parameter ranges and distributions. In addition, 41 

input uncertainty is generated from simplification in natural randomness and 42 

temporal-spatial data variability and would be inevitably propagated to model output 43 

errors. 44 

Model inputs typically include spatial data, such as spatial precipitation input, digital 45 

elevation models (DEMs), land use maps and soil maps, as well as attribute data, such 46 

as fertilizer amount (Shen et al., 2013a). The uncertainty of spatial data, typically in 47 

the forms of GIS maps, is derived from many factors, including the quantity of 48 

available images, the resolution for the data that were captured, and the choice of 49 

interpolation techniques (Wu et al., 2005). Rainfall plays a crucial role in runoff 50 

production and mass transport so its reliability has been considered as major factor for 51 

the accuracy of hydrological models (Andréassian et al., 2001; McMillan et al., 2011). 52 

Traditionally, the rain station is the fundamental tool for representing spatial 53 

distribution of rainfall within a watershed (Andréassian et al., 2001). Designing the 54 

proper location, number and density of rain-gauge stations is important to 55 

hydrological research (Duncan et al., 1993). Studies have explored the impact of 56 
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heterogeneous rainfall data on parameter estimation and model outputs and concluded 57 

that large bias could be expected if detailed variations in the rainfall data are not 58 

considered (Strauch et al., 2012). 59 

As another important GIS data, a DEM is used to extract surface characteristic 60 

parameters, such as watershed boundary, slope, and thus flow direction, so its 61 

resolution influences model outputs (Lin et al., 2013; Wellen et al., 2014). Studies 62 

have noted that coarser DEMs smooth watershed slope and thereby reduce the 63 

simulated peak flow or sediment yields (Zhang et al., 2014). It is also shown that 64 

nitrogen output decreased with the decreased DEM resolution, while a decreased 65 

DEM resolution does not always resulted in decreased total phosphorus (TP) 66 

(Chaubey et al., 2005). In this sense, the question about whether higher-resolution 67 

data would always lead to better model performance should be considered first (Shen 68 

et al., 2013). One of the interesting results from Chaplot’s (2005a) work is that there 69 

exists a spatial resolution saturation level, beyond which further refinements to 70 

resolution do not improve model performance. In the meantime, GIS data may be 71 

available from alternative sources; therefore, another question is which specific data 72 

set should be used. For example, land use maps could be obtained from federal, state 73 

and local government agencies, whereas county and local governments are developing 74 

detailed datasets (Shen and Zhao, 2010; Han et al., 2014). Land use maps for a 75 

specific point in time, typically obtained by interpreting remote sensing data, are often 76 

used, and possible changes in land uses during that specific period are not considered 77 

(Mango et al., 2011; Pai and Saraswat, 2013). These statistical or modeling analyses 78 

have demonstrated that the land use changes affect hydrological characteristics, which 79 

further alter the occurrence of soil erosion and transport of the NPS pollutants. 80 

Despite the research progress described above, input-induced uncertainty remains a 81 

significant challenge due to various input data, which largely limits the applicability 82 

of watershed models. For example, model-based programs, such as Total Maximum 83 

Daily Loads (TMDLs), are often criticized for their inadequate consideration of input 84 

uncertainty (Chen et al., 2012). First, there is relatively more uncertainty research 85 

about hydrological processes (Beven, 2006; Balin et al., 2010; Vrugt et al., 2008) but 86 
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less on NPS pollution (Chaplot et al., 2005a; Chaplot, 2005b; Gassman et al., 2007; 87 

Wellen et al., 2015). These studies have showed the input uncertainty is propagated 88 

through the watershed model, to some extent, to sediment modeling and then 89 

carry-over and magnify into pollutant simulation. Uncertainty is currently considered 90 

as one of the core dilemmas in watershed studies, especially in the field of NPS modeling. 91 

