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Abstract. Global climate change can have imgaoh characteristics of rainfatunoff
events and subsequently on the hydrological regime. Meanwhile, the catcitssént

changesdue to anthropogenic influenceslowever, it isnot easyto prove thelink

between thenhydrology and the forcingdn this context, itmightean be meaningful to

detect the temporal change of catchmentsindependent from climate chandey
investigating existing long term discharge records. For this perppaew stochatic
systembased on copula®r time seriesanalysisis introduced While widely used time

series models are based on linear combinations of correlations assuming a Gaussian
behavior of variablesa statistical tool likehe copula haghe advantage to scrutinize the
dependence structure of the data in thidoum domain independent of the marginal

Two measures in the copula domain are introduced herein:

1. Copula asymmetry is defined for copulasd calculated fodischargs; this mesure
describes the non symmetric property of tlependence structuend differs from one
catchment to another due to the intrinsic nature of both runoff anchoart.

2. Copula distance is defined as Cramén Mises type distance calculated betwee

two copula densities of different time scales. This measure describes the variability and
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interdependencyf dependence structiwgsimilar to variance and covariance, which can

assist in identifying theatchment changes

These measures are calculated 00 years of daily dischargéor the Rhine rives and
tributaries Comparing the results afopula asymmetry andopula distance betweemn

Antecedent Precipitation IndeXAPl)—and simulated discharge time series by a

hydrological model weanshow he interestingsignals of systematic modifications along

the Rhine rivers in the last 30 years

Keywords : Catchment discharge characteristi@pula stochastic analysigPl, Model

uncertainty

1. Introduction

In order to understand the water cycle behasfaa region, it is important to determine its characteristics,

but this is difficult to achieve due to the diversity of the system response at different time and space scales.
In particular, temporal variability makes parameter estimation difficult andagisessment of model
uncertainty essentials a part of the endeavor tmderstangraspthe hydrological system, the objective

of this research, assessing the anthropogenic impacts on the catchment characteristic independent of the
climate changgs theefore important, yet hard to accomplish.

The first possible approach is to statistically test the existence or change of trend in hydrological time
series which can be related to climate changes or anthropogenic imdacisKk e ndal was Test
performedto confirm the existence @ trend in the annual discharge, precipitation asdireent loadsthen
and-diseussethe human intervention and climate impacts based on the available information of the catchments
were discusse(Wu et al., 2012)Pettitt s M gRettith T979)can be used to detect the time point of trend

alternation and analyze the impacts based on a double mass(Gmeeet al., 20120r a hydrological model
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(Karlsson et al., 2014)These nosparametric methods for detecting the signal seem, however, not capable
enough of explaining when andvanuch the system had changed, thus making it still difficult to relate the
changedue tde human activities.

On the other handunoff events are initiated by precipitation then modified by the state and physical
features of the catchment. This impli¢sat the integrated information of catchment status might be
retrieved by analyzing the discharge time series itelfusing on this propertihe attempts can be made
for capturingthe temporatlependence structure of runoff by time series modElte classical time series
model| autoregressive integrated moving average (ARIMA), is designeestuible a stationary stochastic
process based on the temporal correlation structure of Gaussian random véBiabisd Jenkins, 1976)
However, the tationarity of the data is not guaranteed in reality, thus a number of alternative approaches

have been suggested/hile the application ofourier analysis isbasicallyfor stationaryprocess the

analysis usingeEmpirical mode decompositiofHuang et al., 1998)s-overcoms the restriction of

stationaritya D i v awba ier-anddysadlowing the frequency
and local variance of a time series to vary within a component and to separate the signals adaptively by
scale. Autoregressive Conditional Heteroskedasticity (ARCH) madede the assumption of stationarity
to a certain extent so that variance is not constant, however models the variance in a similar way to
ARIMA. Althoughtheinventions and efforts to overcome the limitation of stationéwitye beearemade,
it seems sli inadequate to model dynamic changes of hydrological processes with these time series
models.

Alternatively there is a statistical concefte copulas, which has advantages to model the multivariate
dependence independently from marginals and recaddpted in the field of hydrolog Copula(Sklar,
1959) is a multivariate probability distribution designed to flexibly model dependence structure in the
uniform (quantile) domain. The use of copulas in hydrology can be found for themasse®sf extreme

events byconsidering flooding as a joint behavior of peak and vol{deMichele and Salvadori, 2003)

Copulas have been applied describe the spatiemporal uncertainty of precipitatiofBardossy and
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Pegram, 2009r the inhomogeneity of groundwater parametéBgérdossy and Li, 2008 Asymmetry of
dependence in a time series can be tested in the framework of a finite state Markov chain's transition
probability matrix(Sharifdoost et al., 2009pissimilarity measures can be defined by means of a copula
modelling the correlation structure of pairs of discharge time seriesder tw identify the similarity of
catdiments with the purpose of transferring catchment properties from one to th¢Sstheniego et al.,

2010) We aim at utilizing copulas as an alternative to classical time series models and an efficient tool for
time series analysis to overcome these hydrological challenges.

The main interest of this study is-fereciselyassess the human intervention and climate change impacts

on hydrological regime for the strategy of future development in the reGmmachievingthis goal,7

daily discharge gauging stationsSouth-West Germay (Figure 3, which have 100 years daily discharge
records, were chosen and extensively analyzed. The gauging stations Andernach, Kaub, Worms and
Maxau are located in the main stream of the Rhine, while Kalkofechetn and Plchingen are located

on tributaries. For further analysis, daily precipitation and temperature records in theVBadwmberg

state of Germany for the last 50 years were obtained from the German Weather Service. Also, 77 discharge
records obtained from ¢hGlobal Runoff Date Centre in Germany were utilized.

