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Dear Reviewer 

Thank you very much for your comment of January 8, 2016, informing us of valuable 

suggestions to improve our manuscript ‘A comprehensive evaluation of input 

data-induced uncertainty in nonpoint source pollution modeling’ (hess-2015-377). 

Our point-by-point responses are as follows. 

===================================================================== 

Response to the Reviewer 1 

(1) Your comment: The methodology in this paper is not very well described so I’m 

not entirely sure which analyses were carried out and what the motivations for 

these were exactly.  

Our respond: Thank you very much for your valuable suggestions. I agree with the 

reviewer’s idea that the methodology in previous version of our paper is not very well 

described. As suggested, we have checked the manuscript very carefully, while 

revised the methodology accordingly. Please find the attached manuscript. 

 

(2) Your comment: It seems clear that the study doesn’t go substantively beyond the 

authors’ previous papers (Shen et al. 2012a, 2013). 

Our respond: I think the primary importance of this paper is its complete framework 

and detailed comparisons between different input datasets. Commonly, input data, 

which occurs because of variation in natural conditions, limitations in measurement, 

as well as a shortage of data, plays a role as a driving force of parameter calibration 

and may transform into a doubtful output. Therefore, imperfect knowledge of model 

input should, theoretically, be tackled comprehensively, and this has not been 

conducted yet by authors’ previous papers (Shen et al. 2012a, 2013). 

The input uncertainty is very hard to quantify as various input datasets are 

required for the H/NPS models. Typically, the input datasets should include spatial 

data, which can be expressed as GIS maps and their linked attribute properties. As 

you mentioned, some important issues have been discussed in our previous papers 

(Shen et al. 2012a, 2013). However, due to the availability of data at that time, a lot of 

important issues have not been studied yet and we believe that further theoretical 
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analysis and practical steps are needed when more data are available (these were 

mentioned in the conclusion section of Shen et al. (2012a, 2013)). Thus, we have been 

struggling to conduct a comprehensive assessment of input-induced uncertainty in TP 

modeling. After two-years further investigations, more datasets have been collected 

and four key types of input data, i.e., rainfall, topography, land use and fertilizer 

amount, are analysed, and their uncertainties are quantified. We believe this paper 

would provide valuable information for developing TMDLs in the Three Gorges 

Reservoir Area, and these results are also valuable to other model-based watershed 

studies for the control of model uncertainty. 

Specifically, the detailed differences between this paper and current previous 

papers (Shen et al. 2012a, 2013) are as follows: 

1) In Shen et al. (2012a), we focused on the impact of rainfall spatial variability 

by means of a variety of interpolation methods as follows: the Centroid method; the 

Thiessen Polygon method; the IDW method; the Disjunctive Kriging (Dis-Kriging) 

method, and the Co-Kriging method. I agree with the reviewer’s idea that rainfall 

uncertainty might stem predominantly from the representativeness issues. Thus, we 

further focused on the representativeness of rainfall stations in this paper, while 

single-gauge and multiple-gauges simulations were conducted. 

2) In Shen et al. (2013), we focused on the prediction uncertainty related to the 

combination of the available DEMs and land use maps by grouping the available GIS 

maps in all possible ways. However, due to the availability of data, only ASTER 

GDEM and land use data of 2007 were used at that time. In this study, two DEM sets, 

in terms of NFGIS DEM and ASTER GDEM were used and compared, while land 

use data were obtained from the 1980s (1980–1989), 1995, 2000, and 2007. Besides, 

only the impact of data resolution was studied in Shen et al. (2013). As GIS data may 

be available from alternative sources; therefore, another question is which specific 

data set should be used. Thus, we further studied the impacts of different data sources.  

3) Besides, previous papers (Shen et al. 2012a, 2013) have focused on impacts of 

spatial data (GIS maps) but in this paper, we further focused on the impacts of 

attribute data. 
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(3) Your comment: The introduction and discussion lack references to fundamental 

papers on uncertainty in water quality modelling and input uncertainty 

propagation more generally. The authors focus largely on the SWAT literature, but 

should go beyond this to demonstrate sufficient grounding in the state-of-the-art 

of model uncertainty estimation. 