Second, the sensitivity of watershed models also depends on how well attribute data 92 

aggregation describes the relevant characteristics of human management. For example, 93 

the SWAT assumed P could be added onto the soil in the form of fertilizer or manure, 94 

and specific attribute data include the timing of fertilization, the type and amount of 95 

fertilizer/manure, and the distribution of the soil layer. Thus, it is useful to understand 96 

the assumptions of these attribute data and how these assumptions will likely impact 97 

the model results. Third, previous studies have not evaluated the relative contribution 98 

of each input data set so a strategy on how to reduce input uncertainty cannot be 99 

formulated in a cost-effective manner (Munoz-Carpena et al., 2006). 100 

The main objective of this paper is to conduct a comprehensive assessment of 101 

input-induced uncertainty in TP modeling. Four key types of input data, i.e., rainfall, 102 

topography, land use and fertilizer amount, are analysed, and their uncertainties are 103 

quantified. The uncertainties related to these input data are then compared. 104 

2. Materials and Methods 105 

2.1 The description of the study area 106 

The Upper Daning River Watershed, which is located in the Three Gorges Reservoir 107 

Area of China, was selected as the studied watershed (Fig. 1). This watershed, 108 

covering an area of 2,421 km2, is characterized as being located in a northern 109 

subtropical monsoon climate with an annual mean rainfall of 1,182 mm (ranging from 110 

761 mm to 1,356 mm). This watershed is very mountainous with elevations ranging 111 

from 200-2605 m. The primary land uses in this watershed are forest (61.8%), arable 112 

land (25.3%), and pasture (12.5%), and yellow-brown earths (26.5%), 113 

yellow-cinnamon soils (16.9%) and purplish soils (14.5%) are the dominant soil types.  114 
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More information about the study area are referred to Shen et al., (2012a, 2013a, b). 115 

Based on the characteristics of the river system, the studied watershed was broken 116 

into six drainage regions: Dongxi river, Xixi river, Baiyang river, upper region of the 117 

Wuxi hydrological gauge, Houxi river, and upper region of the county boundary 118 

(watershed outlet). As illustrated in Fig. 1, the corresponding outlets of are referred to 119 

as DX, XX, BY, WX, HX, and CF, respectively. In this study, TP was evaluated as P 120 

was recognized as the key limiting factor of eutrophication in this region. 121 

2.2 Model description 122 

In this study, the SWAT model, as a commonly-used watershed model, was used for 123 

NPS-TP modeling. The studied watershed was partitioned into 22 sub-watersheds 124 

from a constructed DEM and each sub-watershed is then divided into hydrologic 125 

response units (HRUs) by designing their homogeneous slope, soil, and land use. The 126 

SWAT-CUP software (Abbaspour et al., 2007) was applied for model calibration and 127 

validation. The measured water quality and flow data were obtained from the 128 

Changjiang Water Resources Commission as well as local government. Thereafter, 129 

the SWAT model was calibrated and validated using the initial input data (Shen et al., 130 

2012a), and the propagation error from input data to model outputs was quantified by 131 

changing the available datasets while keeping the calibrated parameters fixed. The 132 

model outputs were simulated flow amount, sediment load, and TP load, which were 133 

predicted at a monthly step because only monthly measured TP were available in this 134 

area. 135 

2.3 Generation of input-induced uncertainty 136 

Errors introduced by rainfall data, DEMs and land use maps were analyzed. The 137 

influence of soil type maps was not analyzed, because only one soil map data (coarse 138 

resolution at 1:1000000) was available for the study region. These GIS data are the 139 

most frequently used in hydrology and NPS modeling in the Yangtze River 140 

Watershed and other areas of China. The errors related to fertilizer amount were also 141 

investigated due to the lack of detailed farm-scale data. 142 
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2.3.1 Spatial data 1: Rainfall data 143 

In this study, rainfall datasets were collected from twelve rain gauges located within 144 

the watershed boundary and two outside stations that were within approximately 10 145 

km of the watershed boundary were also used (Fig. 1). The rain gauge falling within a 146 

given sub-catchment is identified using the GIS software. The annual mean rainfall 147 

recorded by these rain gauges is listed in Table 1. Previous studies have demonstrated 148 

rainfall uncertainty comes from the lack of representative rain gauges and then the 149 

need to interpolate the rainfall data between rain gauges (Andréassian et al., 2001; 150 