The following are the novéthatfolows-is-thenewaspects introduced in this studg) The catchment

characteristis areis defined based on copulas and estimated from discharge data. Alsbathgs of
catchment characteristiare investigately tracing the temporal change ottes statistics (2) A method
to model systematic changes of dependence structure with the help of copulas is suggested, then its
variability and interrelationshipvithef the time series are examined. (8hthropogenic impacts are
assessed bthe discharge precipitation relation using API arahydrological model with copula based
measures.

This articleis divided into five sections. After the introduction, the baskthndology for applying
copulas to discharge time series is introduced in the second section. Thirdly, the measures of asymmetry in

copulas are defined and estimated for the discharges of the river Rhine and other catchments. The

4
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determination of the tempal change of the asymmetry of the copulas is treated in the third sastieell

In the fourth section two topics are treated: (i) the analysis based on copula distances for the observed
discharges and (ii) the comparison of observed discharge witl{Akiécedent Precipitation Index) time

series and simulated discharge time series aftiidrological modelThe conclusion is given ime fifth

section

2. Methodology

In this section, the application of copsita time series is articulated after a birgroductionef-copulas
The very basics about copulapresented hergnrdfurther information can be obtained frddoe, 1997)

or (Nelsen, 2006)

2.1 Basic Methodology

In probability theory and statistics, a copula is a multivariate probability distribution for which the

marghal probability distribution of each variabletsiform.

C: [0,]]n - [O,:l (1) \ Field Code Changed

A

C(U(i)) =y if u(i) :(1'“. Ly ,1,.. :)_ 2 \:Field Code Changed

Any multivariate distribution can be described by a copula and its marginal distributions as was proven by

Skl ar 6 s(Skah ¥8) e m

F(x)= C(Fxl (%), R ()%)) ©)  Field Code Changed
where F, ()g) represents theth marginal distribution of a multivariate random varialfle The copula

density can be derived by taking partial derivatives of the copula:

Hc(u,....u,)  Field Code Changed

c(u,....u)= YT ©)

A

The advantage of using copulas is that the marginal is detached from the multivariate distribution and

the dependencerstture can be examined in the uniform compact domain for different types of data.
5
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2.2 Basic Hypothesis of Temporal Copulas

For the application of copulas to time series analysis, a stochastic system should be presumed to be

similar to the case of spatieopulas(Bardossy and Li, 2008}he random variable at tinteis described as

Z(t) and in general there may exist AGaussian dependency among the elementZ (@) . Then
stationarity is defined for each subset of timgs...,t; EN and time lag k such that

{t.+k....t, %} B and for each set of possible valugs.., z,:

P(z(t) <z Z(1) <z) = (Fiod Code Changed

®)
P(z(t+k) <z...Z(§ ¥ & A
For the given randonfunction Z(t), a setS(k) containing pairs of ranked values is defined as a

function of time lagk as follows:

Z ( | b)) ( E( {t+ I)))} A(@)  Field Code Changed

Thus, a 2dimentional autocopula for stochastic time series is a function of timk fag the setS(k)

similar to the case afspatial copulgBardossy and Li, 2008)

C(ku,u)=PaR(Z(}) <y E(Zt 4) &

A(7) \ Field Code Changed

where (u,u,)I S(K. Thus, a 2imentional empirical copula density can be constructed based on

condtional empirical frequencies on a reguia? g grid and kerel density smoothingBardossy, 2006)

L82i-12) -18 g?  Field Code Changed
€29 20 9[s(¥
¢ ; | .|1 1 ©
J- I J
; IS( K;— Leand—= u<l
Fluw) SR o Leand 2 el

where|S( k)| denotes the cardifity (the number of elements in a set) of Stk).

3. Copula Asymmetry in Discharge Time Series
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High and low values might have different dependsiitgeneral. Measuring the asymmetry of copulas
could reveal substantial aspects of tinegiess data, which are not illuminated in the Gaussian approach.
Statistics defined on copula shape and calculated from obserathmje time series we believe to be a
new idea. Asymmetry functions are defined cdi®ensional copulas as a function of éintag k(Li,
2010y}

Asymmetry land Asymmetry2 aris defined as:

A Eg U -0 5 ( ik 93 (( U, 0-5 (Uf{_k Og [Field Code Changed
(9)
11
=N O(ﬁ 09 (s 09(4 us Iey,y,) dudy,
A k) =E[- U, - 05)U.., - 05U, - 05)- (U, - 0.5)) [ Field Code Changed
) (10
= r(;lroT (ut - 0'5)(ut+k 0. 5)( = Uy )C( Up )du{duwk
« [Formatted: MTDisplayEquation
= t - t+k - t - t+k
—(_g) < [Formatted: Normal
Asymmetry 2-is-defined-as:
=E§ +k t Tk
1)
whereu, = F, (z(t)). u,, =F,(z{t +k)).—Figure 2 shows an idealization of théxe asymmetries (Fomatied: Loweredby 6 pt

| Field Code Changed

between a pair of variablés(t) andU (t +k), showing that the tails of the distributions have a large

impact on each typef asymmetry. The measure of asymmétrompares the dependency between low
and high values an@l)- quantifies how much it is not symmetric. For example, irdin®nsional copula,

A(k) is positive if the probability density is highierthe upper right corner than in the lower left corner.
Onthe contary%h&ethe#handA(k) is negative if the probability density is higher in the lower left corner

than-in-the-upper-rightA, (k) is the asymmetry for the lmtr diagonal of a-Blimensional copula.
Figure 3shows the scatterplot of ranked values of a discharge time series with tikne lh@s a sample

of an empirical autocopula and itslation with storm hydrographsThis figure displays (i) where each

pair of values ona hydrograph canbe plotted onan empirical copula demonstratingthat (ii) the

dependence structure is not symmetric especially¥dik),

7
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This illustrationprovides the insightthat asymmetrycan be related to the shape afunit hydrograph as

well as the notiorthat asymmetry might be used for advanced modeling of hydrological time series.

