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Responses to Comments of Referee #2 

1 General comments 

The authors have treated a difficult and complicated hydrological problem. The solution methods are of a 

standard mathematical nature, but by no means trivial. Their final solution becomes a triple sum where 

zeros of transcedental equations have to be calculated. Moreover, the factors for the horizontal 

contributions Fx(m, 𝑥̅) and Fy(n, 𝑦̅) are independent, but the term (m, n, 𝑧̅, 𝑡̅) depends on m and 

n by means of the variable f = 𝑚
2 + 𝑧𝑚

2
. This analytical solution belongs to Class 2 according the 

classification in Veling and Maas (2009). 

    The style of the paper is straightforward and the derivation in the Appendix is intelligible.  

In their sensitivity analysis the authors give useful dimensionless expressions with criteria when to 

use which approximation for given circumstances and when an approximation is not appropriate. Their 

sensitivity analysis could be extended even further by treating the boundary conditions in a different way. 

    The authors do not give much information about the numerical evaluation of the found analytical 

expression other than some details how the zeros of the transcedental equations have been found. A 

validation of solution has not been supplied other than comparisons with other published solutions of 

simpler problems. It is possible to make choices for the parameters such that this solution should be equal 

to earlier published ones (e.g. the recharge area is the whole aquifer). In that way an independent, partial 

check of this solution could be possible. 

    Can the authors give information about the performance of their code (calculation times, convergence 

properties of the triple sums) and about the availability? 

    The general impression is a good piece of technical work based on well-established equations and 

boundary conditions for such cases. This solution based on the inclusion of equation (8) (time dependent 

first order free surface equation) for the chosen finite aquifer with a finite recharge domain seems to be 

new. 

Response: Thanks for the comment. It is indeed an interesting work to reduce the present solution to earlier 

published ones or to show their equivalency/equality. To the best of our knowledge, there have been four 

existing analytical solutions dealing with similar topics to this note (Zlotnik and Ledder, 1993; Ramana et 

al., 1995; Manglik et al., 1997; Manglik and Rai, 1998). Unfortunately, our solution cannot reduce to the 

Zlotnik and Ledder (1993) solution because their solution is based on aquifers of infinite extent in the 

horizontal direction while ours considers aquifers of finite extent. Neither, the present solution cannot 
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reduce to any of the other three solutions due to different mathematical representations of regional 

recharge. Those solutions regard recharge as a source term in two-dimensional flow equation and are thus 

independent of elevation z. On the other hand, our solution considers regional recharge as a boundary 

condition specified on the top of the aquifer (Please refer to Yeh and Yeh (2007) for discussing the 

differences in point-source and boundary-source solutions), triggering the vertical flow below the recharge 

area and making the flow field three dimensional. Nevertheless, the present solution and those four 

solutions can give the same hydraulic head prediction at observation points under certain conditions 

discussed in sections 3.1  3.4 in the previous manuscript. 

We add following text in the revised manuscript to address convergence of the series in the present 

solution:  

“The first term on the right-hand side (RHS) of Eq. (30) is a double series expanded by 𝛼𝑚 and 𝛽𝑛. The 

series converges within a few terms because the power of 𝛼𝑚 (or 𝛽𝑛) in the denominator of 𝜙𝑚,𝑛 in Eq. 

(30a) is two more than that in the nominator. The second term on the RHS of Eq. (30) is a double series 

expanded by 𝛼𝑚  and 𝛽𝑛 , and the third terms is a triple series expanded by 𝛼𝑚 , 𝛽𝑛 , and 𝜆𝑗 . They 

converge very fast due to exponential functions in Eqs. (30b) and (30c). Consider (m, n)  (1, 2, …, N = 

30) and j  (1, 2, …, Nj = 15) for the default values of dimensionless parameters and variables for 

calculation in Table 2. The number of terms in one or the other double series is 30  30 = 900 and in the 

triple series is 30  30  15 = 13500. The total number is therefore 900  2 + 13500 = 15300. We apply 

Mathematica FindRoot routine to obtain the values of 𝛼𝑚, 𝛽𝑛, and 𝜆𝑗 and Sum routine to compute the 

double and triple series. It takes about 8 seconds to finish calculation for 𝑡̅ = 105 by a personal computer 

with Intel Core i5-4590 3.30 GHz processor and 8 GB RAM. In addition, the series is considered to be 

converged when the absolute value of the last term in the double series of 𝜙𝑚,𝑛 is smaller than 10-20 (i.e., 

10-50  10-20 in this case). That value in the other double or triple series may be even smaller than 10-50 

due to exponential decay.” (lines 286-299, page 14) 

At the end of Acknowledgements, we add the sentence “The computer software used to generate the 

results in Figures 26 is available upon request.” 

