
Dear Reviewer 

Thank you very much for your comment of January 18, 2016, informing us of 

valuable suggestions to improve our manuscript ‘A comprehensive evaluation of input 

data-induced uncertainty in nonpoint source pollution modeling’ (hess-2015-377). 

Our point-by-point responses are as follows. 

 

===================================================================== 

Response to the Reviewer 2 

1) Your comment: While the results need to be interpreted carefully so that readers 

understand how the attributes of the study site, the authors typically guide this 

interpretation. For instance, the authors attribute the low uncertainty due to 

fertilizer inputs to the low levels of fertilizers applied in the study site. 

Our respond: I agree with the reviewer’s idea that the attributes of the study site 

should be provided. To benefit our readers, we have checked the manuscript very 

carefully, while revised the methodology and result sections accordingly. Pleased find 

our revised manuscript. 

Specifically, the following sentences related to the fertilizer input have been 

added as: “Traditional potato-sweet potato rotation was the most popular cropping 

system in the agricultural areas under the slope of 15-degree, while the duration of 

rotations were typically half year-half year. Besides, most of the growers on the higher 

areas (>15-degree) panted corn, which is becoming more and more popular due to 

higher returns under recent market conditions. In our analysis, we studied the impacts 

of fertilizer and did not attempt to change the rotation pattern or introduce alternative 

crops. Attribute data, including crop planting time, irrigation, fertilization, and tillage, 

were mainly obtained from the agricultural bureau and local farmers; therefore, these 

data only reflect the average information at an average level. In this sense, there were 

inevitable differences in management practices among farmers; therefore, the use of 

this average information might result in fertilizer amount errors. In this analysis, the 

errors in the recorded amount of fertilizer applied was also treated as input uncertainty. 

Based on our limited local investigation, the initial annual applied urea and compound 



fertilizer was set as 450kg/ha and 300kg/ha for the potato-sweet potato rotation, while 

150kg/ha and 225 kg/ha for the corn system, respectively. A survey conducted by 

local agricultural administration revealed that the error or standard deviation in the 

record fertilizer amount was 5%, which was based on a statistical analysis of 

historical fertilizer data.” 

 

2) Your comment: I did have comments for the authors regarding their literature 

review and methods, which are detailed below. The general synopsis is that more 

work is needed to situate this study in the literature, and that the methods needs to 

be better described. However, I do not believe any of these criticisms are fatal to 

the paper itself. I believe they can all be addressed with a major revision. 

Our respond: I agree with the reviewer’s idea that more work is needed to situate this 

study in the literature, and also the methods needs to be better described. As 

mentioned above, we have checked the manuscript very carefully and more sentences 

have been added to benefit our readers. For example, in the introduction section, we 

added “First, there is relatively more uncertainty research about hydrological 

processes (Beven, 2006; Balin et al., 2010; Vrugt et al., 2008) but less on NPS 

pollution (Chaplot et al., 2005a; Chaplot, 2005b; Gassman et al., 2007; Wellen et al., 

2015). These studies have showed the input uncertainty is propagated through the 

watershed model, to some extent, to sediment modeling and then carry-over and 

magnify into pollutant simulation. Uncertainty is currently considered as one of the core 

dilemmas in watershed studies, especially in the field of NPS modeling. Second, the 

sensitivity of watershed models also depends on how well attribute data aggregation 

describes the relevant characteristics of human management. For example, the SWAT 

assumed P could be added onto the soil in the form of fertilizer or manure, and 

specific input data include the timing of fertilization, the type and amount of 

fertilizer/manure, and the distribution of the soil layer. Thus, it is useful to understand 

the assumptions of these attribute data and how these assumptions will likely impact 

the model results. Third, previous studies have not evaluated the relative contribution 

of each input data set so a strategy on how to reduce input uncertainty cannot be 



formulated in a cost-effective manner (Munoz-Carpena et al., 2006).” 

Besides, the following references have been added: 

References  

Balin, D., Lee, H., and Rode, M.: Is point uncertain rainfall likely to have a great 

impact on distributed complex hydrological modeling?, Water Resour. Res., 

2010, 46, W11520. 