3.1 Asymmetry and catchment characteristics

Asymmetries can be considered as statistics calculated from the ebsésgharge time series dedds

to-havean important assumptioten bemade 6assymetry2 is related to catchment <cheae

idea will beintensivelydiscussediand demonstrated in this sectidfigure 5(upper lef) shows pag of
the hydrographs of 7 gauging stations in southwest Germany.

First, an importangnd-ebvieumatural propertyf dischargeseen in this figure is that the duratsosf
high flow and low flow periodsarés not symmetric: Flood events, whicare initiated by rainfall or
snowmelt, do not continue for a long time because the duration of runoff to rivers is comparatively short.
On the other hand, stiharge keeps decreasing and stays low for no rain periods. This means that, if two

consecutive &lues in a time series are chosen for small timekdabese two values are likely to be less

Formatted Not Raisedby / Lowered
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Second, theates ofincrease and decrease of dischanges not symmetrial: Soon after the rainfall, the

river flow rises sharply. Once the rain stops and peak discharge is observed, then the water level starts to

decrease, typically more slowly on the recession than tiregrisnb of the hydrograph, which leads to

negative vhues of&(k) for small time lags k. This asymmetry can be related tosthepe of the
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hydrograph.andtherefore thecharacteristics of the runoff and catchmdntaddition it can besad the

annual cyclen Figure4Figure4 is not symnetric in thesamesensea unithydrograph is nosymmetric

The change ofA, (k) with time lagk [days] is now discussed. The point is that these statisticsrfalt s

time lagsk can bemorerelated to the cahment and rainfall characteristics of the region, while asymmetry
for larger time lag& cancapturethe interseasonal characteristic thfe climate in the region.

In order to reduce such seasonal impartsthe analysis ohydrological time seriesdeseaonalization

measure can be applied, for example, for daily stream fl@rimaldi, 2004) Adopting this methodall

the time seires are normalizedthis study.

in-the-follewing-way-FFirst, the-annual-eyele-athe meanm_on the ith cabnder dayis calculatedasthe

expectation othe randomvariable X; on the ith calender dayThen, he annual cycle of theean 7 is

calculatedasa smootted version ofr by lineaty weightingthe neighboringvalues alongi and summing

themup. The smoothedannual cycle of standard deviat®ors, (Figure4 left) can beobtained irthe same

way. Then thenormalizedtime seriesis defined by dividing the original time seires Z(t) by, after

subtracting /77 _as follows

z (t):% ay

norm'
t

e i bt

My =E éxt ees §

N
1

/ﬁusas 2N |=oa§ N 8m|365 1”?361)

wheret | 36E is t(mod 363 and represents calendar day at tinjday]. X—denotes-therandom-variable

) [Formatted: Lowered by 15 pt
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Figure 5(upper right) shows partof normalized discharge time series from the 7 gauging statibns. |
should be noted that the process still appears to beGaossian after this transformation and the
seasonality for small time lagsmight nothavebeen fully eliminated.Figure 5(bottom left and bottom

right) shows the vaaition of asymmetry functions for 7 discharge time series corresponding to titke lag

similar tothecorrelogramsin addition to the confidence interval of Gaussian process.

The confidence intervals the figuresaregainedby calcuhting A, (k) for 100 realizations oftationary

Gaussian proceswhich arefitted to the observed discharge of Andernadiie resultshows that the

process i€learly different fromGaussian and the influence of asymmetry is significantly large.

It can be semthatthe variation ofA, (k) of dischargewithout normaization Figure 5bottom left) has a

larger impact of seasonality for bigger k ¥ 40), while its impacts are mitigated after the normalizatio

(Figure 5bottom right). Furthermore, as a consequence of normalization, a sharp drop dAy\(rk))for

small time lagsk emerged which mightbe regarded as a&atchment indicator.Therefore, the

selected/critichproperties for small time lagsis formulated by (i) taking the minimum value 6§ (k)

for the time lagk <50 and (ii) the lagk at the minimum of asymmetry2:
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k<50

AE min — min Az( k) (12) ‘ Field Code Changed

Ly i = MIN {k; A (K) :,%'min} (13  Field Code Changed

0<k 80
The question is whether they areally related to catchment characteristics. Now, these statistics

esimated for 77 discharge data recorded at the gauging stations in Germany are compared with the

catchment area as one of the simplest possible indicators of the catchment as shigureig: A, . - | Field Code Changed

area (Figure 6top) and shews-a—mere—clearlinearrelation-thiy), - area Figure 6middle) are both | Field Code Changed

showng a linear relatioship withte the logscaled xaxis of catchment areawith positive correlation.

There seems alsto be a the-linear relation betweewhile—the—dispersionsA, | and L, , —as a

consequeces of the above relationshipsn. ferthe—smallerecatehments—arebigforboth-cases: The
correlation-betweery——andL,—(Figure 6bottom-is-slightly-pesitive

This demonstrates that the information extracted from discharge is rildtezibasic information of its
catchment to a certain extent. Since the principal objective is to assess anthropogenic impacts, the idea

introduced now is to use this measure for evaluating the catchment change by calculating chronological

changes ofp, .

3.2 Time Series Analysis with Asymmetry

Temporal change of asymmetsy (k, t) is defined on the set representing a moving time window of

sizew.
S ()= (7 @) (. e+ kD) 5 <a<t+ 24 a9 e cote o
i y .