Our respond: Thank you for this valuable suggestion. I agree with the reviewer’s 

idea that the introduction and discussion lack related references. In fact, we did not 

give more literatures about input uncertainty because they have already mentioned in 

our previous papers (Shen et al. 2012a, 2013). As suggested, we read more published 

references and picked up those ones related to rainfall, topography, land use and 

fertilizer amount. These references are added into their related sentences and we 

rewrote most sentences of the input uncertainty in a more concise way. Please find the 

attached manuscript. Specifically, the following references have been added in the 

revised manuscript: 

Balin, D., Lee, H., and Rode, M.: Is point uncertain rainfall likely to have a great 

impact on distributed complex hydrological modeling?, Water Resour. Res., 46, 

W11520, 2010  

Beven, K.: A manifesto for the equifinality thesis. J. Hydrol. 320 (1−2), 18−36 2006  

Chaplot, V.: Impact of DEM mesh size and soil map scale on SWAT runoff, sediment, 

and NO3-N loads predictions, J. Hydrol. 312, 207−222, 2005  

Chaplot, V., Saleh, A., Jaynes, D. B.: Effect of the accuracy of spatial rainfall 

information on the modeling of water, sediment, and NO3−N loads at the 

watershed level, J. Hydrol. 312, 223−234, 2005  

Cibin, R., Sudheer, K. P., Chaubey, I.: Sensitivity and identifiability of stream flow 

generation parameters of the SWAT model. Hydrol. Process. 24, 1133−1148, 

2010  

Gassman, P., Reyes, M., Green, C., Arnold, J.: The soil and water assessment tool: 

Historical development, applications, and future research directions, Trans. 

ASABE 50 (4), 1211−1250, 2007  
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Vrugt, J. A., ter Braak, C. J. F. , Clark, M. P. , Hyman, J. M., and Robinson, B. A.: 

Treatment of input uncertainty in hydrologic modeling: Doing hydrology 

backward with Markov chain Monte Carlo simulation, Water Resour. Res., 44, 

W00B09, 2008  

Wellen, C., Kamran-Disfani, A., and Arhonditsis, G.B.: Evaluation of the current state 

of distributed watershed-water quality modeling, Environ. Sci. Technol. 49: 

3278-3290, 2015 

 

(4) Your comment: The authors fail to distinguish between measurement uncertainty 

and calibration uncertainty and make confusing statements: “due to the 

availability of validation data” 

Our respond: Sorry for those confusing statements and these sentences have been 

revised to benefit our readers. In fact, we have distinguished measurement uncertainty 

and calibration uncertainty in one previous study (Chen et al., 2014). Based on our 

works, we found appreciable inherent errors exist in the measured data even when 

following strict quality assurance and quality control (QA/QC) guidelines. Harmel 

(2005) has mentioned measurement uncertainty may stem from errors in flow 

measurements, water quality sample collection, the processes of preservation, storage, 

transport and laboratory analysis. Given the river discharge data, errors from different 

sources such as river stage measurement or the interpolation of the rating curve, affect 

the measured data. In a thorough review (Harmel et al., 2006), all possible errors in 

the H/WQ measured data were compiled. 

In comparison, model calibration is the process of estimating model parameters 

using a pair-wise comparison between the predicted and measured points, while the 

validation process involves running the well-calibrated model to check its 

performance. In traditional applications, model evaluation is usually conducted by a 

regression measure, most commonly the point-to-point pairs of predicted and 

measured data. The multi-objective functions are also used to calibrate models by the 

(predicted) point-to- (measured) point comparison to simulate the variety of 

hydrological events that may occur in a basin. Nevertheless, parameter identification 
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is a complex non-linear problem, so the parameters could not be identified easily due 

to the numerous possible solutions obtained by optimization algorithms. Additionally, 

different parameter sets may result in similar predictions in a phenomenon known as 

equifinality. 