 

2 Some specific remarks 

Page 12249, l. 9: No mention is made of the work of Bruggeman (1999, 360 BIII-6, from p. 321) for 

comparable solutions in a finite strip. 

Response: Thanks, we insert the following sentence in the revised manuscript: 
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“Bruggeman (1999) introduced an analytical solution for 2D steady-state flow induced by localized 

recharge into a vertical strip aquifer between two Robin boundaries.” (lines 85-86, page 5 ) 

 

Page 12252, l. 24: The introduction of the distance d is unclear in the case that the location of the 

observation well has coordinates (xw, yw) with xw > x1 + a, yw > y1 + b or xw > x1 + a, yw < y1 or xw < x1, yw 

> y1 + b or xw < x1, yw < y1. What should be the distance in such cases: 

d = min⁡(|𝑥𝑤 − 𝑥 − 𝑎|, |𝑦𝑤 − 𝑦1 − 𝑏|, |𝑥𝑤 − 𝑥1|, |𝑦𝑤 − 𝑦1|) 

or 

d = min

(

 
√(𝑥𝑤 − (𝑥1 + 𝑎))

2
+ (𝑦𝑤 − (𝑦1 + 𝑏))

2
, √(𝑥𝑤 − (𝑥1 + 𝑎))

2
+ (𝑦𝑤 − 𝑦1)2,

√(𝑥𝑤 − 𝑥1)2 + (𝑦𝑤 − (𝑦1 + 𝑏))2, √(𝑥𝑤 − 𝑥1)2 + (𝑦𝑤 − 𝑦1)2

)

 ⁡? 

Response: Thanks for the comment. Following sentence is added to give an explicit definition of d in the 

revised manuscript: “The shortest distance between the edge of the region and an observation point at 

(𝑥, 𝑦) is defined as 𝑑 = min(√(𝑥 − 𝑥𝑒)2 + (𝑦 − 𝑦𝑒)2) where (𝑥𝑒 , 𝑦𝑒) is the coordinate of the edge 

closest to the point.” (lines 149-151, page 8 ) 

 

Page 12254, l. 4: The symbol l for the recharge rate has been introduced earlier for the width in the x-

direction of the rectangular aquifer. 

Response: Thanks, this is a typo by the typesetter of this journal. We will correct it. 

 

Page 12254: l. 12: Remark the way of scaling: with d in the horizontal plane and with B in the vertical 

plane. 

Response: We inserted the following sentence after the dimensionless definitions in equation (9): 

“Notice that the variables in the horizontal and vertical directions are divided by d and B, respectively.” 

 

Page 12257, l. 1: It should be better to label f as fm, n to make clear the dependency on m and n. In fact, 

also j should be better j, m, n. In the current presentation the solution looks simpler that it is really! 

Response: Thanks, they have been changed as suggested. Please refer to the new expression of the present 

solution at the end of this reply. 

 

Page 12258, l. 20: More explanation is needed for formula (23); specify a reference here for the use of 
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Duhamel’s Principle. Very likely, in the denominator  should be t(0). 

Response: We added the reference “Singh (2005)”. It is 1/ rather than 1/t(0) so that coefficient  in 

equation (30) at the end of this reply can be eliminated. 

 

Page 12258, after Section 3.2: Some information could be given about the way the authors have treated 

the triple sum numerically. Did they use convergence accelerators? 

Response: No, we did not use accelerators because the present solution converges very fast (i.e., only a 

few terms are needed to achieve good accuracy). Please refer to the first response for the discussion on 

series convergence. 

 

Page 12261, l. 5: The mention of "Fig. 2" does not seem to be correct. 

Response: Thanks for the comment. It has been deleted. 

 

Page 12264, l. 18: The sensitivity analysis w.r.t. a: have the authors taken in consideration that by changing 

a also the scaling variable d changes too by the chosen location of the observation points/wells A and B? 

