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Responses to Comments of Referee #1 

In its present form, the paper mostly appears as a good piece of algebraic development, and along this line, 

corresponds typically to a technical note. However, a few concerns make me feel that the writing is not 

raised to something braking from previous attempts to model unconfined groundwater flow.  

First. Contrary to the idea concealed in the paper, I am not convinced at all that analytical solutions are in 

general the reference tool for concrete case applications. Usually, analytical solutions drastically simplify 

the problem when concrete applications are faced with complex situations. Todays, concrete application 

turn toward (eventually simplified) numerical resolutions of groundwater flow simply because these 

approaches can handle complex geometry, medium heterogeneity, coupling vadose and saturated zone, 

etc. The point is that analytical solutions are still useful as reference for numerical model and/or to assess 

the relevance of some second-order mechanisms added to numerical models.  

Response: We agree that analytical solutions are reference tools for applications with complicated 

situations or serve as the primary means for testing and benchmarking numerical models or assessing the 

relevance of some second-order mechanisms included in numerical models. In addition, they have 

advantages mentioned below as compared with the numerical methods: 

1. They generally require less data than numerical schemes and are numerically stable, efficient, and easy 

to implement although they are limited to specific cases due to their simplifying assumptions.  

2. They can easily be used to explore physical insights of the flow behavior affected by the aquifer 

properties, boundary, and/or surface recharge. Some new findings related to flow behavior are given 

below as example based on the present solution: 

(1) A quantitative criterion is provided to assess the validity of neglecting the effect of the vertical flow. 

Such a practice of ignoring vertical flow was very commonly made in previous articles (e.g., Rao 

and Sarma, 1980; Rai et al., 1998; Chang and Yeh, 2007; Illas et al., 2008). Please refer to the 2nd 

conclusion in the previous manuscript for detail. 

(2) The assumption of incompressibility is valid when the ratio of the specific yield to the storage 

coefficient is larger than 100. Otherwise, it leads to significant overestimation in predicting the 

hydraulic head. Please see the 3rd conclusion in the previous manuscript. 

3. The sensitivity analysis based on the analytical solutions can determine which parameters are 

relatively critical to the success of a management plan (see, for example, Aguado and Sitar, 1977) or 

to investigate the source of inaccuracy in parameter estimation (e.g., Huang and Yeh, 2012). 



2 
 

4. If coupling with an optimization approach, they can identify the hydraulic parameters in aquifer test 

data analyses. For example, Yeh and Chen (2007) integrated a slug test solution for a well with a finite-

thickness skin with the simulated annealing to determine the hydraulic parameters of the skin and 

formation zones.  

 

Second. I doubt on the unconfined behavior of the aquifer modeled by the solutions of the authors. For 

the purpose of simplification, the analytical solution is based on two equations, namely, a diffusion 

equation corresponding to a confined system plus an additional equation for the free water surface only 

accounting for fluxes from the recharge over a limited area of the modeled domain. It is obvious that this 

dichotomy does not represent the continuity of flow between the vadose and the saturated zone that makes 

the unconfined systems so complicated. The authors would have been well advised to provide us with a 

comparison between their solution (and its simplifications) and a full three-dimensional resolution of the 

Richards equation for both the saturated and the vadose zone. The point is not to state that an analytical 

solution is able to deal with all the physics of flow, rather to show explicitly why the simplifications 

needed for building an analytical solution are reasonably acceptable.  

Response: Thanks for the comment. Analysis of three-dimensional saturated and unsaturated flows based 

on Richards’ equation and soil characteristic curve is indeed an interesting and challenging work, but this 

is obviously beyond the scope of this note. Tartakovsky and Neuman (2007) developed a semi-analytical 

solution for unsaturated and saturated flows toward a discharge well in an unconfined aquifer. Their 

solution is based on Richards’ equation with the relative hydraulic conductivity defined as 𝑘0 =

exp(−𝜅𝑧) where 𝜅 is a parameter and z is elevation from water table. The solution agrees well with the 

Neuman (1974) solution based on the same problem but neglecting the effect of unsaturated flow when 

𝜅𝐵 = 103 with the initial aquifer thickness B. To some extent, the present work is similar to the Neuman 

(1974) solution but differs from the aspect that our solution regards regional recharge as a plane source 

while Neuman’s solution considers the pumping as a line sink. We may therefore infer from the work of 

Tartakovsky and Neuman (2007) that the present solution may also be valid if the condition of 𝜅𝐵 ≥

103 is held. The following text is added in the revised manuscript (lines 180-187, page 9) to address the 

conditions of using the present solution. 