McMillan et al., 2011). Our previous study (Shen et al., 2012a) has already focused on 151 

the impact of interpolation methods on the spatial rainfall heterogeneity so we focused 152 

on the representativeness of rainfall stations. In this sense, rainfall data-induced 153 

uncertainty was analyzed in two steps: 1) the dataset of each rain gauge was used as 154 

inputs for the SWAT model separately, and the model performances were ranked 155 

based on the Nash–Sutcliffe efficiency coefficient (ENS) values for single gauge 156 

simulations; 2) random combinations of m rain gauges (m ranged from 2 to 12) were 157 

generated and used as SWAT inputs. The expected rainfall spatial distributions were 158 

only generated by the centroid method was selected because it was the current 159 

approach incorporated into the current version of SWAT model and the easiest to 160 

apply (Shen et al., 2012a). 161 

2.3.2 Spatial data 2: DEMs 162 

In this watershed, two DEM sets were available for NPS modeling: 1) the National 163 

Fundamental Geographic Information System of China DEM (NFGIS DEM) and 2) 164 

the ASTER GDEM. Specifically, the NFGIS DEM was acquired in 1998 from a 165 

topographic map with a resolution of 90 m, whereas the ASTER GDEM was created 166 

by a satellite-borne image that covered the surface land at a resolution of 30 m (Shen 167 

et al., 2013a). To study the impact of data resolution on NPS simulations, both DEMs 168 

were converted to coarser ones using the resample function of ArcMap. Finally, four 169 

NFGIS DEM maps (90*90 m, 120*120 m, 150*150 m and 180*180 m), and ten 170 
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ASTER GDEM maps (30*30 m, 40*40 m, 50*50 m, 60*60 m, 70*70 m, 80*80 m, 171 

90*90 m, 120*120 m, 150*150 m and 180*180 m) were obtained. 172 

2.3.3 Spatial data 3: Land use maps 173 

As discussed above, land use data available for the modeling effort will likely come 174 

from numerous sources; therefore, an assessment of available land use data and the 175 

time period covered by these data should be made. In this study, land use data were 176 

obtained from the 1980s (1980–1989), 1995, 2000, and 2007. Specifically, maps from 177 

the 1980s, 1995 and 2000 were interpreted from MSS/TM/ETM images by the 178 

Chinese Academy of Sciences, whereas the land use map for 2007 was created from a 179 

TM image. To substantiate the impacts of land use maps, an analytical framework was 180 

developed in two steps. Firstly, the characteristics of land use distribution during each 181 

period were analyzed according to land use type of each map. The land use statistics 182 

are shown in Table 2. Second, these four land use maps were used as model inputs 183 

and their impacts were estimated respectively using the calibrated SWAT model. In 184 

our previous study (Shen et al., 2013a), the resolution of land use data was shown to 185 

have only a slight influence on simulated NPS-P for the study region; therefore, the 186 

land use map was not resampled in this study.  187 

2.3.4 Attribute data: amount of fertilizer 188 

Traditional potato-sweet potato rotation was the most popular cropping system in the 189 

agricultural area under the slope of 15-degree, while the duration of rotations were 190 

typically half year-half year. Besides, most of the growers on the higher area 191 

(>15-degree)  panted corn,  which is becoming more and more popular due to 192 

higher returns  under recent market conditions. In our analysis, we studied the 193 

impacts of fertilizer and did not attempt to change the rotation pattern or introduce 194 

alternative crops. Attribute data, including crop planting time, irrigation, fertilization, 195 

and tillage, were mainly obtained from the agricultural bureau and local farmers; 196 

therefore, these data only reflect the average information at an average level. In this 197 

sense, there were inevitable differences in management practices among farmers; 198 
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therefore, the use of this average information might result in fertilizer amount errors. 199 