Response: Variable d equals a fixed value of 5 m for the case of observation point A and 250 m for the 

case of observation point B in Figure 6 in the manuscript. 

 

3 Some minor remarks 

Page 12248, l. 24: Change "the" into "a". 

Response: As suggested. 

 

Page 12257, l. 1, formula (18o): It is more natural to introduce variables before and not after the 

introduction of the formulas where they are used explicitly. The same applies to formulas (18k) and (18m). 

As exhibited here in this paper the distance between use and definition is rather great. 

Response: Thanks for the comment. The order of these equations are rearranged. The associated text is 

given at the end of this reply. 

 

Page 12257, l. 11: Change "first and second" into " second and third". 

Page 12257, l. 12: Change "third" into "first". 

Response: The associated text is revised according to new arrangement of equations. 
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Page 12260, l. 7: Very likely, the authors mean 10-3Pc in stead of 10-3Pc. 

Page 12264, l. 10: Change "squire" into "square". 

Page 12271:, l. 3: Change "cauchy" into "Cauchy". 

Responses: We thank reviewer’s eyes in detail. They have been revised as suggested. 
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2.2 Analytical solution 

The mathematical model, Eqs. (10) and (12)  (17), can be solved by the methods of Laplace transform 

and double-integral transform. The former transform converts ℎ̅(𝑥̅, 𝑦̅, 𝑧̅, 𝑡̅) into ℎ̃(𝑥̅, 𝑦̅, 𝑧̅, 𝑝), ∂ℎ̅/ ∂𝑡 ̅

into 𝑝ℎ̃ − ℎ̅|𝑡̅=0, and 𝜉𝑢̅𝑥𝑢̅𝑦 into 𝜉𝑢̅𝑥𝑢̅𝑦/𝑝 where p is the Laplace parameter and ℎ̅|𝑡̅=0 equals zero in 

Eq. (11). After taking the transform, the model become a boundary value problem expressed as 

𝜕2ℎ̃

𝜕𝑥̅2
+ 𝜅𝑦

𝜕2ℎ̃

𝜕𝑦̅2
+ 𝜅𝑧

𝜕2ℎ̃

𝜕𝑧̅2
= 𝑝ℎ̃   (18) 

with boundary conditions 𝜕ℎ̃/𝜕𝑥̅ − 𝜅1ℎ̃ = 0 at 𝑥̅ = 0, 𝜕ℎ̃/𝜕𝑥̅ + 𝜅2ℎ̃ = 0 at 𝑥̅ = 𝑙,̅ ℎ̃/𝜕𝑦̅ − 𝜅3ℎ̃ = 0 

at 𝑦̅ = 0, ℎ̃/𝜕𝑦̅ + 𝜅4ℎ̃ = 0 at 𝑦̅ = 𝑤̅, 𝜕ℎ̅/𝜕𝑧̅ = 0 at 𝑧̅ = −1, and 𝜕ℎ̅/𝜕𝑧̅ + 𝜀𝑝ℎ̃/𝜅𝑧 = 𝜉𝑢̅𝑥𝑢̅𝑦/𝑝 at 

𝑧̅ = 0. We then apply the properties of the double-integral transform to the problem. One can refer to the 

definition in Latinopoulos (1985, Table I, aquifer type 1). The transform turns ℎ̃(𝑥̅, 𝑦̅, 𝑧̅, 𝑝)  into 

ℎ̂(𝛼𝑚, 𝛽𝑛, 𝑧̅, 𝑝), 𝜕
2ℎ̃/𝜕𝑥̅2 ⁡+ 𝜅𝑦(𝜕

2ℎ̃/𝜕𝑦̅2) into −(𝛼𝑚
2 + 𝜅𝑦𝛽𝑛

2)ℎ̂ where (m, n)  1, 2, 3, … , and 

eigenvalues 𝛼𝑚 and 𝛽𝑛 are the positive roots of the following equations that 

tan(𝑙𝛼̅𝑚) =
𝛼𝑚(𝜅1+𝜅2)

𝛼𝑚
2 −𝜅1𝜅2

             (19) 

and 

tan(𝑤̅𝛽𝑛) =
𝛽𝑛(𝜅3+𝜅4)

𝛽𝑛
2−𝜅3𝜅4

.             (20) 