“On the other hand, the effect of unsaturated flow on model’s predictions can be ignored when 𝜅𝐵 ≥ 103 

where 𝜅 is a parameter to define the relative hydraulic conductivity as 𝑘0 = exp(−𝜅𝑧) in the Richards’ 

equation (Tartakovsky and Neuman, 2007). Tartakovsky and Neuman (2007) achieved agreement on 
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aquifer drawdown evaluated by their analytical solution based on Eq. (1) for saturated flow and Richards’ 

equation for unsaturated flow and by the Neuman (1974) solution based on Eqs. (1) and (8) with I = 0 

when 𝜅𝐵 = 103 (i.e., the case of 𝜅𝐷 = 103 in Fig. 2 in Tartakovsky and Neuman, 2007).” 

 

Third. In association with the concern above, the provided analytical solution is compared with other 

analytical solutions grounded in the same theoretical framework. This way of doing usually goes with 

some self-satisfaction attitude because progresses are incremental and never work against the proposed 

methodology. Again, we would have been better informed if the proposed analytical solution had been 

faced with a (numerical) three-dimensional resolution of flow. It is now well known that solving a three-

dimensional Richards equation with the problem of swapping between the unconfined non-saturated zone 

and the confined saturated zone is crux to model unconfined aquifers, especially when recharge is evoked 

as a condition triggering transient flow. Stated differently, one can be still interested in analytical solutions 

but it is mandatory to know when to apply them, what do they hide, and which (eventually useless) 

mechanism is overlooked. As an aside comment, we still seek for the usefulness of mixed boundary 

conditions when the paper only deals with the Dirichlet type of boundary condition.  

Response: Unfortunately, it seems that the existing numerical solutions for 3D saturated and unsaturated 

flow were developed for some purposes (e.g., Dogan and Motz, 2005; Cey et al., 2006; Hunt et al., 2008; 

An et al., 2010; An et al., 2012) which were irrelevant to this study and therefore impossible to make 

comparison with the present solution. As regard to the use of the Robin boundary condition (RBC), we 

would like to mention that it is defined as a weighted combination of Dirichlet boundary condition and 

Neumann boundary condition while the mixed boundary condition (MBC) represents the boundary which 

changes its condition along a particular boundary, say from a Dirichlet condition to a Neumann condition 

(Duffy, 2008, page 1). Thus, the RBC and MBC are completely different types. In our study, we have 

adopted the RBC to describe flow across a boundary of a stratum having low permeability and investigate 

its effect on the hydraulic head at an observation point as described in section 3.1. It is clear that the Robin 

condition should be considered for the boundary under the condition 10−2 < 𝐾1𝑑1/(𝐾𝑥𝑏1) < 102 where 

K1 and b1 are the hydraulic conductivity and width of the medium at the boundary 1 illustrated in Figure 

1(a), respectively, Kx is the aquifer hydraulic conductivity in the x direction normal to the boundary, and 

d1 is a distance between the boundary and the edge of a recharge area. Note that the Robin condition 

reduces to Dirichlet condition when 𝐾1𝑑1/(𝐾𝑥𝑏1) ≥ 102  and the no-flow condition when 𝐾1𝑑1/

(𝐾𝑥𝑏1) ≤ 10−2. 
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Four. Technically speaking, the manuscript may appear unclear at some places. The first question raised 

by reading the mathematical development is the motivation to choose a distance from a well as the 

reference for building dimensionless coordinates in space. What if no well existed? Why not to build 

theses dimensionless variables by taking the size (along x and/or y directions) of the domain? Is there any 

incompatibility by doing so on the emergence of an analytical solution? A second concern is about the 

sensitivity of the solution to parameters. The authors delineate it as a first order-approximation (finite 

difference) of the derivatives of the solution with respect to (log) parameters. This calculation is de facto 

sensitive to the increment δp added to the parameter p when approximating dF/dp as [F(p+δp) – F(p)]/δp. 