In this analysis, the errors in the recorded amount of fertilizer applied was also treated 200 

as input uncertainty. Based on our limited local investigation, the initial annual 201 

applied urea and compound fertilizer was set as 450kg/ha and 300kg/ha for the 202 

potato-sweet potato rotation, while 150kg/ha and 225 kg/ha for the corn system, 203 

respectively. A survey conducted by local agricultural administration revealed that the 204 

error or standard deviation in the record fertilizer amount was 5%, which was based 205 

on a statistical analysis of historical fertilizer data. Because there was not enough 206 

information available regarding the distribution of the fertilizer, normal distribution 207 

was used in this study. Using the Monte Carlo technique, these errors were generated 208 

by sampling stochastically from a normal distribution expressed as 2~ ( , )X N   , where 209 

  and   are the recorded amount of fertilizer and the standard deviation (SD), 210 

respectively. The Latin Hypercube sampling technique, which employs a constrained 211 

sampling scheme instead of random sampling, was applied to ensure a sufficient 212 

precision of sampling. To cover 99.7% of the error range, the sampling range was 213 

designated as 15% from the initial amount of fertilizer and 5,000 model runs were 214 

conducted. 215 

2.4 Analysis of the model results 216 

This study focused on error-propagation from input data to NPS-TP predictions (the 217 

sum of organic P and mineral P) at the WX for the period from 2000 to 2007. First, 218 

the sensitivity of simulated TP to each input data was quantified in the form of 219 

summary statistics, such as the SD and the coefficient of variation (CV). Specifically, 220 

the CV, which is a normalized measure of dispersion of a probability distribution, is 221 

defined as a dimensionless number by quantifying the ratio of the SD to the MV. 222 

Compared to SD, the CV is more appropriate for comparing different data sets; 223 

therefore, it was used as the main approach for expressing uncertainty in this study. 224 
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where ,mea ix  and ,sim ix  is the simulated and measured data for the ith pair, 233 

respectively, meax  represents the mean value of the measured values, and n is the 234 

total number of paired values. 235 

In this study, model structure was fixed and model uncertainty will stems 236 

predominantly from input errors. Based on the performance ratings by Moriasi et al. 237 

(2007), 0.5 was judged as a reasonable ENS value for TP simulation so a threshold of 238 

ENS≥ 0.5 was defined to select acceptable SWAT runs (Liu and Gupta, 2007). In the 239 

next step, behavior input data (ENS≥0.5), which refer to the phenomenon of 240 

equifinality and can be representative of a watershed system (ENS≥0.5), were grouped 241 

to express the prediction uncertainty by using a multi-input ensemble method. Finally, 242 

input-induced model uncertainty was generated via sampling from the output 243 

distributions that are generated from these effective input datasets. 244 

3. Results 245 

3.1 Calibration and validation 246 

As shown in Table 3, for the flow simulation, the ENS were 0.66 and 0.89 in the 247 

calibration and validation periods, respectively. The ENS values were 0.73 and 0.67 for 248 

sediment during the calibration and validation periods, and 0.75 and 0.46 for TP. 249 

More details about the final SWAT parameters can be found in our previous studies 250 
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(Shen et al., 2012a; Shen et al., 2013a). Compared to the SWAT performances 251 

complied by Moriasi et al (2007), the accuracy of flow prediction could be judged as 252 

very good, while the sediment and TP simulations were judged to be satisfactory. 253 

3.2 Sensitivity of each input dataset 254 

To determine the sensitivity of each input dataset, the degree of uncertainty of 255 

simulated TP was illustrated in Fig. 2. As shown in Fig. 2a, the annual mean CV 256 

ranged from 0.284 (2006) to 0.587 (2003), indicating there were significant 257 

uncertainties if only the dataset of single rain gauge was used as model inputs. The 258 

ENS values for each rain gauge are 0.70 for XN, 0.49 for LM, 0.39 for TF, 0.38 for SY, 259 

0.31 for WX2, 0.07 for WX, 0.06 for WG, 0.02 for XJB, -0.07 for ZL, -0.12 for CA, 260 