In addition, 𝑢̅𝑥𝑢̅𝑦 is transformed into 𝑈𝑚𝑈𝑛 given by 

𝑈𝑚 =
√2𝑉𝑚

√𝜅1+(𝛼𝑚
2 +𝜅1

2)[𝑙+̅𝜅2/(𝛼𝑚
2 +𝜅2

2)]

           (21) 

𝑈𝑛 =
√2𝑉𝑛

√𝜅3+(𝛽𝑛
2+𝜅3

2)[𝑤̅+𝜅4/(𝛽𝑛
2+𝜅4

2)]

           (22) 

with 

𝑉𝑚 = {𝜅1[cos(𝛼𝑚𝑥̅1) − cos(𝛼𝑚𝜒)] − 𝛼𝑚[sin(𝛼𝑚𝑥̅1) − sin(𝛼𝑚𝜒)]}/𝛼𝑚   (23) 

𝑉𝑛 = {𝜅3[cos(𝛽𝑛𝑦̅1) − cos(𝛽𝑛𝜓)] − 𝛽𝑛[sin(𝛽𝑛𝑦̅1) − sin(𝛽𝑛𝜓)]}/𝛽𝑛    (24) 

where 𝜒 = 𝑥̅1 + 𝑎̅ and 𝜓 = 𝑦̅1 + 𝑏̅. 

Equation (18) then reduces to an ordinary differential equation as 

𝜅𝑧
𝜕2ℎ̂

𝜕𝑧̅2
− (𝑝 + 𝛼𝑚

2 + 𝜅𝑦𝛽𝑛
2)ℎ̂ = 0           (25) 

Two boundary conditions are expressed, respectively, as 

𝜕ℎ̂/𝜕𝑧̅ = 0⁡⁡⁡at⁡⁡⁡⁡𝑧̅ = −1            (26) 



7 
 

and 

𝜕ℎ̂

𝜕𝑧̅
+
𝜀𝑝

𝜅𝑧
ℎ̂ =

𝜉

𝑝
𝑈𝑚𝑈𝑛⁡⁡⁡at⁡⁡⁡⁡𝑧̅ = 0.           (27) 

Solving Eq. (25) with Eqs. (26) and (27) results in 

ℎ̂(𝛼𝑚, 𝛽𝑛, 𝑧̅, 𝑝) =
𝜉𝑈𝑚𝑈𝑛cosh[(1+𝑧̅)𝜆]

𝑝[𝑝𝜀𝜅𝑧 cosh𝜆+𝜅𝑧𝜆 sinh𝜆]
          (28) 

where  

𝜆 = √(𝑝 + 𝛼𝑚2 + 𝜅𝑦𝛽𝑛2)/𝜅𝑧            (29) 

Inverting Eq. (28) to the space and time domains gives rise to the analytical solution that 

ℎ̅(𝑥̅, 𝑦̅, 𝑧̅, 𝑡̅) = 𝜉 ∑ ∑ (𝜙𝑚,𝑛 + 𝜙0,𝑚,𝑛 + ∑ 𝜙𝑗,𝑚,𝑛
∞
𝑗=1 )𝐹𝑚𝐹𝑛𝑈𝑚𝑈𝑛

∞
𝑛=1

∞
𝑚=1    (30) 

with 

𝜙𝑚,𝑛 =
cosh⁡[(1+𝑧̅)𝜆𝑚,𝑛]

𝜅𝑧𝜆𝑚,𝑛 sinh𝜆𝑚,𝑛⁡
             (30a) 

𝜙0,𝑚,𝑛 = −2𝜆0,𝑚,𝑛cosh[(1 + 𝑧̅)𝜆0,𝑚,𝑛]exp(−𝛾0,𝑚,𝑛𝑡)̅/𝜂0,𝑚,𝑛     (30b) 

𝜙𝑗,𝑚,𝑛 = −2𝜆𝑗,𝑚,𝑛cos[(1 + 𝑧̅)𝜆𝑗,𝑚,𝑛]exp(−𝛾𝑗,𝑚,𝑛𝑡)̅/𝜂𝑗,𝑚,𝑛      (30c) 

𝜂0,𝑚,𝑛 = 𝛾0,𝑚,𝑛[(1 + 2𝜀𝜅𝑧)𝜆0,𝑚,𝑛 cosh 𝜆0,𝑚,𝑛 + (1 − 𝜀𝛾0,𝑚,𝑛) sinh 𝜆0,𝑚,𝑛]   (30d) 