My understanding is that the analytical solution is a double or a triple sum of elementary functions. 

Derivatives of a sum being sum of derivatives, why not to derive directly the analytical solution with 

respect to parameters? My first guess is that all the elementary functions enclosed in the solution are 

differentiable with respect to their parameters, with the consequence that an "exact" sensitivity evaluation 

could come out by directly differentiating the analytical solution. Notably, the sensitivity analysis 

performed in the paper is irrelevant. Calculating derivatives with respect to parameters is always local, 

with the meaning that the differentiation is performed in the vicinity of a prescribed value of the parameter. 

Conclusions on model sensitivity are thus local and only valid close to the prescribed values of the 

parameters. These values are not reported in the paper and a relevant way to analyze the sensitivity would 

be to duplicate calculations at several points in the parameter space. A third concern is about the appendix 

which is in my opinion hard to read when it should be limpid. The reader is continuously invited to swap 

between the writing in the appendix and the equations in the main text. This does not help to understand 

how the authors technically proceeded for building their analytical solution. My standpoint regarding this 

feature would be to either remove the appendix, or give it some flesh to document the reader and avoid 

him back and forth motions in the reading plus hard time to pass from eq. n to eq. n+1.  

Response: Thanks for the comment. Our responses to those concerns are given below: 

1. The term “observation well” is changed to “observation point” for avoiding confusion. The distance 

d between the edge of a recharge area and the observation point is chosen to define the dimensionless 

parameter 𝑧 = 𝐾𝑧 𝑑2/(𝐾𝑥 𝐵2) where B is the initial aquifer thickness and Kx and Kz are the aquifer 

hydraulic conductivities in the x and z directions, respectively. The parameter 𝑧 indicates that both 

𝐾𝑧 𝐾𝑥⁄  and 𝑑2 𝐵2⁄  are crucial factors in neglecting the effect of vertical flow on the hydraulic head. 

This parameter is similar to the one defined in Neuman (1975) as 𝛽 = 𝐾𝑧 𝑟2/(𝐾𝑟 𝐻2) with 𝐾𝑟 
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representing the hydraulic conductivity in the radial direction and r denoting a radial distance 

measured from a pumping well to an observation point. He used this parameter to examine the 

validity of neglecting the effect of vertical flow on transient drawdown at the observation point (see 

Figure 1 in Neuman, 1975).  

2. Direct differentiation of the solution with respect to each of the parameters is practically feasible. 

Yet, some of the results for parameters such as 𝑆𝑦 , 𝑆𝑠 , 𝐾𝑥 , 𝐾𝑧 , and 𝐾1  are lengthy and in 

complicated forms. In addition, it is laborious to derive the sensitivity coefficients since we have 

seven parameters in total. The sensitivity coefficients based on the first-order finite differences give 

very good approximations to those obtained by direct differentiation. In addition, the curves of 

sensitivity coefficients show very clearly pictures exhibiting the relative strength and influential 

period of the impact of parameter change on the hydraulic head. The parameter values we choose 

and listed in Table 2 (in manuscript) are reasonable for sandy aquifers, which are suitable formations 

for groundwater exploitation. One might expect that different sets of parameter values for sandy 

aquifers should also provide similar sensitivity patterns to ours. The conclusions on the sensitivity 

analysis in section 3.5 should therefore be valid for different magnitudes of hydraulic parameters. It 

is worth noting that the patterns of sensitivity curves are somewhat different as shown in Figure 6 

because Figure 6(a) is for three-dimensional flow while Figure 6(b) is for two-dimensional flow.  

3. The derivation for the present solution mentioned in section 2.2 and given in Appendix A has been 

rewritten according to the comment and also given at the end of this reply. 

 

Five. Even though I am not native speaker of English, I found a text riddled every ten lines with 

grammatical inconsistencies, awkward phrasings, etc. In any case, the manuscript would deserve pinpoint 

editing by a professional service. In its present form, the text is not completely clear and editing would 

probably improve readability.  

Response: The manuscript has carefully been edited by a colleague who is good at English writing. 

 

Finally, I found the paper interesting because the technique concealed in it is undoubtedly sound. The 

main concern is that the authors missed the target of showing us the added-value of their contribution. 