-0.68 for GL, and -2.87 for JL. This indicates that most of the ENS values were low, 261 

especially for ZL, CA, GL and JL because no rainfall data were recorded in these 262 

gauges for the period from 2000 to 2003. These rainfall stations were ranked based on 263 

the ENS values, and combinations of m rain gauges (m ranged from 2 to 12) were used 264 

as SWAT inputs. As shown in Fig. 2b, using data from multiple rain gauges as inputs, 265 

the CVs ranged from 0.098 (2006) to 0.433 (2000), suggesting that TP simulations are 266 

sensitive to the density of rain gauges. The model performance, in terms of ENS, 267 

improved when the number of rain gauges increased from 2 to 5. However, a plateau 268 

was reached at approximately 6 gauges. 269 

Using NFGIS DEMs (Fig. 2c), the CV values were found to be low with an annual 270 

mean CV of 0.026–0.119, but the CV values were higher using ASTER DEMs (Fig. 271 

2d), with CV values ranging from 0.105 to 0.383. Fig. 2e shows the statistical 272 

analysis using different land use maps. Compared to the input data presented above, 273 

the annual mean CV values, which ranged from 0.009 to 0.036, were relatively low. 274 

Besides, as shown in Fig. 2f, the simulated TP showed only slight variation related to 275 

the errors in the amount of fertilizer, with mean CV values of 0.003-0.008.  276 

Finally, a multi-input ensemble method was used for a comprehensive evaluation of 277 

input-induced model uncertainty. As shown in Table 4, the annual CV values of 278 

simulated TP ranged from 0.101 to 0.271, indicating a temporal variation for the 279 
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period from 2000 to 2007. The ensemble of input-induced outputs was also 280 

determined for all six given outlets. As illustrated in Fig. 3, the annual mean CV 281 

values were 0.190 for XX, 0.088 for DX, 0.206 for HX, 0.162 for BY, 0.168 for WX 282 

and 0.135 for CF. 283 

4. Discussion 284 

4.1 Comparison between different input data-induced uncertainty 285 

Table 4 gives a clear comparison between different types of input data. For the given 286 

catchment and rainfall characteristics, rainfall input is identified as the most important 287 

factor in NPS simulation, whereas rain gauge density is the most important source 288 

contributing to the overall uncertainty. The results from the statistical analysis are 289 

reasonable as rainfall is the major driving force of runoff generation and therefor the 290 

transportation of NPS pollutants (Andréassian et al., 2001; McMillan et al., 2011). As 291 

shown in Table 1, rainfall data varied substantially among different gauges, with a 292 

933-mm difference between the highest and lowest annual rainfalls. This finding 293 

agrees with previous research (Strauch et al., 2013) in which the rainfall input was 294 

averaged across the watershed by a single rain gauge, but failed to adequately reflect 295 

spatial rainfall variations. This can be attributed to the SWAT rule for quantifying the 296 

sub-watershed rainfall, in which rainfall data from the closest gauge is selected as 297 

inputs for each sub-watershed. In cases where a sub-watershed contains no rain 298 

gauges, the centroid is used to find the nearest gauge and its data are substituted for 299 

the sub-watershed rainfall. Another reason might be the use of the same parameter set 300 

in all simulations. Bardossy and Das (2008) found that fewer gauge simulations might 301 

produce similar results when compared with those obtained by more rain gauges due 302 

to the compensation effect from calibration. If the model had been re-calibrated to 303 

each perturbed input set, the calibrated parameters would likely have compensated 304 

somewhat for the perturbed inputs in an effort to reproduce the observed data. 305 

However, even with the best calibration process, there is always parameter 306 

uncertainty in the model predictions due to the imprecise representation of parameter 307 

ranges and distributions; therefore, recalibration was not conducted in this study (Van 308 
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Griensven et al., 2006).  It should be noted that comparison using un-recalibrated 309 

models is useful to evaluate the differences in model predictions because calibration 310 

masks the differences that may occur as a result of the input data sets. In addition, the 311 

un-recalibrated model results can show how good each dataset predicts stream flow 312 

before calibration, which would indicate the effort required for calibration when using 313 

each data set. 314 

Fig. 2b illustrates that there were reductions in the CV values compared with the 315 

single-gauge simulations, which clearly showed that the ensemble of multi-gauge 316 

simulations outperformed the single-gauge simulations. However, no clear 317 

relationship existed between the ENS values and the rain gauge location, which is also 318 