Thus, we have designed an interval-deviation approach (IDA) and incorporated it 

into likelihood functions with the support of interval theory (Chen et al., 2014). The 

proposed IDA was validated in a real application of the Soil and Water Assessment 

Tool (SWAT) and Generalized Likelihood Uncertainty Estimation (GLUE) in the 

Three Gorges Reservoir Area (TGRA), China. Compared with the traditional point 

estimates of observations and predictions, the IDA incorporated both prediction and 

measurement uncertainty into the process of model evaluation. This proposed IDA 

can be extrapolated into other forms of error indices and model to provide a substitute 

method of model evaluation within an uncertainty framework. 

 

(5) Your comment: (P11423, L2), “simplification in natural randomness”  

Our respond: As suggested, P11423, L2 has been revised as “simplification in 

natural randomness”.  

 

(6) Your comment: (P11423, L4). The authors fail to distinguish between input 

uncertainty propagation and parameter uncertainty amplified through calibration 

with uncertain input data. The authors focus on the former which is well studied 

whereas the latter, despite some studies in the last decade, is rather new and much 

more interesting. Failing to discuss this weakens section 4.2 considerably. 

Our respond: Thank you for this valuable suggestions. In this study, input 

uncertainty propagation was used to explain why the uncertainty of hydrology 

modeling would be transformed into even larger uncertainty of NPS modeling. Due to 

the mechanism of runoff–NPS formulation in the SWAT model, input uncertainty 

propagation could be due to the fact that sediment production was affected and 

dominated by hydrological processes as well as watershed response. For example, the 

impact of rainfall input data on NPS simulation was complex, as it depended not only 
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on the degree of input error but also on watershed properties such as soils, geology, 

and river morphology. A similar result was obtained via TP simulation. 

In comparison, the cause of parameter uncertainty may be due to the value of the 

parameter being case-specific. The process of parameter calibration is a complex and 

subjective task. For these reasons, decisions regarding modeling should be based on 

available knowledge about the range and associated probability distribution function 

(PDF) for each parameter. In this sense, models are not re-calibrated to show the 

differences in model predictions because calibration masks the differences that may 

occur as a result of different input datasets. In addition, the un-recalibrated model 

results can show how good each dataset predicts stream flow and NPS before 

recalibration, which would indicate the effort required for calibration when using each 

dataset. 

We agree with the reviewer’s idea that parameter uncertainty amplified through 

the calibration process is more interesting. In fact, we did recalibrate the SWAT when 

different datasets were used. Compared to the result of the un-recalibrated model, the 

relative error between predicted and observed data become smaller after recalibration, 

while ENS and R2 increased slightly. This can be due to the compensation mechanism 

of calibration process. Besides, we have been conducting researches on the interaction 

between soil input error propagation and parameter uncertainty amplified through 

calibration with uncertain input data. 

 

(7) Your comment: Separate paragraphs should introduce land use and fertilizer data 

uncertainty as done for rainfall and topography. 

Our respond: As suggested, paragraphs about land use and fertilizer data have been 

added. About land use, we added: “Land use maps for a specific point in time, 

typically obtained by interpreting remote sensing data, are often used, and possible 

changes in land uses during that specific period are not considered (Mango et al., 

2011; Pai and Saraswat, 2013). These statistical or modeling analyses have 

demonstrated that the land use changes affect hydrological characteristics, which 

further alter the occurrence of soil erosion and transport of the NPS pollutants.” 
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About fertilizer data, we added “Second, the sensitivity of watershed models also 

depends on how well attribute data aggregation describes the relevant characteristics 

of human management. For example, the SWAT assumed P could be added onto the 

soil in the form of fertilizer or manure, and specific attribute data include the timing 

of fertilization, the type and amount of fertilizer/manure, and the distribution of the 

soil layer. Thus, it is useful to understand the assumptions of these attribute data and 

how these assumptions will likely impact the model results.” 

 

(8) Your comment: P11422, L2 and elsewhere: Do you mean “propagation” instead 

of “transitivity”? 

Our respond: As suggested, “transitivity” has been replaced by “propagation” in 

P11422, L2 and elsewhere. 

 

(9) Your comment: P11422, L9-12: The meaning of the coefficient of variation is not 

clear in this context. 

Our respond: As suggested, P11422, L9-12 has been revised as “The simulation 

errors, in terms of coefficient of variation, related to single rain gauges-, multiple 

gauges-, ASTER GDEM-, NFGIS DEM-, land use-, and fertilizer amount information 

was 0.390, 0.274, 0.186, 0.073, 0.033 and 0.005, respectively.” 