A(k,t) = E[- (U, - 05)U,., - 05)(U, - 05)- (U, - 0.5))]
= I’ﬁﬁ (u‘ - O.5)(uHk - 0.5)(ut - Uy )C(Ununk)dl{duﬁk

A(15) \ Field Code Changed

11



247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

where u, | U, U, 1U,,, (ut,uﬁk)l' S (k3 .Then the minimum of asymmetry2 and lagat the

minimum of asymmetry2 at timeare given by

A (D)= még A (k1) (16)  Field Code Changed
Ly i (t) = migo{k; Az( k, t) :Aﬁ,min( t)} a7 \ Field Code Changed

Figure 7shows the temporal changes Af, . (t) with window sizew=3000[days] for 7 gauging
stations in southwest Germany addition to the confidence interval calculatéor_100 times
independently generated Gaussian pracess

The comparison of, . (t) from observed discharges with ... (t) from a Gaussian process exhibits
() the influence of asymmetry in discharge is significantly larget agas seenin Figure 5 (i) The

fluctuations of A, . (t) of 7 observed discharge time series appear to bebthgn the one calculated for

a realization of a Gaussian process! (iii) szmin(t) of these 7 discharge records shows a similar trend:

there are big dropowns around 1945 and after 1980 all the discharges

However, it cannot be ascartad whether this is caused by the simultarsechange of the catchments,
the long term meteorological behavior in the regmnjust randomness in the stationary procdss
overcome this, temporal behavior of discharge and temperature were first chgdatdulating the mean,

the standard deviation and the minimuma time window certred omttime t defined by

 Field Code Changed

1 i+we2
Mean( t):—n_w/2 4 g da

su(y=Va(] = (43 A of 9
. - LW w (0
Mln(t)—mln?Z(a),t - € t<5+3 A

wherew is the size of time windowkigure 8showsthe moving average and moving standard deviation of
discharge records with windows size= 3000 [days], but it is hard to say whether the behagund

1945 and after 1980 is unusukigure 9shows mean and minimum of temperature in the time window

12
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ofwith size 365 [days] which correspond to annual mean and minimum. Roughly speaking, there are
certain cold periods arodn194Q 1955 and1985, which might influence the snow accumulation and
melting in the regionhut the relation with asymmetry?2 is rather obscure.

What seems to be a useful outcome from the above exploratory analysis is that (i) the behavior of
asymmetryds different from catchment to catchment showing a statistical relation with the catchment area
and(ii) temporal behaviors of asymmetry2 of 7 discharges time series are dependent on each other, which

implies the existence of a background mechanism contimtire region.

4. Analysis of hydrological time series with Copula Distance

As an alternative to copula asymmetry, which emphasizes the belawothe cornes of copulas
copula distance is hereggested so thdhecharacteristic behavior can beptared in the entire domain of
the copula. Calculating this for each time step for different time series and comparing them hopefully

exhibits the changes of deemce structure and therefore the catchment change.

4.1 Introduction of Copula Distance

Thebasic idea behind the copula distance is to apply the Creoné¥lises type distance

D:r”gl :(ﬁ (L!L’ LE) -C( " L&))z dy dy A(lg)  Field Code Changed
~which by design measuresetigoodness of fit between two distribution functiowstwo copulas. This
type of distance was tested to measure the difference between empirical and theoreticalircapala
bootstrap framework for the evaluation of spatial dependence of ground waltgy (Bardossy, 2006)
For the analysis of time series data, it still needs to be carefully thought out how (and which) copulas

should be chosen.

4.1.1 Introduction of Copula Distance to single time series

In order to appt the concept of copula distance to time series, the adoption of two copulas in different

time scales is considered. An empirical copula can be obtained from an entire time series which contains
13



290 the averaged information of all the time poirgtobal copud). Another empirical copula can be obtained
291 | for a certainime window of widthw centeredat time stept (local copulg. In order to make the concept

292 clear, two sets containing pairs of ranked values with different time scales afeedpeci

293 Sglobal ( k) :{( Fz( Z( b)) ,( ( i t+l) 'g( ‘(20) | Field Code Changed

0] \ Field Code Changed

294 Socal(k t)

_‘_('D

E(F. (da) (. (da+ ) - Vg<a<t+“g9 @

A

295 S . ( k t)can be interpreted as a moving time window where the reference isnset to the middle of

296 the window of sizew, while Sglobal

( )represents a set of the entire time ser@sbal copulaard local
297 ‘ copulaare the empirical autocopula densities defined on these sets based on E@@)8}é8), there

298 denoted byc

Josa (U) @nd G, (u,t, w) respectively for the 1imensional case. In this analysis, 3000

299 [days] for the time windowv and a 3dimensional copula separated with 1 day gap between each variable

300 ‘ are employed. This meattsat

301 u= (UO, u, uz) (22 \ Field Code Changed

302 whereu,=F,(Z(t)),u =R (Z(t B).u E{Zt 2} then the deviation of local copula from global

303 copulais defined by

304 De(u,t) =gou (Ust)  Eopa (U) (23 | Field Code Changed

305 For the first approach, the comparison of dependence structures between entire and local time series is
306 done for detecting unusual dependence structures. To this@nda distace typelis defined by taking

307 | the copula distance between global and local cemilkeachtime stept

 Field Code Changed

D t lobal -*ocal ot 2d ...d
308 (€0 e o (@ (1) -G (u,9)" cu-..aiy o0

. @(u,t)qu...dq

I
S
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Secondcopula distance typei2 introduced for indicating the point at which the structure of copulas starts
to change. For this method, the distance between two local copulas is calatiatednstantsrom-the-2

time-intervals

2 o

 Field Code Changed

|-O:0n

DZ(Cit): Fj :?;eal% lzv ° éiocal U; _+ djg dH (25)

Note that reference time is set to the middle of both time windows and shifted2ffadays] from each
other where the sizef the time windows isv. Therefore, there is no overlapping part between the two
time intervals of these two local copulas. For the comparison, the moving variance is introduced as

follows:

\/ Field Code Changed

EgZ() g=f " 29 da

W tw/2

» 2 (26)
Var(t)——n (2(a) -EaZ(} )g o

A

Figure 10shows the result ob, (t), D,(t) andVar(t) in the moving time window for the normalized | Field Code Changed

dischargetime series between 1940 to 2000 at 4 gauging stations located in the main sttieaRhaofie
(Andernach, Maxau ) and its two different tributaries (Cochem, Plochinigeajidition to the 90 %

confidence intervals calculatedrithe Gaussian procesited to the discharge data of Andernach

First of all, thevalues ofthese2 D, (t) and D, (t) measureqat Cochem and Plochingen are bigger and

more fluctuatingthanin general. The reason could be that their catchments and jsshare smaller,
thus more sensitiveo changesSecond, it can be said that the defsee structure is not homogeneous

over the time period, but the local copula clearly deviates from the global copula for certain time periods.