inconsistent with a previous study. Schuurmans and Bierkens (2007) found greater 319 

model errors if gauges outside the watershed were used, but this is not the case for the 320 

present study because the outside gauges were relatively close (10 km) to the 321 

watershed boundary. Fig. 2b indicates that the use of these key gauges appear to be 322 

more informative in constraining spatial rainfall variations but simulation efficiency 323 

did not always improve when additional gauges are added. This demonstrates that the 324 

information content in rainfall spatial variation is reached after a relatively small 325 

number of key gauges are used as model input (Seibert and Beven, 2009). It is 326 

encouraging that a small number of gauges distributed more optimally and perform 327 

well for logistical reasons (Bárdossy and Das, 2008; McMillan et al., 2011). In reality, 328 

there might not be many dense rain gauge networks similar to those used for this 329 

study; therefore, the fact that spatial rainfall variation is a function of key gauges 330 

rather than all gauges would indicate a wider range of applicability. For this study 331 

area (2,421 km2), the optimal number of gauges were identified as 6 beyond which 332 

improvements to the model predictions would not be found.  333 

As illustrated in Fig. 2c and 2d, the second highest uncertainty was caused by DEMs, 334 

and the ASTER GDEM-induced uncertainty was higher than by uncertainty induced 335 

by NFGIS DEM. These higher values could be due to the following two reasons: first, 336 

NFGIS DEM was already validated in many places in China, which was not the case 337 

for ASTER GDEM (Wu et al., 2007; Dixon and Earls, 2009). In fact, ASTER GDEM 338 
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contains systematic errors; i.e., a significant number of anomalies attributable to cloud 339 

disturbances, the algorithm used to generate the final GDEM, and not applying inland 340 

water mask. Second, the initial resolution of NFGIS DEM (90*90m) was lower than 341 

that of ASTER GDEM (30*30m). In reality, those high resolution DEMs might 342 

provide better simulations, but sometimes a moderate one would be more suitable due 343 

to the nonlinearity of erosion processes and its subsequent effect on P processes 344 

(Chaplot et al., 2005a). Given the nature of ASTER GDEM, the greater degree of 345 

averaging has occurred by adding shallower slopes, and the predicted TP would be 346 

lower by increasing more infiltration and deposition of NPS-TP. In this sense, it is 347 

important to select an appropriate data source because DEMs are generated at 348 

different scales and a number of the implied watershed processes are scale-dependent 349 

(Brazier et al., 2005). Care must be taken in DEMs data resolution because their 350 

resolutions cannot be up-scaled directly. In theory, topography exerts some level of 351 

control on surface flow and thus NPS loads. Therefore, the smoothing of the 352 

landscape shape induced by coarser DEMs could result in a biased estimation of TP 353 

outputs (Dixon and Earls, 2009). It was worthwhile to parameterize the SWAT model 354 

with the extreme slopes, as these slopes controlled the fluxes of NPS-TP. However, 355 

our previous study has also demonstrated that the TP simulations would not be 356 

improved if certain resolution was reached (Shen et al., 2013a). In this sense, some 357 

balance must be found between improving the DEMs resolutions and reducing the 358 

complexity of the model utility.  359 

In contrast, land use maps and fertilizer amount resulted in low uncertainties. The 360 

result differ from those of Payraudeau et al. (2004), who found that model outputs 361 

were highly sensitive to land use changes. This could be explained by the fact that 362 

most agricultural land was redistributed to forest and other land uses in the study of 363 

Payraudeau et al. (2004), which leads to significant changes in soil compaction and 364 

ground cover. However, these low values in our study could be due to minor land use 365 

changes during the period from the 1980s to 2007. As shown in Table 2, the fraction 366 

of forest area decreased gradually from 61.75% to 54.76%, whereas agricultural land 367 

increased from 25.68% to 33.47%. Fig. 2f indicates that the fertilizer input has only a 368 
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slight impact on in-stream TP loads. This was because P application was low in this 369 

watershed with the inorganic N being applied in greater amounts and more widely. 370 