𝜂𝑗,𝑚,𝑛 = 𝛾𝑗,𝑚,𝑛[(1 + 2𝜀𝜅𝑧)𝜆𝑗,𝑚,𝑛 cos 𝜆𝑗,𝑚,𝑛 + (1 − 𝜀𝛾𝑗,𝑚,𝑛) sin 𝜆𝑗,𝑚,𝑛]    (30e) 

𝜆𝑚,𝑛 = √𝑓𝑚,𝑛/𝜅𝑧; 𝛾0,𝑚,𝑛 = 𝑓𝑚,𝑛 − 𝜅𝑧𝜆0,𝑚,𝑛
2 ; 𝛾𝑗,𝑚,𝑛 = 𝑓𝑚,𝑛 + 𝜅𝑧𝜆𝑗,𝑚,𝑛

2    (30f) 

𝑓𝑚,𝑛 = 𝛼𝑚
2 + 𝜅𝑦𝛽𝑛

2              (30g) 

𝐹𝑚 =
√2[𝛼𝑚 cos(𝛼𝑚𝑥̅)+𝜅1 sin(𝛼𝑚𝑥̅)]

√𝜅1+(𝛼𝑚
2 +𝜅1

2)[𝑙+̅𝜅2/(𝛼𝑚
2 +𝜅2

2)]

           (30h) 

𝐹𝑛 =
√2[𝛽𝑛 cos(𝛽𝑛𝑦̅)+𝜅3 sin(𝛽𝑛𝑦̅)]

√𝜅3+(𝛽𝑛
2+𝜅3

2)[𝑤̅+𝜅4/(𝛽𝑛
2+𝜅4

2)]

           (30i) 

where j  1, 2, 3, … and eigenvalues 𝜆0,𝑚,𝑛 and 𝜆𝑗,𝑚,𝑛 are determined, respectively, by the following 

equations that 

−𝜀𝜅𝑧𝜆0,𝑚,𝑛
2 +𝜆0,𝑚,𝑛+𝜀𝑓𝑚,𝑛

𝜀𝜅𝑧𝜆0,𝑚,𝑛
2 +𝜆0,𝑚,𝑛−𝜀𝑓𝑚,𝑛

= exp(2𝜆0,𝑚,𝑛)          (31) 

and 

tan 𝜆𝑗,𝑚,𝑛 = −𝜀(𝑓𝑚,𝑛 + 𝜅𝑧𝜆𝑗,𝑚,𝑛
2 )/𝜆𝑗,𝑚,𝑛.         (32) 

The method to find 𝛼𝑚, 𝛽𝑛, 𝜆0,𝑚,𝑛 and 𝜆𝑗,𝑚,𝑛 is introduced in section 2.3. One can refer to Appendix 

A for the derivation of Eq. (30). 
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Appendix A: Derivation of Eq. (30) 

Let us start with function 𝐺(𝑝) from Eq. (28) that 

𝐺(𝑝) =
cosh[(1+𝑧̅)𝜆]

𝑝(𝑝𝜀𝜅𝑧 cosh𝜆+𝜅𝑧𝜆sinh𝜆)
⁡           (A1) 

with 

𝜆 = √(𝑝 + 𝑓𝑚,𝑛)/𝜅𝑧             (A2) 

where 𝑓𝑚,𝑛 = 𝛼𝑚
2 + 𝜅𝑦𝛽𝑛

2. Equation (A1) is a single-value function to p in the complex plane because 

satisfying 𝐺(𝑝+) = 𝐺(𝑝−) where 𝑝+ and 𝑝− are the polar coordinates defined, respectively, as 

𝑝+ = 𝑟𝑎exp(𝑖𝜃) − 𝑓𝑚,𝑛             (A3) 

and 

𝑝− = 𝑟𝑎exp[𝑖(𝜃 − 2𝜋)] − 𝑓𝑚,𝑛           (A4) 

where ra represents a radial distance from the origin at p = 𝑓𝑚,𝑛, 𝑖 = √−1 is the imaginary unit, and 𝜃 

is an argument between 0 and 2𝜋. Substitute 𝑝 = 𝑝+ in Eq. (A3) into Eq. (A2), we have 