For example, the value dd, (t) is remarkably big around 1947, 1982 and 2000 for all the 4 discharge
records(indicategbeintedby white arrows) D, (t) is also big around 1977 for all the datagilsignal of

D, (t) implies that a simu#tneous change of runoff behavior occurred in this regian1977, which can

be related to the high value & (t)at 1982.Var(t) is also changing, butthe direct relation withD, (t)
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and D, (t) is hard to recognize. Also the confidence interval of the Gaussian process is clearly smaller

than the observed one. This indicates the copula distances of the stationary process are small while the

nature process is nestationary and its dependence stuue is more varying.

For copula distance typethe global copula can be considered as an average state of the copula, while

the local copula can be regarded as a realization of a possible statepofla at time step This concept
can be comparabl® variance and leads to a new measaopula variance which is the summation of
copula distances between global and local copula over the time.

1

Var (c):t Y

cop

A o(cyd (27)

A

\: Field Code Changed

Table 1Table1Fablel shows the variance and copula variance calculated for the 4 discharge data. The

result demastrates that copula variance of the time series can be higleerjfatie conventional variance

is lower for example in case of Maxau.

4.1.2 Copula Distance for two time series

In the previous section, copula variance was defined as a measure of the variability characteristic of the

copula itself. Here, it idetermiredexaminedvhether covariance can be defined for two copula densities
andc; from two time series asopula distance type3vhich shows whether the variability characteristic of

copulas is related to each oth@the measure introduced is :

Dy(C. G, )= - | (U, ©(u.ddy...dy (29)
where

Dci (U, t) :(:Ijocal (U, t) EEl,global (U)

: : (29)
Dcz(u,t) :(‘zlocm(u’t) ez,global(u)

A

By its definition, the value dd,(t)can be related t@®,(t) becauseD,(t) compares the deviation of local

copulas from global copulas in a similar way(t) in Equation (B). In order to reduce the influence of

16
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351  D,(t) on D,(t), copula distance type# introduced as a normalized measure bounded betvieand 1

352 analogous to aoelation.

D3(C1, G, t) (30) \ Field Code Changed

JD: (¢, 1) §/D,(c, 1) )

354 wherdD,(c,, c,, t)] ¢ 1. For comparison, covariance and correlation in a moving window are introduced for

353 D,(c,c, t)=

355 two random variables;#) and Z(t) as follows:

{+

356 CO\('[ ﬁ ( ( é Eg Z ) H ; ;i -E g ) ) (31) ‘:Field Code Changed

Cout) | Field Code Changed

357 Corr(t) =

. (32
War(Z,(t) QVar(z,(t) )
358 Figure 11shows the copula distance between two time sdbig$) and D,(t) in addition to the

359 | covaiance and correlation mmoving time window.
360 First, it can be said that the behavaf covariance and correlation in a moving window are different

361 from D,(t) and D,(t). This implies these two copula based statistics exhibit different properties of the

362 time series from ordinary statistics. SecoBg(t) shows high values around 1947, 1982 and 2000, which

363 ‘ is Smilarameto the case oD, (t) in Figure 10 This indicates that unusual states of copulas in 4 discharge

364 time series can be related to each otfaird, D,(t) is in general high except for the period around 1970

365 and 1990. This means, the temporal behavior of dependence structures for these 4 discharges are actually
366 similar except for these periods evenlX (t) andD,(t) are small.

367 Copula covariance and copula correlation can be defined similar to copula variance in order to quantify

368 the overall behavior of two time series.

1  Field Code Changed

369 Covy (G )= D(Y d (33

Cov,(c,,c,)  Field Code Changed

v (39

\/Va cop Q/V& cop

17
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371 Where‘Corrcop(cl,cz)‘ ¢1 and its derivation can beund in appendix A. ITable 2Fable2Fable2, these

372 copula based distics are compared with ordinary statistics. For example, Cochem and Plochingen are
373 located remotely in different tributaries, thus covarianod eorrelation are lower than the others, but

374  copula covariance and copula correlation are not the lowest.

375 The measures using copula distance are different from the conventional statistics. This behavior can be
376 explained by the fact that the autocopukes hmore substantial information about temporal dependence

377 structure than the autocorrelation. Using these measures might enable us to take advantage of a different
378 way of seeing the dependenaivireen time series.

379 What is new in the analysis of this sectiis that (i) measures based on copula distance show the
380 different properties of time series in comparison to conventional statsiit§i) there are significant

381 signals ofcopula distancer certain time periods in common to all the discharge data.

382 | 4.2 Copula based Stochastic Analysis with API and Hydrological Model

383 The difficulty of analyzing discharge time series in order to detect catchment change is that it is not clear
384 whether the temporal change of stochastic information is caused by eatckhrange or merely by
385 random behavior of precipitation. To gain an understanding of this process, we attempted to eliminate the

386 | influence of precipitation usindirst, an Antecedent Precipitatidmdex (API) (antecedentprecipitation

387 | indexy) for comparien with discharge second, using a hydrological model with the parameter sets

388 calibrated and fixed for the entire simulation time period

389 4.2.1 Copula Distance Analysis with API

390 An API| (Antecedent-Precipitation-tndetime series, which is generated fravhserved precipitation

391 time series and behaves similarly to discharge, is used instead of precipitation.