 

(10) Your comment: P11422, L21: I wouldn’t consider hydrological models 

“essential” for the stated purposes. 

Our respond: I agree that “essential” is a very strong word. As suggested, P11422, 

L21 has been revised as “important tools”. 

 

(11) Your comment: P11422, L22: The named models cannot explain anything about 

water quality deterioration as they don’t have ecological impact components. 

Our respond: I agree the named models don’t have ecological impact components 

but I think they can explain about water quality changes. One of the most outstanding 

achievements of last three decades is the development of hydrology and nonpoint 
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source (H/NPS) models, which have enable hydrologists and environment expert to 

understand human activities that affect basin systems. For example, the SWAT model 

is a physically-based, semi-distributed H/NPS model operated on a daily time step 

that simulates surface runoff, sediment, and nutrient and pesticide transport primarily 

from the watershed. The basic components of SWAT include hydrology, soil erosion, 

nutrient and pesticide leaching, crop growth, agricultural management and the 

generation of weather data. Specifically, a plant-growth component, which describes 

the sediment removal and water transpiration from the root zone, has been also 

incorporated based on heat units. The Modified Universal Soil Loss Equation 

(MUSLE) is used for estimating sediment yield. Those major forms of P, such as 

soluble P, insoluble mineral P and organic P associated with humus, are considered, 

while their movements and transformations are simulated. The soluble P loads would 

then be estimated based on the simulated runoff volume, the labile P concentration of 

the top 10mm soil, and a site-specific partitioning factor. The attached mineral and 

organic P is calculated based on the amount of eroded sediment. These soluble and 

attached P would be transported into the nearby reach segment and delivered within 

the river channel. All these components can help modeler to understand human 

activities that affect water quality. 

 

(12) Your comment: P11423, L11: What is meant by “scenes”? 

Our respond: As suggested, “scenes” has been replaced by “images”. 

 

(13) Your comment: P11423, L12-14: This statements would need a reference. 

Our respond: As suggested, P11423, reference has been added and L12-14 has been 

revised as “Rainfall plays a crucial role in runoff production and mass transport so its 

reliability has been considered as major factor for the accuracy of hydrological 

models (Andréassian et al., 2001; McMillan et al., 2011).” 

Andréassian, V., Perrin, C., Michel, C., Usart-Sanchez, I., and Lavabre, J.: Impact of 

imperfect rainfall knowledge on the efficiency and the parameters of watershed 

models, J. Hydro., 250, 206-223, 2001. 
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McMillan, H., Jackson, B., Clark, M., Kavetski, D., and Woods, R.: Rainfall 

uncertainty in hydrological modelling: An evaluation of multiplicative error 

models, J. Hydro., 400, 83-94, 2011. 

 

(14) Your comment: P11423, L27-29: I think higher-resolution data should lead to 

better model performance; the question is whether this can be detected 

quantitatively! 

Our respond: In fact, the question about the quantitative impacts of data resolution 

on model predictions is also raised in this paper. To quantify the impacts 

quantitatively, the high-resolution GIS map is converted to coarser ones using the 

resample function of ArcMap. Then these resampled GIS data were used as model 

inputs, respectively, and their model performances are detected quantitatively based 

on the changes of goodness-of-fit indicators (Such as ENS). Moreover, we are trying to 

use more goodness-of-fit indicators, such as entropy, as quantitative approaches. 

Based on our results, higher-resolution data would not always lead to better model 

performance. One of the interesting results is that there exists a spatial resolution 

saturation level, beyond which further refinements to resolution do not improve model 

performance. In section 4.1, we has discussed about this issue. 

 

(15) Your comment: P11424, L12-13: There is a sizable literature now on uncertainty 

in NPS modelling! 