𝜆 = √𝑟𝑎/𝜅𝑧 exp(𝑖𝜃/2) = √𝑟𝑎/𝜅𝑧 [cos(𝜃/2) + 𝑖⁡sin(𝜃/2)]      (A5) 

Similarly, we can have 

𝜆 = √𝑟𝑎/𝜅𝑧 exp[𝑖(𝜃 − 2𝜋)/2] = −√𝑟𝑎/𝜅𝑧 [cos(𝜃/2) + 𝑖⁡sin(𝜃/2)].    (A6) 

after p in Eq. (A2) is replaced by 𝑝− in Eq. (A4). Substitution of Eqs. (A3) and (A5) into Eq. (A1) yields 

the same result as that obtained by substituting Eqs. (A4) and (A6) into Eq. (A1), indicating that Eq. (A1) 

is a single-value function without branch cut and its inverse Laplace transform equals the sum of residues 

for poles in the complex plane. 

The residue for a simple pole can be formulated as 

𝑅𝑒𝑠 = lim
𝑝→𝜑

𝐺(𝑝) exp(𝑝𝑡̅) (𝑝 − 𝜑)           (A7) 

where 𝜑 is the location of the pole of 𝐺(𝑝) in Eq. (A1). The 𝐺(𝑝) has infinite simple poles at the 

negative part of the real axis in the complex plane. The locations of these poles are the roots of equation 

that 

𝑝(𝑝𝜀𝜅𝑧 cosh 𝜆 + 𝜅𝑧𝜆sinh𝜆) = 0           (A8) 

which is obtained by letting the denominator in Eq. (A1) to be zero. Obviously, one pole is at p = 0, and 

its residue based on Eqs. (A1) and (A7) with 𝜆𝑚,𝑛 = √𝑓𝑚,𝑛/𝜅𝑧 can be expressed as  

𝜙𝑚,𝑛 = cosh[(1 + 𝑧̅)𝜆𝑚,𝑛] /(𝜅𝑧𝜆𝑚,𝑛 sinh 𝜆𝑚,𝑛)        (A9) 

The locations of other poles of 𝐺(𝑝) are the roots of the equation that 
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𝑝𝜀𝜅𝑧 cosh 𝜆 + 𝜅𝑧𝜆sinh𝜆 = 0            (A10) 

which is the expression in the parentheses in Eq. (A8). One pole is between p = 0 and p = 𝑓𝑚,𝑛. Let 𝜆 =

𝜆0,𝑚,𝑛 , and Eq. (A2) becomes⁡𝑝 = −𝑓𝑚,𝑛 + 𝜅𝑧𝜆0,𝑚,𝑛
2 . Substituting 𝜆 = 𝜆0,𝑚,𝑛 , 𝑝 = −𝑓𝑚,𝑛 + 𝜅𝑧𝜆0,𝑚,𝑛

2 , 

cosh𝜆0,𝑚,𝑛 = [exp 𝜆0,𝑚,𝑛 + exp(−𝜆0,𝑚,𝑛)]/2  and sinh𝜆0,𝑚,𝑛 = [exp 𝜆0,𝑚,𝑛 − exp(−𝜆0,𝑚,𝑛)]/2  into 

Eq. (A9) and rearranging the result leads to Eq. (31). The pole is at 𝑝 = −𝑓𝑚,𝑛 + 𝜅𝑧𝜆0,𝑚,𝑛
2  with a 

numerical value of 𝜆0,𝑚,𝑛. With Eq. (A1), Eq. (A7) equals  

𝑅𝑒𝑠 = lim
𝑝→𝜑

cosh[(1+𝑧̅)𝜆]

𝑝(𝑝𝜀𝜅𝑧 cosh𝜆+𝜅𝑧𝜆sinh𝜆)
exp(𝑝𝑡̅) (𝑝 − 𝜑)       (A11) 

Apply L’Hospital’s Rule to Eq. (A11), and then we have 

𝑅𝑒𝑠 = lim
𝑝→𝜑

−2𝜆cosh[(1+𝑧̅)𝜆]

𝑝[(1+2𝜀𝜅𝑧)𝜆 cosh𝜆+(1−𝜀𝑝)sinh𝜆]
exp(𝑝𝑡̅)        (A12) 