392 API(t+1) =API(t) P(t 1y (35) | Field Code Changed
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393 whereP(t) is daily precipitationfmm/day], API (t) is time series of API [mm/day] and = 0.85 was

394 chosen. The assumption for this method is thatARetime series has the stochastic information purely
395 | originated from the precipitation, while observed dischargestippoesed—to—bdnfluenced by both

396 | catchmergand precipitatioacharacteriscs. If the stochastic information derived from these two data sets
397 is the same, this indicates that the stochastic turbulence is originating from precipitation; otherwise the
398 change is from the catchment.

399 For this investigation, precipitation data waarefully chosen for 4 regions (northwest, northeast,
400 souhwest and central) of BadaWurttemberg (Germany) so that they have several almost continuous
401 daily records between 1935 and 200Hgure 12 shows the locations of measwyi stations. The
402 | precipittion time series were aggregated into one for each region by tékimglaily average, then 4 API
403 | time series wreas calculated in total by Equatiof85)(35435). Figure 13shows the resutig-ef copula

404  distancesD,(t), D, (t) and moving averag®ar(t) for API time ®rieswith the 90% confidence intervals
405 of the Gassian processFigure 14 shows the result of copula distancBg(t) , D,(t) and moving

406 covariance and correlation for API time series.

407 | What can be recognized firsbmin-this Figure 13is that the magnitudes oD, (t) and D,(t) are smaller
408 | than the case of discharge. This is considerduteppen-as result of aggregation of precipitation time

409 series and adoption of API, but some signals foa still identified:D, (t) around 1947 and 2000 is high,
410 | but notas highmuehfor 1982.The signal ofD,(t) which was detected around 197 7Higure 11does not

411 | seem to exist for API. Thiseanbe even more clear fob,(t) in Figure 14in thatthere is no common

412 change of the dependence structure around B8P timeseriesThis is interesting due to thellowing

413 | implications: (i) the noises db, (t) in Figure 13Figure13Figure 13 were reduced and signals in common

414 | were amplified (iijthe unusual state difie copula around 1982 is not causedtby precipitation, but could

415 be causetyy the catchment change.
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For further verification, copula distance type3 and type4 between discharge and API time series were
calculated as shown iRigure 15 This result also shows there m® clear relation between API @&n

discharge time series around 1982.

4.2.2 Copula based analysis with a hydrological model

ach region
of BaderWirttemberg—stateln this section, simulatedlischargs time seriesare generated bya
conceptual hydrological moddiBV (Bergstrom 1976 Bergstrém, Singh, and others 199&hich takes

daily precipitatios and temperatugerecordsas input and simulates dischardes smaller catchmentas

an examplenere—+ebust-samplef dischargeto compare with observed dischangeorder to checkf
differencegmight occurdue tothe method.

Thus the idea behind this methodology is similar to the case of aAPhydrological model with the
parameters fixed for the entire time period represents the catchment not influenced by anthropogenic
impacts. Then, the discharges simulated by thodel should nalependeflect onthe catchment change,
while observed discharge is assumed to be influenced by both catchment and precipitation.

For the study areathe Upper Neckar Catchment was chosensaswrdrawn in Figure 12 One
parameter set needed for this model constitutes of 13 parameters which are calibrated tressgdstin
Sutcliffe model efficiency coefficient usirthe simulated annealing algorithm for the period between 1960
and 2000 Then, 30 parameter sease independently calibrated in total and, subsequently, 30 simulated
discharges time series are generated to comparengibbserved discharge.

Figure 16 shows the result of copula based analysis calculated for single senges
(D,(t),D,(t), A (1)). It can be seen thah, .. (t) in Figure 16(top) that (i) fluctuatios of A, . (t)
of observedand simulateddischargeare locally dentical. This impliesthat theshort termbehavior of

'%,min(t) is originated from the temporal behavior of precipitation but (ii) there saisthange of trend

around 1976:A2'mm(t) of observed discharge is slightlygger than shulated before 1976, while
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440 A, . (t) of observedischargeclearlyundershoot the simulated onesafer 1976. Thichange otrend

441 was also seen in theevious analysesl, (t) in Figure 10. Furthernore, D, (t) in Figure 16(middle) is
442 high before 1976 which indicates the statettaf copula is different from the rest, while the result of

443 simulated discharges does not show such tend@p@.) in Figure 16(bottom)indicates the change of

444  dependence structure happened around 1970 and 1977. These resultseddiBY model indicate the
445 change of the dependence structure detected using copulas around 1976 is nobygdhsechndom
446  behavior of precipitation, but by the befa of the catchment itself.

447 The fact and the notion obteid in this section is that (Both results from API and HBWased on
448 copula measuresdicate that the catchment changed around 1w(ii), by comparing the simulated
449 | dischargewith observed dischargéhe origin of the change of stochastically information can be assessed.

450

451 Conclusion

452 In this paperthe application of copulas for hydrological time series data is newly explored for the
453 deection of catchment chasteristics andtheir temporal changes.

454 1. A Copula based measure, asymmetry, was defined and newly appli¢ide fokentification of

455 ‘ catchment characteristics. Indeedwitss presumegresentedthat asymmetrydsean—berelatedto the

456  runoff characteristics.

457 2. The relation between the minimum of asymmetry2 and catchment charactevagitested for 77
458 ‘ discharge records. Asymmetry2 hasertain relation especially withe size obiggercatchments and this
459 strengthens theation that asymmtey2 can be usedsa statistic to explain the catchment state.

460 3. Temporal change of asymmetry2 was calculated as an indee& adtchment state and demonstrated
461 ‘ it keeps changingoincidentallywith time. However, it is difficult to g¥ain the causality, at least, by long

462 term behavior of discharge and temperature time series.
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4. A method based on copula distance was examined for the investigatiompufraé behavior of
hydrological time series. This measure can detect the timedpetiere dependence structure is unusual
and its interdependency. Clear signals were detected that the dependence structure is ualcargifor
time period and the signal was not found by investigating the time series with variance, covariance or
correlation.