They partly kick in touch by comparing their results with those they inherit from. At least, the paper 

deserves a rigorous editing before publication. Nevertheless, my feeling is still that a relevant paper in a 

reputed journal such as HESS should argue on the advantages and drawbacks brought by the study. In its 
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present form, the study only brings advantages by flawed comparisons between quite similar approaches. 

I would recommend to reject the paper in its present form but encourage the authors for a complete re-

submission following the philosophy depicted above.  

Response: Thank for the comment. We have addressed the issue of the restrictions (or drawbacks) of the 

present solution by inserting the following sentence in Conclusions of the revised manuscript. 

“The present solution is applicable under the conditions of aquifer homogeneity and ℎ/𝐵 < 0.5, 𝐼/𝐾𝑧 <

0.2 and 𝜅𝐵 ≥ 103 due to the neglect of unsaturated zone (Marino, 1967; Tartakovsky and Neuman, 

2007).” (lines 445-447, page 20) 
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Section 2.2 in the revised manuscript 

 

2.2 Analytical solution 

The mathematical model, Eqs. (10) and (12)  (17), can be solved by the methods of Laplace transform 

and double-integral transform. The former transform converts ℎ̅(�̅�, �̅�, 𝑧̅, 𝑡̅) into ℎ̃(�̅�, �̅�, 𝑧̅, 𝑝), ∂ℎ̅/ ∂𝑡 ̅

into 𝑝ℎ̃ − ℎ̅|�̅�=0, and 𝜉�̅�𝑥�̅�𝑦 into 𝜉�̅�𝑥�̅�𝑦/𝑝 where p is the Laplace parameter and ℎ̅|�̅�=0 equals zero in 

Eq. (11). After taking the transform, the model become a boundary value problem expressed as 

𝜕2ℎ̃

𝜕�̅�2 + 𝜅𝑦
𝜕2ℎ̃

𝜕�̅�2 + 𝜅𝑧
𝜕2ℎ̃

𝜕�̅�2 = 𝑝ℎ̃   (18) 

with boundary conditions 𝜕ℎ̃/𝜕�̅� − 𝜅1ℎ̃ = 0 at �̅� = 0, 𝜕ℎ̃/𝜕�̅� + 𝜅2ℎ̃ = 0 at �̅� = 𝑙,̅ ℎ̃/𝜕�̅� − 𝜅3ℎ̃ = 0 

at �̅� = 0, ℎ̃/𝜕�̅� + 𝜅4ℎ̃ = 0 at �̅� = �̅�, 𝜕ℎ̅/𝜕𝑧̅ = 0 at 𝑧̅ = −1, and 𝜕ℎ̅/𝜕𝑧̅ + 𝜀𝑝ℎ̃/𝜅𝑧 = 𝜉�̅�𝑥�̅�𝑦/𝑝 at 

𝑧̅ = 0. We then apply the properties of the double-integral transform to the problem. One can refer to the 

definition in Latinopoulos (1985, Table I, aquifer type 1). The transform turns ℎ̃(�̅�, �̅�, 𝑧̅, 𝑝)  into 

ℎ̂(𝛼𝑚, 𝛽𝑛, 𝑧̅, 𝑝), 𝜕2ℎ̃/𝜕�̅�2  + 𝜅𝑦(𝜕2ℎ̃/𝜕�̅�2) into −(𝛼𝑚
2 + 𝜅𝑦𝛽𝑛

2)ℎ̂ where (m, n)  1, 2, 3, … , and 
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eigenvalues 𝛼𝑚 and 𝛽𝑛 are the positive roots of the following equations that 

tan(𝑙�̅�𝑚) =
𝛼𝑚(𝜅1+𝜅2)

𝛼𝑚
2 −𝜅1𝜅2

             (19) 

and 

tan(�̅�𝛽𝑛) =
𝛽𝑛(𝜅3+𝜅4)

𝛽𝑛
2−𝜅3𝜅4

.             (20) 

In addition, �̅�𝑥�̅�𝑦 is transformed into 𝑈𝑚𝑈𝑛 given by 

𝑈𝑚 =
√2𝑉𝑚

√𝜅1+(𝛼𝑚
2 +𝜅1

2)[𝑙+̅𝜅2/(𝛼𝑚
2 +𝜅2

2)]

           (21) 