Beven, K.: A manifesto for the equifinality thesis. J. Hydrol. 2006, 320 (1−2), 18−36. 

Chaplot, V.: Impact of DEM mesh size and soil map scale on SWAT runoff, sediment, 

and NO3-N loads predictions, J. Hydrol. 2005, 312, 207−222. 

Chaplot, V., Saleh, A., Jaynes, D. B.: Effect of the accuracy of spatial rainfall 

information on the modeling of water, sediment, and NO3−N loads at the 

watershed level, J. Hydrol. 2005, 312, 223−234.  

Cibin, R., Sudheer, K. P., Chaubey, I.: Sensitivity and identifiability of stream flow 

generation parameters of the SWAT model. Hydrol. Process. 2010, 24, 

1133−1148. 

Gassman, P., Reyes, M., Green, C., Arnold, J.: The soil and water assessment tool: 

Historical development, applications, and future research directions, Trans. 

ASABE 2007, 50 (4), 1211−1250. 

Vrugt, J. A., ter Braak, C. J. F. , Clark, M. P. , Hyman, J. M., and Robinson, B. A.: 

Treatment of input uncertainty in hydrologic modeling: Doing hydrology 

backward with Markov chain Monte Carlo simulation, Water Resour. Res., 2008, 

44, W00B09  

Wellen, C., Kamran-Disfani, A., and Arhonditsis, G.B.: Evaluation of the current state 

of distributed watershed-water quality modeling, Environ. Sci. Technol. 2015, 49: 

3278-3290. 

 

3) Your comment: I did have a number of questions for the authors regarding their 

methods, which I believe are not described in sufficient detail. The primary 

conceptual issue I had with their approach lies with the empirical nature of many 

of the parameters of SWAT. For instance, earlier studies have found that much of 



the parametric uncertainty of SWAT lies with the curve number parameters (Cibin 

et al., 2010). The curve numbers are very empirical, and their optimal values 

probably serve to compensate somewhat for the input uncertainties. If the model 

had been re-calibrated to each perturbed input set, the calibrated parameters would 

likely have compensated somewhat for the perturbed inputs in an effort to 

reproduce the observed data. By perturbing inputs but not re-calibrating the model 

to them, the authors may be overestimating the uncertainty due to the inputs. I 

understand that recalibrating to each perturbed input set would be quite 

computationally intensive, and beyond the scope of this study. I do not know if the 

overall results would not change significantly if the model were re-calibrated to 

the perturbed inputs, though the authors should mention this possible shortcoming 

in the methods or the discussion.  

Our respond: I agree with the reviewer that the calibrated parameters would likely 

have compensated somewhat for the perturbed inputs. In fact, we have focused on this 

in one previous study (Shen et al., 2012). In that paper, we have divided the model 

parameters into the conceptual group and physical group. The conceptual parameters 

such as CN2 in the SCS curve method are defined as the conceptualization of 

non-quantifiable process, and determined by the process of model calibration. 

Conversely, physical parameters could be measured or estimated based on watershed 

characteristic when intensive data collection is possible. As the unknown spatial 

heterogeneity of studied area and expensive experiments involved, the physical 

parameters are usually determined by calibrating the model against the measured data. 

However, when the number of parameters is large either due to the large number 

of sub-processes being considered or due to the model structure itself, the calibration 

process becomes complex and calibration uncertainty issues surround. Nevertheless, 

parameter identification is a non-linear problem and there might be numerous possible 

solutions obtained by optimization algorithms. Thus, the parameters could not be 

identified easily. Additionally, different parameter sets may result in similar prediction 

known as the phenomenon of equifinality. It has been proved that parameter 

uncertainty is inevitable in watershed modeling. In this sense, models are not 



re-calibrated to show the differences in model predictions because calibration masks 

the differences that may occur as a result of different input datasets. In addition, the 

un-recalibrated model results can show how good each dataset predicts stream flow 

and NPS before recalibration, which would indicate the effort required for calibration 

when using each dataset. 