Our respond: I agree that some works have been done on uncertainty in NPS 

modelling but I think most modelers might agree with the statement “there is 

relatively more uncertainty research about hydrological processes but less on NPS 

pollution”. The problem is that this key statement is made with no attribution at all. To 

benefit our readers, we have added some key citations of hydrological (e.g., Beven, 

2006; Balin et al., 2010) and NPS (e.g., Gassman et al., 2007; Wellen et al., 2015) 

literature to support our statement. Also, a pair of papers examining the effect of input 

uncertainty on NPS predictions have been cited in the introduction (Chaplot, 2005; 

Chaplot et al., 2005). Please find the attached manuscript. 
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(16) Your comment: The materials and methods fail to convey the details and the 

motivations for the uncertainty assumptions. Are these practically relevant?  

Our respond: As suggested, the details of the uncertainty assumptions have been 

added in the revised manuscript. In fact, per-input uncertainty assessment was done in 

our previous papers (Shen et al., 2012a, 2013) and the database for planting, harvest, 

and tillage operations was based on our field investigations. Please find the attached 

manuscript. 

 

(17) Your comment: What about issues of rainfall data quality (section 2.3.1) before 

interpolation is even considered (biases, gaps, etc)?  

Our respond: I agree the issues of rainfall data quality is very important. In fact, we 

investigated the effects of rainfall measurement errors in one previous study (Shen et 

al., 2015). A survey conducted by State Meteorological Administration (SMA) 

revealed that the error in rainfall measurements in China varied from 4.34% to 15.2%, 

with an averaged deviation equal to 6.52%. Based on our results, rainfall 

measurement error introduces considerable prediction uncertainty especially during 

high-flow periods, and this rainfall data quality issue can be reduced by a combination 

of dense rain gauge network, stochastic modeling and establishing a multi-event 

uncertainty analysis.  

 

(18) Your comment: What about the issue of different maps and the issue of 

representativeness of spot land use information (section 2.2.3)?  

Our respond: More details about land use data have been provided in section 2.2.3. 

The following sentences have been added: “Specifically, maps from the 1980s, 1995 

and 2000 were interpreted from MSS/TM/ETM images by the Chinese Academy of 

Sciences, whereas the land use map for 2007 was created from a TM image. To 

substantiate the impacts of land use maps, an analytical framework was developed in 

two steps. Firstly, the land use distribution characteristics during each period was 

analyzed according to use type of each land use map. The land use statistics are 
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shown in Table 2. Second, these four land use maps were used as model inputs and 

their impacts were estimated respectively using the calibrated SWAT model. In our 

previous study (Shen et al., 2013a), the resolution of land use data was shown to have 

only a slight influence on simulated NPS-P for the study region; therefore, the land 

use map was not resampled in this study.” 

 

(19) Your comment: Is the fertilizer data uncertainty distribution (section 2.3.4) 

applied to the spatial average or is it applied spatially differentiated? The former 

would be pointless in the light of the arguments put forward in this section. Is the 

normality assumption realistic? Where does information on sigma come from? 

These choices will have influenced the results, i.e. that fertilizer data uncertainty 

was negligible here. It remains unclear how the per-input uncertainty assessment 

was done and whether the interaction of uncertainty sources was analysed at all 

(section 2.4). 

Our respond: Based on our limited local investigation, the initial annual applied urea 

and compound fertilizer was set as 450kg/ha and 300kg/ha for the potato-sweet potato 

rotation, while 150kg/ha and 225 kg/ha for the corn system, respectively. A survey 

conducted by local agricultural administration revealed the error or averaged 

deviation in the record fertilizer amount and this was used for the study area. Because 

there was not enough information available regarding the distribution of the fertilizer, 

normal distribution was used for fertilizer data in this study. In fact, we had compared 

those classic probability distribution functions (PDFs). Based on previous tests, 

without a realistic assessment of data distribution, the appropriate PDFs for each data 

may have little impact in the application of the hydrologic model. Therefore, we 

assumed that the fertilizer data were identically chosen from normal distribution 

spanning the feasible error range due to their simplicity.  

 

(20) Your comment: P11425, L22: What is meant by “efficiently and effectively”? 

Our respond: I agree that these words are meaningless, so they have been removed 

from this paper. 
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(21) Your comment: P11426, L9: What is meant by “due to the lack of”? 

Our respond: In this study, attribute data, including crop planting time, irrigation, 

fertilization, and tillage, were mainly obtained from the agricultural bureau and local 

farmers; therefore, these data only reflect the average information at an average level. 