𝑈𝑛 =
√2𝑉𝑛

√𝜅3+(𝛽𝑛
2+𝜅3

2)[�̅�+𝜅4/(𝛽𝑛
2+𝜅4

2)]

           (22) 

with 

𝑉𝑚 = {𝜅1[cos(𝛼𝑚�̅�1) − cos(𝛼𝑚𝜒)] − 𝛼𝑚[sin(𝛼𝑚�̅�1) − sin(𝛼𝑚𝜒)]}/𝛼𝑚   (23) 

𝑉𝑛 = {𝜅3[cos(𝛽𝑛�̅�1) − cos(𝛽𝑛𝜓)] − 𝛽𝑛[sin(𝛽𝑛�̅�1) − sin(𝛽𝑛𝜓)]}/𝛽𝑛    (24) 

where 𝜒 = �̅�1 + �̅� and 𝜓 = �̅�1 + �̅�. 

Equation (18) then reduces to an ordinary differential equation as 

𝜅𝑧
𝜕2ℎ̂

𝜕�̅�2 − (𝑝 + 𝛼𝑚
2 + 𝜅𝑦𝛽𝑛

2)ℎ̂ = 0           (25) 

Two boundary conditions are expressed, respectively, as 

𝜕ℎ̂/𝜕𝑧̅ = 0   at    𝑧̅ = −1            (26) 

and 

𝜕ℎ̂

𝜕�̅�
+

𝜀𝑝

𝜅𝑧
ℎ̂ =

𝜉

𝑝
𝑈𝑚𝑈𝑛   at    𝑧̅ = 0.           (27) 

Solving Eq. (25) with Eqs. (26) and (27) results in 

ℎ̂(𝛼𝑚, 𝛽𝑛, 𝑧̅, 𝑝) =
𝜉𝑈𝑚𝑈𝑛cosh[(1+�̅�)𝜆]

𝑝[𝑝𝜀𝜅𝑧 cosh 𝜆+𝜅𝑧𝜆 sinh 𝜆]
          (28) 

where  

𝜆 = √(𝑝 + 𝛼𝑚
2 + 𝜅𝑦𝛽𝑛

2)/𝜅𝑧            (29) 

Inverting Eq. (28) to the space and time domains gives rise to the analytical solution that 

ℎ̅(�̅�, �̅�, 𝑧̅, 𝑡̅) = 𝜉 ∑ ∑ (𝜙𝑚,𝑛 + 𝜙0,𝑚,𝑛 + ∑ 𝜙𝑗,𝑚,𝑛
∞
𝑗=1 )𝐹𝑚𝐹𝑛𝑈𝑚𝑈𝑛

∞
𝑛=1

∞
𝑚=1    (30) 

with 

𝜙𝑚,𝑛 =
cosh [(1+�̅�)𝜆𝑚,𝑛]

𝜅𝑧𝜆𝑚,𝑛 sinh 𝜆𝑚,𝑛 
             (30a) 

𝜙0,𝑚,𝑛 = −2𝜆0,𝑚,𝑛cosh[(1 + 𝑧̅)𝜆0,𝑚,𝑛]exp(−𝛾0,𝑚,𝑛𝑡)̅/𝜂0,𝑚,𝑛     (30b) 
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𝜙𝑗,𝑚,𝑛 = −2𝜆𝑗,𝑚,𝑛cos[(1 + 𝑧̅)𝜆𝑗,𝑚,𝑛]exp(−𝛾𝑗,𝑚,𝑛𝑡)̅/𝜂𝑗,𝑚,𝑛      (30c) 

𝜂0,𝑚,𝑛 = 𝛾0,𝑚,𝑛[(1 + 2𝜀𝜅𝑧)𝜆0,𝑚,𝑛 cosh 𝜆0,𝑚,𝑛 + (1 − 𝜀𝛾0,𝑚,𝑛) sinh 𝜆0,𝑚,𝑛]   (30d) 

𝜂𝑗,𝑚,𝑛 = 𝛾𝑗,𝑚,𝑛[(1 + 2𝜀𝜅𝑧)𝜆𝑗,𝑚,𝑛 cos 𝜆𝑗,𝑚,𝑛 + (1 − 𝜀𝛾𝑗,𝑚,𝑛) sin 𝜆𝑗,𝑚,𝑛]    (30e) 