We agree with the reviewer’s idea that input uncertainty may be amplified 

through the calibration process. In fact, we did calibrate the SWAT using different 

input datasets. In fact, we did calibrate the SWAT when different datasets were used. 

Compared to the result of the un-recalibrated model, the relative error between 

predicted and observed data become smaller after recalibration, while ENS and R2 

values have increased slightly. This can be due to the compensation mechanism of 

calibration process. Besides, we have been conducting researches on the interaction 

between soil data error propagation and parameter uncertainty amplified through 

calibration with uncertain input data. 

As suggested, we discussed this in section 4.1, which is as follows: “If the model 

had been re-calibrated to each perturbed input set, the calibrated parameters would 

likely have compensated somewhat for the perturbed inputs in an effort to reproduce 

the observed data. However, even with the best calibration process, there is always 

parameter uncertainty in the model predictions due to the imprecise representation of 

parameter ranges and distributions; therefore, recalibration was not conducted in this 

study (Van Griensven et al., 2006). It should be noted that comparison using 

un-recalibrated models is useful to evaluate the differences in model predictions 

because calibration masks the differences that may occur as a result of the input data 

sets. In addition, the un-recalibrated model results can show how good each dataset 

predicts stream flow before calibration, which would indicate the effort required for 

calibration when using each data set.” 

 

4) Your comment: The authors also mention that when they calculated the 

uncertainty due to all of the inputs (presented in Figure 3), they retained only 

behavioral inputs, which they defined as those leading to a Nash-Sutcliffe 



Efficiency of greater than 0.5. This is a reasonable calibration approach for model 

parameters, and is used by the GLUE methodology. However, I don’t see how this 

approach translates well to model inputs. If a (perturbed) model input gives a poor 

fit, but is within the uncertainty envelope of the inputs, doesn’t a poor fit suggest 

that the model is sensitive to that input? The authors need to explain their rationale 

and approach better in the methodology section. 

Our respond: Sorry for this confusion. In fact, the sensitivity of simulated TP to each 

input data was quantified in the form of summary statistics, such as the SD and the 

coefficient of variation (CV). Specifically, the CV, which is a normalized measure of 

dispersion of a probability distribution, is defined as a dimensionless number by 

quantifying the ratio of the SD to the MV. Compared to SD, the CV is more 

appropriate for comparing different data sets; therefore, it was used as the main 

approach for expressing sensitivity in this study. During this process, the Ens is not 

used and all input datasets and related simulated data are retained. In this sense, if a 

(perturbed) model input gives a poor fit, the higher SD and CV values of simulated 

data would suggest that the model is sensitive to that input.  

After this sensitivity analysis, the GLUE methodology was then used to 

determine the prediction uncertainty by focusing on different input datasets implicitly 

through the likelihood measure. The key of this step is use the likelihood function to 

evaluate SWAT outputs against observed values. In our study, Nash–Sutcliffe 

coefficient (ENS) was picked because it’s the most frequently used likelihood measure 

for GLUE based on literature. To provide a static state instead of subjective personal 

judgment, the performance ratings typically applied to the ENS by Arabi et al. (2007) 

were adopted: very good (0.75-1), good (0.65-0.75), satisfactory (0.50-0.65), and 

unsatisfactory (≤0.5). Compared with other applications, the SWAT model was 

judged to be ‘very good’ for flow and sediment prediction and ‘good’ for TP 

prediction. Thus, 0.5 was selected to retain only behavioral inputs. However, it should 

be noted that the choice of 0.5 is subjective. Previously, we have used different ENS 

values (from 0 to 0.6) as likelihood thresholds, and quantified the impacts of these 

values on prediction uncertainty (Gong et al., 2011). Based on the results, we 



highlighted higher threshold values to increase the modeler’s confidence in model 

reliability. Thus, 0.5 was selected. 