Additionally, the major forms of P in mineral soils are plant-available soluble P, 371 

insoluble forms of mineral P and organic P. According to the mechanism of the 372 

SWAT model, P would be taken up firstly by plant uptake and then by erosion, and 373 

these processes would govern the turnover rates and transport of P (Arnold et al., 374 

1998). Therefore, only a small proportion of P will finally flow into the water body as 375 

in-stream NPS-TP. In this sense, there might also be minor CV values if other 376 

representative attribute practices, e.g., tillage data, were selected. This indicates the 377 

degree of sensitivity due to single input data depends on two factors: the ratio of each 378 

individual input contribution to the total load (which is the case for management data) 379 

and the error in the individual input (which is more meaningful for land use maps).  380 

4.2 Comprehensive evaluation of input data-induced uncertainty 381 

As shown in Fig. 3, this demonstrated that input-induced uncertainty may be highly 382 

area-specific; i.e., dependent upon the scale of the drainage area and rainfall 383 

variability. For example, when multiple gauges (from 1 to 12) are used as model 384 

inputs, the simulated TP remained stable for the DX and no model uncertainty was 385 

observed. This could be due to the mechanism of SWAT, in which only the rainfall 386 

data from the closest gauge to the centroid were chosen and used as the sole model 387 

input for that specific sub-watershed. As shown in Fig. 1, there is only one 388 

sub-watershed in the DX region and the XN gauge is closest to its centroid; therefore, 389 

the rainfall data from the same gauge was used every time for this region. However, 390 

the CV values remained high for other outlets, ranging from 0.187 (CF)–0.448 (XX), 391 

suggesting that rain gauge density indicated different impacts under different spatial 392 

scales of drainage areas. In addition, using different DEM data, the CV values were 393 

relatively low for XX, DX, WX and CF, with an annual mean CV of 0.022–0.055, but 394 

the CV values were relatively high for HX and BY, with values of 0.152 and 0.136, 395 

respectively. This could be explained by the fact that there are more mountainous 396 

areas along XX, DX, WX and CF; therefore, the generated topography in these 397 
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regions, such as the watershed boundary, surface slope and other characteristic 398 

parameters, could be extracted more easily by DEM data. 399 

These results pose two significant scientific challenges for TMDLs. First, as model 400 

uncertainty is difficult to quantify, the margin of safety (MOS) was often arbitrarily 401 

assumed as 10% error. However, as shown in Table 4, this assumption is not highly 402 

related to the reliability of the model system and supported the quantification of 403 

TMDLs poorly. Specifically, ccompare to our previous studies (Shen et al., 2012b), 404 

the uncertainties caused by input errors were greater than those resulting from model 405 

parameters in 2001, 2005, and 2007, whereas uncertainties caused by inputs were 406 

lower in the remaining years. Overall, the mean CV (0.168) for input-induced TP 407 

uncertainty was slightly higher than that (0.156) for the parameter uncertainty, which 408 

agrees with previous studies (Kuczera et al., 2006). Therefore, input data uncertainty 409 

is critical in NPS modeling and efforts should be made to clarify this type of 410 

uncertainty. Second, as illustrated in Fig. 3, the input data-induced uncertainty varies 411 

considerably temporally and spatially due to the varying climate, underlying 412 

topography, land use, soil type, and management (Shen and Zhao, 2010; Chen et al., 413 

2012). In this sense, a site-specific MOS, which might be more robust to any 414 

particular sequence of input errors than current steady MOS, should be defined as a 415 

priori. 416 

5. Conclusions 417 

In this research, the impacts of four different input data types, including rainfall data, 418 

DEMs, land use maps, and amount of fertilizer, on NPS modeling were quantified and 419 

compared. Based on the results, input data-induced uncertainty is critical in NPS 420 

modeling and efforts should be made to decrease this type of uncertainty. For the case 421 

study, the mean CV value ranged from 0.101 to 0.271, which is slightly higher than 422 

that for the parameter uncertainty. The study indicated that rainfall input resulted in 423 

the highest uncertainty, followed by DEM, land use maps, and fertilizer amount. 424 