The residue for the pole at 𝑝 = −𝑓𝑚,𝑛 + 𝜅𝑧𝜆0,𝑚,𝑛
2  can be defined as 

𝜙0,𝑚,𝑛 =
−2𝜆0,𝑚,𝑛cosh[(1+𝑧̅)𝜆0,𝑚,𝑛]exp(−𝛾0,𝑚,𝑛𝑡̅)

𝛾0,𝑚,𝑛[(1+2𝜀𝜅𝑧)𝜆0,𝑚,𝑛 cosh𝜆0,𝑚,𝑛+(1−𝜀𝛾0,𝑚,𝑛)sinh𝜆0,𝑚,𝑛]
       (A13) 

which is obtained by Eq. (A12) with 𝜆 = 𝜆0,𝑚,𝑛 and 𝑝 = −𝑓𝑚,𝑛 + 𝜅𝑧𝜆0,𝑚,𝑛
2 = 𝛾0,𝑚,𝑛. On the other hand, 

infinite poles behind p = 𝑓𝑚,𝑛 are at 𝑝 = 𝛾𝑗,𝑚,𝑛 where j  1, 2, … . Let 𝜆 = √−1𝜆𝑗,𝑚,𝑛, and Eq. (A2) 

yields 𝑝 = −𝑓𝑚,𝑛 − 𝜅𝑧𝜆𝑗,𝑚,𝑛
2 . Substitute 𝜆 = √−1𝜆𝑗,𝑚,𝑛 , 𝑝 = −𝑓𝑚,𝑛 − 𝜅𝑧𝜆𝑗,𝑚,𝑛

2 , cosh(√−1𝜆𝑗,𝑚,𝑛) =

cos⁡𝜆𝑗,𝑚,𝑛 and sinh(√−1𝜆𝑗,𝑚,𝑛) = √−1⁡sin𝜆𝑗,𝑚,𝑛 into Eq. (A9) and rearrange the result, and then we 

have Eq. (32). These poles are at 𝑝 = −𝑓𝑚,𝑛 − 𝜅𝑧𝜆𝑗,𝑚,𝑛
2  with numerical values of 𝜆𝑗,𝑚,𝑛. On the basis of 

Eq. (A12) with 𝜆 = √−1𝜆𝑗,𝑚,𝑛 and 𝑝 = −𝑓𝑚,𝑛 − 𝜅𝑧𝜆𝑗,𝑚,𝑛
2 = 𝛾𝑗,𝑚,𝑛, the residues for these poles at 𝑝 =

−𝑓𝑚,𝑛 − 𝜅𝑧𝜆𝑗,𝑚,𝑛
2  can be expressed as  

𝜙𝑗,𝑚,𝑛 =
−2𝜆𝑗,𝑚,𝑛cos[(1+𝑧̅)𝜆𝑗,𝑚,𝑛]exp(−𝛾𝑗,𝑚,𝑛𝑡̅)

𝛾𝑗,𝑚,𝑛[(1+2𝜀𝜅𝑧)𝜆𝑗,𝑚,𝑛 cos𝜆𝑗,𝑚,𝑛+(1−𝜀𝛾𝑗,𝑚,𝑛)sin𝜆𝑗,𝑚,𝑛]
       (A14) 

where j  1, 2, … . As a result, the inverse Laplace transform for Eq. (A1) is the sum of Eqs. (A9) and 

(A13) and a simple series expended in the RHS function in Eq. (A14) with j  1, 2, …  (i.e., 𝜙𝑚,𝑛 +

𝜙0,𝑚,𝑛 + ∑ 𝜙𝑗,𝑚,𝑛
∞
𝑗=1 ). Finally, Eq. (30) can be derived after taking the inverse double-integral transform 

for the result using the formula that (Latinopoulos, 1985, Eq. (14)) 

ℎ̅(𝑥̅, 𝑦̅, 𝑧̅, 𝑡̅) = 𝜉 ∑ ∑ (𝜙𝑚,𝑛 + 𝜙0,𝑚,𝑛 + ∑ 𝜙𝑗,𝑚,𝑛
∞
𝑗=1 )𝐹𝑚𝐹𝑛𝑈𝑚𝑈𝑛

∞
𝑛=1

∞
𝑚=1    (A15) 

where 𝜉 and 𝑈𝑚𝑈𝑛 result from 𝜉𝑈𝑚𝑈𝑛 in Eq. (28). 

 