Another question is the SWAT model was not re-calibrated. As the reviewer 

mentioned, the calibrated parameters might likely have compensated somewhat for 

the perturbed inputs in an effort to reproduce the observed data. However, when the 

SWAT was calibrated at the WX station for the period from 2000 to 2007, we use the 

best available input datasets, which contains all rainfall stations and high-resolution 

GIS maps. Thus, behavior input data (ENS≥0.5), which refer to the phenomenon of 

equifinality and can be representative of a watershed system (ENS≥0.5), were grouped 

to express the prediction uncertainty. Finally, input-induced model uncertainty was 

generated via sampling from the output distributions that are generated from these 

effective input datasets. 

 

5) Your comment: Regarding the introduction and discussion, more work is needed 

to situate this study in the relevant literature. A number of key statements are 

made with no attribution at all.  

Our respond: Thank you for this valuable suggestion. I agree with the reviewer’s 

idea that more reference are needed. As mentioned above, we have checked the 

manuscript very carefully and added more sentences to benefit our readers. Please 

find the attached manuscript. Specifically, the following references have been added: 
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Balin, D., Lee, H., and Rode, M.: Is point uncertain rainfall likely to have a great 
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Cibin, R., Sudheer, K. P., Chaubey, I.: Sensitivity and identifiability of stream flow 

generation parameters of the SWAT model. Hydrol. Process. 24, 1133−1148, 

2010  
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ASABE 50 (4), 1211−1250, 2007  
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Wellen, C., Kamran-Disfani, A., and Arhonditsis, G.B.: Evaluation of the current state 

of distributed watershed-water quality modeling, Environ. Sci. Technol. 49: 

3278-3290, 2015. 

 

6) Your comment: P.5 Can you provide a reference where readers can find 

documentation of the study area’s soil types? Many readers will not be familiar 

with these soils.  

Our respond: Thank you for this valuable suggestion. Soil type is a key factor for 

understanding the complex and interdependent geophysical processes in the near 

surface. In previous studies, researchers have carried out soil samplings and 

measurements to build up site-specific soil databases. These databases are then 

extrapolated with the support of Remote Sensing and Geographic Information System 

(GIS) techniques to simulate surface hydrology and NPS pollutant transport in larger 

watersheds. However, we have provide soil information in our previous papers (Shen 

et al., 2012a, 2013a, b). Thus, P.5 has been revised as: “The primary land uses in this 

watershed are forest (61.8%), arable land (25.3%), and pasture (12.5%), and 

yellow-brown earths (26.5%), yellow-cinnamon soils (16.9%) and purplish soils 

(14.5%) are the dominant soil types. More information about the study area are 

referred to Shen et al., (2012a, 2013a, b).” 

 



7) Your comment: P.5. The authors should clarify in the methodology whether they 

refer to total phosphorus load, concentration, or flow-weighted concentration.  

Our respond: As suggested, the following sentences have been added in P.5: “The 

model outputs were simulated flow amount, sediment load, and TP load, which were 

predicted at a monthly step because only monthly measured TP were available in this 

area.”  

In this study, the SWAT model was run on a daily time-step on the basis of the 

daily rainfall input and other daily meteorological data. The daily flow sediment, and 

TP loads were simulated and the monthly outputs were the sum of daily loads of the 

simulated daily flow, sediment, and NPS-TP. Our brief literature review indicates that 

may studies have shown that SWAT simulations carried out in monthly time step 

generally provides better prediction outputs than those in daily step. It is thus 

considered to be more meaningful to analyze prediction uncertainty and model 

accuracy on the basis of monthly time step. Thus, monthly TP load was used in this 

study. 

 

8) Your comment: P.7 I think most readers won’t understand exactly how the 

authors perturbed the land use data to simulate their contribution to model 

uncertainty. More clarity is required here. 

Our respond: As suggested, we have clarified this in the revised paper. Typically, 

land use and land cover changes are regarded as one of the major causal factors in altering 

the watershed system. The hydrological responses to different periods of land use 

inputs have been therefore covered by many studies. As discussed above, land use 

data available for the modeling effort will likely come from numerous sources; 

therefore, an assessment of available land use data and the time period covered by 

these data should be made. 