In this sense, there were inevitable differences in management practices among 

farmers; therefore, the use of this average information might result in fertilizer 

amount errors. 

 

(22) Your comment: P11426, L16: I would say rainfall uncertainty stems 

predominantly (!) from representativeness issues. 

Our respond: I agree with the reviewer’s idea so in this study, we focused on rainfall 

uncertainty comes from the lack of representative rain gauges. In one previous study 

(Shen et al., 2012a), we has already focused on the impact of interpolation methods 

on the spatial rainfall heterogeneity but due to the availability of data, we did not 

focus on the representativeness of rainfall stations. In this study, rainfall data-induced 

prediction uncertainty was analyzed in two steps: 1) the dataset of each rain gauge 

was used as inputs for the SWAT model separately, and the model performances were 

ranked based on the Nash–Sutcliffe efficiency coefficient (ENS) values for single 

gauge simulations; 2) random combinations of m rain gauges (m ranged from 2 to 12) 

were generated and used as SWAT inputs. The expected rainfall spatial distributions 

were only generated by the centroid method was selected because it was the current 

approach incorporated into the current version of SWAT model and the easiest to 

apply (Shen et al., 2012a). 

 

(23) Your comment: P11426, L20: Define E_NS. 

Our respond: As suggested, P11426, L20 has been revised as “the Nash–Sutcliffe 

efficiency coefficient (ENS) values”. 

 

(24) Your comment: P11426, L22: And then interpolated? Why was not the 
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‘best‘ performing interpolation technique from Shen et al. (2012a) used?  

Our respond: In Shen et al. (2012a), the uncertainty introduced by spatial rainfall 

variability was determined using a number of different interpolation methods, such as 

the Centroid method; 2) the Thiessen Polygon method; 3) the Inverse Distance 

Weighted (IDW) method; 4) the Dis-Kriging method, and 5) the Co-Kriging method. 

Based on the results, it was also concluded that a global interpolation method such as 

IDW and Kriging would benefit both hydrological and NPS modeling in large 

watersheds. The reason why these techniques were not used was because these 

methods used the spatial correlation between each pair of stations to describe the 

variance over distance. Thus, minimum number of rainfall stations that are required 

by IDW and Kriging. However, most input datasets in this study, such as the 

single-station simulation, cannot meet the basic requirement of these methods. 

In fact, the expected rainfall spatial distributions were only generated by the 

centroid method was selected because it was the easiest to apply (Shen et al., 2012a). 

The centroid method, originally proposed by Wood et al (1990), has already been 

incorporated into the SWAT model (Neitsch et al., 2002). The theory of this method is 

that the unknown points can be extracted by the values of nearby known points. In 

this study, the data from the rain gauge closest to the centroid of each sub-watershed 

was selected as the sole input for that particular sub-watershed. Then the areal rainfall 

was assumed to be homogeneous across sub-watersheds and inputted directly into 

SWAT utilizing the GIS interface. 

 

(25) Your comment: P11428, L4: “Aggregate” and “average” should be swapped in 

this context.  

Our respond: As suggested, “aggregate” has been replaced by “average”. 

 

(26) Your comment: P11429, L6: What is meant by “re-validate”? 

Our respond: Thank you for this remind because “re-validate” is wrong use. As 

suggested, P11429, L6 has been revised as “The ENS was used as the goodness-of-fit 

indicator to evaluate the model performance.” 

http://www.sciencedirect.com/science/article/pii/S0378112797002570#b9
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(27) Your comment: P11429, L12: That’s an unwarranted generalisation of a coarse 

grouping of different uncertainties. 

Our respond: I agree with this multi-input ensemble method might be a coarse 

grouping of different uncertainties. However, I think that the ensemble method can be 

used for a comprehensive evaluation of multi-input-induced model uncertainty. In this 

study, model structure was fixed and model uncertainty will stems predominantly 

from input errors. After the simulation, the ENS analysis was conducted with the 

previously model results, and this was done to further constrain the range of input 

dataset and to validate the new model taking conditional prediction uncertainty 

bounds into account. As suggested, we would try to find other methods to group 

different uncertainties. 