𝜆𝑚,𝑛 = √𝑓𝑚,𝑛/𝜅𝑧; 𝛾0,𝑚,𝑛 = 𝑓𝑚,𝑛 − 𝜅𝑧𝜆0,𝑚,𝑛
2 ; 𝛾𝑗,𝑚,𝑛 = 𝑓𝑚,𝑛 + 𝜅𝑧𝜆𝑗,𝑚,𝑛

2    (30f) 

𝑓𝑚,𝑛 = 𝛼𝑚
2 + 𝜅𝑦𝛽𝑛

2              (30g) 

𝐹𝑚 =
√2[𝛼𝑚 cos(𝛼𝑚�̅�)+𝜅1 sin(𝛼𝑚�̅�)]

√𝜅1+(𝛼𝑚
2 +𝜅1

2)[𝑙+̅𝜅2/(𝛼𝑚
2 +𝜅2

2)]

           (30h) 

𝐹𝑛 =
√2[𝛽𝑛 cos(𝛽𝑛�̅�)+𝜅3 sin(𝛽𝑛�̅�)]

√𝜅3+(𝛽𝑛
2+𝜅3

2)[�̅�+𝜅4/(𝛽𝑛
2+𝜅4

2)]

           (30i) 

where j  1, 2, 3, … and eigenvalues 𝜆0,𝑚,𝑛 and 𝜆𝑗,𝑚,𝑛 are determined, respectively, by the following 

equations that 

−𝜀𝜅𝑧𝜆0,𝑚,𝑛
2 +𝜆0,𝑚,𝑛+𝜀𝑓𝑚,𝑛

𝜀𝜅𝑧𝜆0,𝑚,𝑛
2 +𝜆0,𝑚,𝑛−𝜀𝑓𝑚,𝑛

= exp(2𝜆0,𝑚,𝑛)          (31) 

and 

tan 𝜆𝑗,𝑚,𝑛 = −𝜀(𝑓𝑚,𝑛 + 𝜅𝑧𝜆𝑗,𝑚,𝑛
2 )/𝜆𝑗,𝑚,𝑛.         (32) 

The method to find 𝛼𝑚, 𝛽𝑛, 𝜆0,𝑚,𝑛 and 𝜆𝑗,𝑚,𝑛 is introduced in section 2.3. One can refer to Appendix 

A for the derivation of Eq. (30). 

 

Appendix A: Derivation of Eq. (30) 

Let us start with function 𝐺(𝑝) from Eq. (28) that 

𝐺(𝑝) =
cosh[(1+�̅�)𝜆]

𝑝(𝑝𝜀𝜅𝑧 cosh 𝜆+𝜅𝑧𝜆sinh𝜆)
            (A1) 

with 

λ = √(𝑝 + 𝑓𝑚,𝑛)/𝜅𝑧             (A2) 

where 𝑓𝑚,𝑛 = 𝛼𝑚
2 + 𝜅𝑦𝛽𝑛

2. Equation (A1) is a single-value function to p in the complex plane because 

satisfying 𝐺(𝑝+) = 𝐺(𝑝−) where 𝑝+ and 𝑝− are the polar coordinates defined, respectively, as 

𝑝+ = 𝑟𝑎exp(𝑖𝜃) − 𝑓𝑚,𝑛             (A3) 

and 

𝑝− = 𝑟𝑎exp[𝑖(𝜃 − 2𝜋)] − 𝑓𝑚,𝑛           (A4) 

where ra represents a radial distance from the origin at p = 𝑓𝑚,𝑛, 𝑖 = √−1 is the imaginary unit, and 𝜃 

is an argument between 0 and 2𝜋. Substitute 𝑝 = 𝑝+ in Eq. (A3) into Eq. (A2), we have 
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𝜆 = √𝑟𝑎/𝜅𝑧 exp(𝑖𝜃/2) = √𝑟𝑎/𝜅𝑧 [cos(𝜃/2) + 𝑖 sin(𝜃/2)]      (A5) 

Similarly, we can have 

𝜆 = √𝑟𝑎/𝜅𝑧 exp[𝑖(𝜃 − 2𝜋)/2] = −√𝑟𝑎/𝜅𝑧 [cos(𝜃/2) + 𝑖 sin(𝜃/2)].    (A6) 

after p in Eq. (A2) is replaced by 𝑝− in Eq. (A4). Substitution of Eqs. (A3) and (A5) into Eq. (A1) yields 

the same result as that obtained by substituting Eqs. (A4) and (A6) into Eq. (A1), indicating that Eq. (A1) 

is a single-value function without branch cut and its inverse Laplace transform equals the sum of residues 

for poles in the complex plane. 