Thus, P.7 has been revised as “In this study, land use data were obtained from 

the 1980s (1980–1989), 1995, 2000, and 2007. Specifically, maps from the 1980s, 

1995 and 2000 were interpreted from MSS/TM/ETM images by the Chinese 

Academy of Sciences, whereas the land use map for 2007 was created from a TM 



image. To substantiate the impacts of land use maps, an analytical framework was 

developed in two steps. Firstly, the land use distribution characteristics during each 

period was analyzed according to use type of each map. The land use statistics are 

shown in Table 2. Second, these four land use maps were used as model inputs and 

their impacts were estimated respectively using the calibrated SWAT model. In our 

previous study (Shen et al., 2013a), the resolution of land use data was shown to have 

only a slight influence on simulated NPS-P for the study region; therefore, the land 

use map was not resampled in this study.” 

 

9) Your comment: P.8. It sounds like the standard deviation is the variability in the 

amount of fertilizer applied. This is not necessarily the same as the uncertainty. 

The value of the standard deviation is not given – it would help to situate this 

study in the literature. Further, can the values of the mean and standard deviation 

be given in amounts of phosphorus applied? 

Our respond: In fact, the standard deviation and CV values are referred to the errors 

in the recorded amount of fertilizer. In this study, attribute data, including crop 

planting time, irrigation, fertilization, and tillage, were mainly obtained from the 

agricultural bureau and local farmers; therefore, these data only reflect the average 

information at an average level. In this sense, there were inevitable differences in 

management practices among farmers. A survey conducted by local agricultural 

administration revealed the error or averaged deviation in the record fertilizer amount, 

which was based on a statistical analysis of historical fertilizer data.  

To benefit our reader, P.8. has been revised as “Based on our limited local 

investigation, the initial annual applied urea and compound fertilizer was set as 

450kg/ha and 300kg/ha for the potato-sweet potato rotation, while 150kg/ha and 225 

kg/ha for the corn system, respectively. Because there was not enough information 

available regarding the distribution of the fertilizer, normal distribution was used in 

this study. Using the Monte Carlo technique, these errors were generated by sampling 

stochastically from a normal distribution expressed as 2~ ( , )X N   , where   and   



are the recorded amount of fertilizer and the standard deviation (SD), respectively. 

The Latin Hypercube sampling technique, which employs a constrained sampling 

scheme instead of random sampling, was applied to ensure a sufficient precision of 

sampling. To cover 99.7% of the error range, the sampling range was designated as 

15% from the initial amount of fertilizer and 5,000 model runs were conducted.” 

 

10) Your comment: P.9, line 13. There are also calibration data uncertainty and 

parameter uncertainty. A citation would strengthen this line. 

Our respond: Sorry for those confusing statements and these sentences have been 

revised accordingly. In fact, we have distinguished calibration data uncertainty and 

parameter uncertainty in one previous study (Chen et al., 2014). Based on our works, 

we found appreciable inherent errors exist in the calibration data even when following 

strict quality assurance and quality control (QA/QC) guidelines. Harmel (2005) has 

mentioned calibration data uncertainty may stem from errors in flow measurements, 

water quality sample collection, the processes of preservation, storage, transport and 

laboratory analysis. Given the river discharge data, errors from different sources such 

as river stage measurement or the interpolation of the rating curve, affect the 

measured data. In a thorough review (Harmel et al., 2006), all possible errors in the 

H/WQ measured data were compiled. 

In comparison, the cause of parameter uncertainty may be due to the value of the 

parameter being case-specific. The process of parameter calibration is a complex and 

subjective task. For these reasons, decisions regarding modeling should be based on 

available knowledge about the range and associated probability distribution function 

(PDF) for each parameter. Model calibration is the process of estimating model 

parameters using a pair-wise comparison between the predicted and measured points, 

while the validation process involves running the well-calibrated model to check its 

performance. Nevertheless, parameter identification is a complex non-linear problem, 

so the parameters could not be identified easily due to the numerous possible 

solutions obtained by optimization algorithms. Additionally, different parameter sets 

may result in similar pre-dictions in a phenomenon known as equifinality. In this 



study, models are not re-calibrated to show the differences in model predictions 

because calibration masks the differences that may occur as a result of different input 

datasets. 