 

(28) Your comment: P11429, L15-18: Reasoning unclear. 

Our respond: As suggested, P11429, L15-18 has been revised as: ”Based on the 

performance ratings by Moriasi et al. (2007), 0.5 was judged as a reasonable ENS value 

for TP simulation so a threshold of ENS≥ 0.5 was defined to select acceptable SWAT 

runs (Liu and Gupta, 2007).” To provide a static state instead of subjective personal 

judgment, the performance ratings were adopted: very good (0.75-1), good 

(0.65-0.75), satisfactory (0.50-0.65), and unsatisfactory (≤0.5).  

 

(29) Your comment: P11429, L15: What’s meant by “interaction of input errors”? 

Our respond: Thank you for this remind. In fact, input errors cannot interact so we 

mean the interaction between input and model structure. As suggested, P11429, L15 

has been revised as “In this study, model structure was fixed and model uncertainty 

will stems predominantly from input errors.” 

 

(30) Your comment: P11429, L19: What’s meant by “grouped in all possible ways”? 

Our respond: In fact, we mean the stochastic combinations of various behavior input 

datasets. As suggested, P11429, L19 has been revised as “ In the next step, behavior 

input data (ENS≥0.5), which refer to the phenomenon of equifinality and can be 
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representative of a watershed system (ENS≥0.5), were grouped to express the 

prediction uncertainty by using a multi-input ensemble method.” 

 

(31) Your comment: P11430, L1, P11431, L8: What’s meant by “multi-input 

ensemble method”? 

Our respond: In this study, the ensemble of input-induced outputs was used to 

express the prediction uncertainty. Firstly, a threshold of ENS≥ 0.5 was defined to 

select acceptable SWAT runs (Liu and Gupta, 2007). Then the input-induced model 

uncertainty was generated via sampling from the output distributions that are 

generated from these effective input datasets. 

 

(32) Your comment: P11430, L6: Table 3 says 0.66 and 0.89. 

Our respond: Thank you for the wonderful job. As suggested, P11430, L6 has been 

revised as:” As shown in Table 3, for the flow simulation, the ENS were 0.66 and 0.89 

in the calibration and validation periods, respectively.” 

 

(33) Your comment: P11430, L8: Table 3 says 0.13 instead of 0.46. 

Our respond: In fact, 0.46 is right figure. Table 3 has been revised as: 

Table 3 The values of ENS and R2 of the SWAT model during the calibration and 

validation period 

Variable Indicator Calibration Validation 

Flow 
ENS 0.66 0.89 

R2 0.79 0.95 

Sediment 
ENS 0.73 0.67 

R2 0.83 0.83 

TP 
ENS 0.75 0.46 

R2 0.86 0.79 

 

(34) Your comment: P11430, L17: Which single rain gauge simulations? Unclear 

what exactly was done here. 

Our respond: As suggested, P11430, L17 has been revised as “As shown in Fig. 2a, 

the annual mean CV ranged from 0.284 (2006) to 0.587 (2003), indicating there were 



16 
 

significant uncertainties if only the dataset of single rain gauge was used as model 

inputs.” 

 

(35) Your comment: P11430, L25: This plateau would be interesting to show. 

Our respond: Yes, I am also pleased to find a plateau exits when the number of 

rainfall station increases. This demonstrates that the information content in rainfall 

spatial variation is reached after a relatively small number of key gauges are used as 

model input (Seibert and Beven, 2009). It is encouraging that a small number of 

gauges distributed more optimally and perform well for logistical reasons (Bárdossy 

and Das, 2008; McMillan et al., 2011). In reality, there might not be many dense rain 

gauge networks similar to those used for this study; therefore, the fact that spatial 

rainfall variation is a function of key gauges rather than all gauges would indicate a 

wider range of applicability. For this study area (2,421 km2), the optimal number of 

gauges were identified as 6 beyond which further improvements to the SWAT 

predictions would not be found. 

 

(36) Your comment: The results don’t clarify what the benchmark is against which 

uncertainty scenarios are being compared. 

Our respond: In fact, the choice of benchmark depends on the targeted variable. 