5. API time series ere generated for each region in the Badiirttemberg state and simulated
discharge time seriesaregenerated usinthe HBV model forthe Upper Neckar Catchment. These are the
data not influenced byhe-catchment change, thucompared with observed discharge to assess the
anthropogenic impacts. The results showed that there was a signal detected only in the observed discharge

around 1982, but not in the API or simulated time series, which implies the anthropogenic imghets on

catchment. Also it was shown in the results of copula asymmetryhthatifference-ofA, ——(t)-between
observed-and-simulated-discharge-was-net-constarthétrend clearly chandaround 1976.

The results of copula based analysis ydfological time serieseemto support the assumption that the

catchment had started to change around 1976 aneédstmusual until 1990. These changes could
correspond to the construction of flood rgten basins started around 19@2mmersen et al., 2002nd
ecological flooding strategy, which let sm#dods to happen for the rehabilitation of ecological system
in the floodplain, introduced ithe Upper Rhine since 198%iepe, 2006)

Copulas can beeenasan altermtive method to analyzée hydrological time series data by focusing on

the dependence structuiteut furtherexploratoryapplications andheoreticaldevelopmentsire expected

The copula based measures introdugethis studycan berelated to the potgial modeluncertainy, that

is, how much the natural system is varyifgnpirical autocopulanalysisis a more data driven approach

which retains more information than the copulas estimated with parametric methods, but it is also
numerically demandinglrhe effective way to analyze time series and buildatime series model based

on copula can be further explored.

| Field Code Changed

\/ Field Code Changed

| Field Code Changed
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Appendix A
Suppose that a random variable at tin® denoted ax (t) andc, (u,t) is an autocopula obtaindcbm

X (t). Assumingc, ,...(u) as an average staté g (u,t), deviation of copuleDc, (u,t) at timet is

defined by

De, (u,t) =T, (U,Y) € ear(U) (A1) ('Field Code Changed
For the empirical caseg, (u,t) and ¢, ...(u) can be regarded as local copula and global copula

respetively similar to Equatiorf29){29}29). Since global and local copula are empirical copula density as

defined in equatiofi8){8}(8}, Dc, (u,t) can be regardkas a vector of values on finite number of grids:

g (1) :( B, (1), @,(), »cR(D).... cR( t)) (A2)  Field Code Changed
where Dc, ; (t) denotes the value of copula densityidh grid and N is the number of grids. From

Cauchy-Schwarz inequality

loog (0)] qa(¢)||z|< e Y(t))*i( A(A3) Field Code Changed

where g (t)|is norm and(cpg (t), go(t)) is inner product of vectompg (t) and g (t) .Then

 Field Code Changed

les(l=a o, (f

(A4)
=i (P (D) du..dy B (g .9 ‘
|<q)9(t)’ q(¢)>|2 \:Field Code Changed
=(g (1), ofe)) %1 Q.() ©.0) (A5)
=f . @ (u) ©u.Ydy..dy B(c.c.) A
(G TOMC: O/ N CH) SRS o (Fttcode harge

[os O #e)] Dic.h®,(c,.9
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Therefore| D, (cX Gy t)| ¢ 1lin Equation(30){36}(36). Above inequality is valid for certain time poinand

summing up (A6) for all the time stepdeads to

a (e (19 o)) =& e (e &

A

where T is the number of time step#qoq (t)|| is a norm and can beenotedfor simplicity as

% =[epg (1) - Then

émm90W|¢@W=<,> (A9

A

wherex = (%, %,,..% ).y ¥, ¥%,..¥) for t=1...T . Again from CauchyBchwarz inequality

[ y)f ¢ ] (A9)

where

Mol ax B s (Of A

T T (A10)
:?_1 D, (cx.t)* tc"'?'_Dl(cY,t)Z B vaf),(c) Vargd c)
c)=a(x 9) Hles(l | G0l) & o ()
h N tF (A1

= a DS,XY (t) :T GaVcop( CX' CY)
Then|(x,y)|" ¢ [x|{ly| indicates

[Cov,y (G 6 )| ¢ Va,( 6) Var,( c)
Cov,,,(c ) (A12

‘cop

i \/Varcop ( CX) '\lvarcop( CV)

|Cor,

op
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Tablel Variance and copula variance calculated for 4 discharge time series

ANDE COCH MAXA PLOC
Var 1.79 2.24 1.75 2.72
Varg, [x1079] 3.01 1.64 5.39 1.27

Table 2 Covariance, correlation, copula covariance aoguta correlation between 4 discharge data

(AN:Andernach, CO:Cochem, MA:Maxau, PL:Plochingen)

AN-CO AN-MA AN-PL CO-MA CO-PL MA-PL

Cov 1.68 1.60 1.33 1.38 131 141
Cor 0.84 0.90 0.60 0.70 0.53 0.64
COMop [x1079 4.90 3.40 3.39 7.16 9.90 5.47
COrcop 0.60 0.77 0.46 0.71 0.60 0.59

Table3 Variance and copula variance calculated for API time series of 4 regions in the Baden

Wirttemberg state of Germyan

C SW NW NE
Var 1.70 1.66 1.72 1.78
Varg, [x1079 3.00 4.02 3.35 3.21

Table4 Covariancecorrelation, copula covariance angpala correlation between API time series from 4

regions in the Badewdurttembergstateof Germany

C-SW C-NW CNE SW-NW SW-NE NW-NE

Cov 1.35 1.33 1.44 1.25 141 1.42
Cor 0.80 0.77 0.84 0.74 0.84 0.83
COMeop [x1071] 1.46 1.16 8.94 4.42 111 8.80
Coreop 0.36 0.29 0.29 0.09 0.26 0.24
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602 | Figure Captions
603

604 Figure 1 Locabns of 7 discharge gauging stations in the Upper Rhine Region

605 Figure 2 Visualization of the functions which displays the contribution of a realizati(‘.hmK MHK) to
606 assymetrylleft) andasymmetryZright)

607 Figure 3 Sketch of the transformatirom sample hydrograph (left) to empirical copula (right):
608 Scatterplot of ranks are calculated from two values separated by tirke=lafflays] in a discharge time
609 series of Andernach wherank correlation=0.987(, A (k=1) = 6.000239:and

610 A (k =1) = 3.0001103. The possible combinations of high and low values, which has large impacts on

611 asymmetry, are numbered (1) low to high, (2) high to high (3) high to low (4) low to low. Negative
612 contribution to asymmetry2 is drawn with reiccle, positive contribution with blue circle.