Thus, we have designed an interval-deviation approach (IDA) and incorporated it 

into likelihood functions with the support of interval theory (Chen et al., 2014). The 

proposed IDA was validated in a real application of the Soil and Water Assessment 

Tool (SWAT) and Generalized Likelihood Uncertainty Estimation (GLUE) in the 

Three Gorges Reservoir Area (TGRA), China. Compared with the traditional point 

estimates of observations and predictions, the IDA incorporated both prediction and 

measurement uncertainty into the process of model evaluation. This proposed IDA 

can be extrapolated into other forms of error indices and model to provide a substitute 

method of model evaluation within an uncertainty framework. 

 

11) Your comment: P.10 The coefficient of variability (CV) as expressed in Eq. 2. 

assumes a normal distribution. However, the distributions used to estimate the 

predictive uncertainty may be highly skewed, in which case the CV would need to 

be calculated with a different equation. 

Our respond: Thank for this valuable suggestion. In fact, we did compare different 

probability distribution functions (PDFs) for each fertilizer data and quantify their 

impacts on the model outputs. Based on the results, we found that the choice of PDFs 

had little impacts on the predicted NPS-TP so we only assumed that the fertilizer data 

were identically chosen from normal distribution spanning the feasible error range 

due to their simplicity. 

It should be noted when intensive data collection is possible, the range and 

distribution of each data should be measured or estimated according to local detailed 

agriculture practices. However, such experiments are often impossible for many 

reasons, such as the unknown spatial heterogeneity of watershed, high costs and time 

constraints, as well as the experience of the personnel involved. Alternatively, we 

collect and estimate the PDFs of data by the means of a statistical process. Then from 

the perspective of statistical estimation, the question could be rephrased as the 



problem of selecting the proper PDFs. According to Sohrabi et al. (2003), PDFs could 

be assigned by professional judgment and literature information. In common, 

theoretical and empirical PDFs can be adopted instead of data collection and 

monitoring. It is usually to adopt classic PDFs such as uniform, normal, and 

logarithmic normal (Bobba et al. 1996) to evaluate the propagation of input 

uncertainty o on model outputs (Vrugt et al. 2003).  

 

12) Your comment: P.11 The number of gauges beyond which improvements to the 

model predictions are not found should be normalized to the area of the study site. 

Our respond: I agree with the reviewer’s idea that the number of gauges beyond 

which improvements to the model predictions are not found should be normalized to 

the area of the study site. For this study area (2,421 km2), the optimal number of 

gauges were identified as 6 beyond which improvements to the model predictions 

would not be found. It is encouraging that a small number of gauges distributed more 

optimally and perform well for logistical reasons. In reality, there might not be many 

dense rain gauge networks similar to those used for this study; therefore, the fact that 

spatial rainfall variation is a function of key gauges rather than all gauges would 

indicate a wider range of applicability. 

However, we also found the response of hydrology models to rainfall input is 

scale dependent. Traditionally, the rain station is the fundamental tool for representing 

spatial distribution of rainfall within a watershed (Andréassian et al., 2001). 

Designing the proper location, number and density of rain-gauge stations is important 

to hydrological research. Fu et al (2011) find that the effect of rainfall input on 

discharge modeling is relatively low for catchment sizes above 250 km2, and even 

negligible for watersheds larger than 1000 km2. In general, a well-located station 

might be sufficient for watersheds up to about 50 ha, while 20 km is demonstrated as 

the threshold distance between stations for a reliable hydrology modeling (Vischel 

and Lebel, 2007).  

 

 



 

Thank you very much for your wonderful job. Hope that our responses are satisfactory, 

and look forward to hearing from you. 

 

 

Zhenyao Shen 

Professor 

School of Environment,  

Beijing Normal University 

Beijing,  

China, 100875 

Tel/Fax: +86-10-5880 0398 

E-mail: zyshen@bnu.edu.cn
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