When multiple-gauges are used, single-gauge simulation is used as benchmark, while 

when single-gauge stations are simulated, these rainfall stations were ranked from 

high to low based on the ENS values and the results of the highest-ENS simulation are 

used as the benchmark. To benefit our reader, we added the following sentence “These 

rainfall stations were ranked based on the ENS values, and combinations of m rain 

gauges (m ranged from 2 to 12) were used as SWAT inputs.” 

 

(37) Your comment: P11431, L19-21: Argument not convincing. 

Our respond: As suggested, P11431, L19-21 has been revised as “The results from 

the statistical analysis are reasonable as rainfall is the major driving force of runoff 

generation and therefor the transportation of NPS pollutants (Andréassian et al., 2001; 
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McMillan et al., 2011).” 

 

(38) Your comment: P11432, L6-10: Unclear. 

Our respond: As suggested, P11432, L6-10 has been revised as “It should be noted 

that comparison using un-recalibrated models is useful to evaluate the differences in 

model predictions because calibration masks the differences that may occur as a result 

of the input data sets. In addition, the un-recalibrated model results can show how 

good each dataset predicts stream flow before calibration, which would indicate the 

effort required for calibration when using each data set.” 

 

(39) Your comment: P11432, L8: What is meant by “due to the availability of 

validation data”? 

Our respond: As suggested, “due to the availability of validation data” has been 

removed from P11432, L8. In fact, “the availability of validation data” means “the 

availability of measured data”. 

 

(40) Your comment: P11433, L13: What’s meant by “certainty-appropriate”? 

Our respond: As suggested, P11433, L13 has been revised as “In this sense, it is 

important to select an appropriate data source because DEMs are generated at 

different scales and a number of the implied watershed processes are 

scale-dependent.” 

 

(41) Your comment: P11434, L7-11: Argument not convincing. 

Our respond: As suggested, the following sentences have added “Additionally, the 

major forms of P in mineral soils are plant-available soluble P, insoluble forms of 

mineral P and organic P. According to the mechanism of the SWAT model, P would 

be taken up firstly by plant uptake and then by erosion, and these processes would 

govern the turnover rates and transport of P (Arnold et al., 1998).” 

 

(42) Your comment: P11435, L15: Is it realistic to suggest this uncertainty reduction? 
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Our respond: In fact, this study focused on the error-transmission from input data to 

model predictions. Based on results, we can have a better understand of the impacts of 

input datasets on the functionality of watershed models. The study indicated that 

rainfall input resulted in the highest uncertainty, followed by DEM, land use maps, 

and fertilizer amount. Therefore, measures should be taken first to reduce this source 

of uncertainty by adding rain gauges, modifying the selection mechanism of rain 

gauge in SWAT, and using appropriate interpolation techniques. As suggested, P11435, 

L15 has been revised as “Therefore, input data uncertainty is critical in NPS modeling 

and efforts should be made to clarify this type of uncertainty.” 

 

(43) Your comment: P11435, L17: “As a complex function of” was never 

demonstrated in the paper. 

Our respond: As suggested, P11435, L17 has been revised as “Second, as illustrated 

in Fig. 3, the input data-induced uncertainty varies considerably temporally and 

spatially due to the varying climate, underlying topography, land use, soil type, and 

management (Shen and Zhao, 2010; Chen et al., 2012).” 

 

(44) Your comment: P11435, L18-20: But how to define it a priori? 

Our respond: To define the MOS a priori, more site-specific studies should be 

conducted, especially in different hydrologic and environmental conditions. We are 

struggling on this issues in hopes that generalities about the relative appropriateness 

of site-specific MOS. As suggested, P11435, L18-20 has been revised as” In this 

sense, a site-specific MOS, which might be more robust to any particular sequence of 

input errors than current steady MOS, should be defined as a priori.” 
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Thank you very much for your wonderful job. Hope that our responses are satisfactory, 

and look forward to hearing from you. 

 

Zhenyao Shen 

Professor 

School of Environment,  

Beijing Normal University 

Beijing,  

China, 100875 

Tel/Fax: +86-10-5880 0398 

E-mail: zyshen@bnu.edu.cn 

mailto:zyshen@bnu.edu.cn
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