Therefore, measures should be taken first to reduce this source of uncertainty by 425 

adding rain gauges, modifying the selection mechanism of rain gauge in SWAT, and 426 
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using appropriate interpolation techniques. This paper also demonstrated the required 427 

input information would be reached if several key rain gauges and 428 

moderate-resolution DEMs are used. This paper provides valuable information for 429 

developing TMDLs in the Three Gorges Reservoir Area, and these results are also 430 

valuable to other model-based watershed studies for the control of model uncertainty. 431 

However, this conclusion might be only appropriate for NPS-TP and not for other 432 

pollutants, i.e., the generation and transportation of nitrogen differ substantially from 433 

those of NPS-P. Furthermore, the influence of soil type maps was not analyzed, 434 

because only one coarse soil map was available for the study region. More researches 435 

are needed if detailed input data sets are collected. 436 
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Table 1 The recorded annual mean rainfall data for each rain gauge (2000–2007) 575 

Rain gauge JL GL WG  TF ZL SY CA LM XN WX WX2 XJB 

MV/mm 1938 1648 1609  1416 1406 1358 1279 1255 1193 1079 1055 1005 

SD/mm 445 334 309  260 357 235 222 243 264 235 269 180 

MV indicates the mean value and SD represents the standard deviation 576 

577 
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Table 2 The fraction of land use types within the watershed for different periods 578 

Land use 

1980s 1995 2000 2007 

Area 

(km2) 

Percent 

(%) 

Area 

(km2) 

Percent 

(%) 

Area 

(km2) 

Percent 

(%) 

Area 

(km2) 

Percent 

(%) 

Farm land 622.5 25.68% 588.3 24.27% 613.3 25.30% 811.1 33.47% 

Forest 1496.8 61.75% 1564.8 64.56% 1498.1 61.80% 1327.1 54.76% 

Grass land 294.5 12.15% 261.5 10.79% 302.0 12.46% 267.2 11.02% 

Water 8.9 0.37% 8.7 0.36% 8.9 0.37% 11.9 0.49% 

Residential area 1.1 0.05% 0.6 0.02% 1.7 0.07% 6.3 0.26% 

 579 

580 
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Table 3 The values of ENS and R2 of the SWAT model during the calibration and 581 

validation period 582 

Variable Indicator Calibration Validation 

Flow 
ENS 0.66 0.89 

R2 0.79 0.95 

Sediment 
ENS 0.73 0.67 

R2 0.83 0.83 

TP 
ENS 0.75 0.46 

R2 0.86 0.79 

583 



26 
 

Table 4 The sensitivity of simulated TP (CV values) to different input dataset 584 

Input data 2000 2001 2002 2003 2004 2005 2006 2007 Mean 

Single gauge 0.419  0.421  0.332  0.587  0.319  0.417  0.284  0.410  0.388  

Multi-gauges 0.433  0.362  0.240  0.287  0.141  0.256  0.098  0.241  0.249  

NFGIS DEM 0.026  0.119  0.059  0.025  0.026  0.043  0.105  0.040  0.056  

ASTER GDEM 0.189  0.276  0.225  0.105  0.198  0.255  0.383  0.274  0.197  

Land use maps 0.022  0.013  0.018  0.018  0.024  0.036  0.009  0.024  0.027  

Fertilizer amount 0.004  0.003  0.003  0.003  0.006  0.007  0.003  0.005  0.005  

Input uncertainty 0.151 0.208 0.116 0.101 0.112 0.271 0.141 0.246 0.168 

Parameter uncertainty 0.167 0.145 0.177 0.141 0.147 0.151 0.154 0.164 0.156 

 585 

586 
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 587 

Fig. 1 Locations of and the rain gauges within the Upper Daning River Watershed 588 
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 589 

Fig. 2 Uncertainty of simulated TP induced by each input data, in which the line, error bar and inverted column indicate the mean value, SD and 590 

CV values, respectively. 591 
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592 

Fig. 3 Comprehensive uncertainty of input data-induced simulated TP, in which the 593 

line, error bar and inverted column indicate the mean value, SD and CV values, 594 

respectively. 595 


