

Interactive comment on “The WACMOS-ET project – Part 1: Tower-scale evaluation of four remote sensing-based evapotranspiration algorithms” by D. Michel et al.

D. Michel et al.

dominik.michel@env.ethz.ch

Received and published: 11 January 2016

We thank Kevin Tu for his comments and his interest in improving the article. We added the following lines (bold) to the text:

p10752. L10: “As the SEBS and PM-MOD models have typically been used with MODIS vegetation products, a rescaling between our TIP-derived LAI and f_{APAR} products against the MODIS product has been undertaken. For running the models at the tower scale, a local rescaling is conducted by a linear regression between the MOD15A2 and the TIP values co-registered at each tower. For global model

C6069

simulations, individual rescaling per biome/climate classification is conducted. **For PT-JPL, given the model internal relationships between these variables and the vegetation indexes used as model inputs (see Table 1 in Fisher et al., 2008), it can be discussed whether the original TIP LAI/ f_{APAR} or the rescaled LAI/ f_{APAR} are the most appropriate to be used as model inputs. For simplicity we will apply also the rescaled LAI/ f_{APAR} , but this choice will be further evaluated in future applications of the model with the TIP LAI/ f_{APAR} inputs.”**

p10748. L10: “...where f_{wet} is the relative surface wetness, f_g is green canopy fraction, f_{APAR} (f_{IPAR}) is the Fraction of Absorbed (Intercepted) Photosynthetically Active Radiation, f_M is a plant moisture constraint, $f_{APAR_{max}}$ is the maximum of f_{APAR} , f_{sm} is a soil moisture constraint, f_T is a plant temperature constraint and T_{opt} is the optimum plant growth temperature, estimated as the air temperature at the time of peak canopy activity when the highest f_{APAR} and minimum VPD occur. **Note that as the input data set does not include f_{IPAR} , f_{IPAR} is derived from the rescaled project LAI by inverting the model original relationships between LAI and f_{IPAR} .**”

Interactive comment on Hydrol. Earth Syst. Sci. Discuss., 12, 10739, 2015.