613 Figure 4 Annual cycle of mean discharge after smoothing (left) and annual cycle of standard deviation
614 after smoothing (right)

615 Figure 5 Discharge time series between 1950 and 1955 before applying normaligapenieft) and after
616 applying normalization (upper right). The variation of asymmetry2 function calculated for entire time
617 series before applying normalization (bottom left) and after applying normalization (bottom right) with

618 90% confidence intervalg(ey) calculated for 100 realizations of Gaussian process (dashed mgef sz
619 calculated for one of the realization of Gaussian process ).

620 Figure 6 Relation between Asymmetry and catchment characteristics: minimum of asymmetry2 of
621 dischage and catchment area (top), lag at minimum of asymmetry2 of discharge and catchment area
622 (middle), minimum of asymmetry2 of discharge and lag at minimum of asymmetry2 of discharge (bottom)

623 Figure 7 Temporal change of minimum of asymmetry2 for 7 dischamgeds and confidence intervals
624 calculated from the Gaussian process (90% confidence interval with grey color and 60% confidence
625 interval with dark grey color) and one of its realizations (dashed line)

626 Figure 8 Moving average and standard deviation ®fftldlaily discharge records for the window size
627 3000

628 Figure 9 Annual minimum and mean of aggregated daily temperature in the-B&dtemberg state of
629 Germany

630 Figure 10 Copula distances of discharge time series in moving time window: moving vatoghce (
631 distance typel (middle) and distance type2 (bottom) with 80% confidence interval of Gaussian process and
632 one of its realization (dashed line)

633 Figure 11 Copula distances of discharge time series in moving time window: moving covariance (top),
634 moving orrelation (second), distance type3 (third) and distance type4 (bottom)

635 Figure 12 Locations of the precipitation gauge stations within the Batigttemberg (Germany)
636 indicated by coloured circles. Upper Neckar catchment is drawn with green area adtibe bf
637 gauging station is drawn with a square
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Figure 13 Copula distances of API time series in moving time window: moving variance (top), copula

di stance typel (middle) and copula distance type2 (bottom) w

southwes, ONWO denotes northwest anWirtteNoerg Stateecoh o0t es nort heast
Germany respectively with 80% confidence interval of Gaussian process and one of its realization (dashed
line).

Figure 14 Copula distances of API time series in motimg window: moving covariance (top), moving
correlation (second), distance type3 (third) and distance type4 (bottom)

Figure 15 Copula distance type3 (top) and type4 (bottom) between 4 discharge and 1 API time series
which is aggregated for all the dailyggipitations depicted in Figure 12

Figure 16 Copula asymmetry and copula distances for 30 simulated and one observed discharge time series
at Plochingen between 1965 and 2000: minimum of asymmetry?2 for the tikkes1agdays] (top), copula
distance typg (middle), copula distance type2 (bottom)
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654  Figurel Locations of 7 discharge gauging station
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1) Andernach
2) Kaub

3) Worms

4) Maxau

5) Cochem
6) Plochingen
7) Kalkofen
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Figure2 Visualization of the functions which displays the contribution fadization of(Ut,UHk) to

assymetrylleft) andasymmetry2(right)
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Figure 3 Sketch of the transformation of the values from sample hydrograph (left) to thes paint —{ Formatted: Font: 12 pt

[ Formatted: Font: 12 pt

scatterplot of rankgéright): empirical copula calculated from two values separated by timk ¥addays]

in a discharge time series of Andernach whd@hkeorrelation =0.987C Ak =1)=- 0.000230% and

Az(k :1): '0'0001103—‘. The possible combinations bigh and low values, which has large impacts on

asymmetry, are numbered: (1) low to high, (2) high to high, (3) high to low, (4) low to low. Negative

contribution to asymmetry?2 is drawn with red circle and positive contribution with blue oval.
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674 Figured Annual cycle of mean discharge after smoothing (left) and annual cycle of standard deviation

675 after smoothing (right)
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676 lag k [days] lag k [days]
677 Figure5 Discharge time series between 1950 and 1955 before applying normalizationlétpeed after
678 applying normalization (upper right). The variation of asymmetry2 function calddtatentire time
679 seriesbefore applyinghormalization (bottom left) anafter applyinghormalization (bottom rightyvith

680 90% confidence intervals (grey)lcalated for 100 realizations of Gaussian process (dashed Iiﬁg(I@

681 calculated for one of the realization of Gaussian process ).
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Figure6 Relation between Asymmetry and catchment characteristics: minirhasymmetry2 of
discharge and catchment area (top), lag at minimum of asymmetry2 of discharge and catchment area

(middle), minimum of asymmetry2 of discharge and lag at minimum of asymmetry2 of discharge (bottom)
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Figure7 Tempaal change of minimum of asymmetry?2 for 7 discharge records and confidence gterval
calculated from the Gaussian proc€33% confidence interval with grey color and 60% confidence

interval with dark grey color) and oneitd realizations (dashed line)

Figure8 Moving average and standard deviation of the 7 daily discharge records for the windawe size

3000

37





