The residue for a simple pole can be formulated as 

𝑅𝑒𝑠 = lim
𝑝→𝜑

𝐺(𝑝) exp(𝑝𝑡̅) (𝑝 − 𝜑)           (A7) 

where 𝜑 is the location of the pole of 𝐺(𝑝) in Eq. (A1). The 𝐺(𝑝) has infinite simple poles at the 

negative part of the real axis in the complex plane. The locations of these poles are the roots of equation 

that 

𝑝(𝑝𝜀𝜅𝑧 cosh 𝜆 + 𝜅𝑧𝜆sinh𝜆) = 0           (A8) 

which is obtained by letting the denominator in Eq. (A1) to be zero. Obviously, one pole is at p = 0, and 

its residue based on Eqs. (A1) and (A7) with λ𝑚,𝑛 = √𝑓𝑚,𝑛/𝜅𝑧 can be expressed as  

𝜙𝑚,𝑛 = cosh[(1 + 𝑧̅)λ𝑚,𝑛] /(𝜅𝑧λ𝑚,𝑛 sinh λ𝑚,𝑛)        (A9) 

The locations of other poles of 𝐺(𝑝) are the roots of the equation that 

𝑝𝜀𝜅𝑧 cosh 𝜆 + 𝜅𝑧𝜆sinh𝜆 = 0            (A10) 

which is the expression in the parentheses in Eq. (A8). One pole is between p = 0 and p = 𝑓𝑚,𝑛. Let 𝜆 =

𝜆0,𝑚,𝑛 , and Eq. (A2) becomes 𝑝 = −𝑓𝑚,𝑛 + 𝜅𝑧𝜆0,𝑚,𝑛
2 . Substituting 𝜆 = 𝜆0,𝑚,𝑛 , 𝑝 = −𝑓𝑚,𝑛 + 𝜅𝑧𝜆0,𝑚,𝑛

2 , 

cosh𝜆0,𝑚,𝑛 = [exp 𝜆0,𝑚,𝑛 + exp(−𝜆0,𝑚,𝑛)]/2  and sinh𝜆0,𝑚,𝑛 = [exp 𝜆0,𝑚,𝑛 − exp(−𝜆0,𝑚,𝑛)]/2  into 

Eq. (A9) and rearranging the result leads to Eq. (31). The pole is at 𝑝 = −𝑓𝑚,𝑛 + 𝜅𝑧𝜆0,𝑚,𝑛
2  with a 

numerical value of 𝜆0,𝑚,𝑛. With Eq. (A1), Eq. (A7) equals  

𝑅𝑒𝑠 = lim
𝑝→𝜑

cosh[(1+�̅�)𝜆]

𝑝(𝑝𝜀𝜅𝑧 cosh 𝜆+𝜅𝑧𝜆sinh𝜆)
exp(𝑝𝑡̅) (𝑝 − 𝜑)       (A11) 

where λ = √(𝑝 + 𝑓𝑚,𝑛)/𝜅𝑧. Apply L’Hospital’s Rule to Eq. (A11), and then we have 

𝑅𝑒𝑠 = lim
𝑝→𝜑

−2𝜆cosh[(1+�̅�)𝜆]

𝑝[(1+2𝜀𝜅𝑧)𝜆 cosh 𝜆+(1−𝜀𝑝)sinh𝜆]
exp(𝑝𝑡̅)        (A12) 

The residue for the pole at 𝑝 = −𝑓𝑚,𝑛 + 𝜅𝑧𝜆0,𝑚,𝑛
2  can be defined as 

𝜙0,𝑚,𝑛 =
−2𝜆0,𝑚,𝑛cosh[(1+�̅�)𝜆0,𝑚,𝑛]exp(−𝛾0,𝑚,𝑛�̅�)

𝛾0,𝑚,𝑛[(1+2𝜀𝜅𝑧)𝜆0,𝑚,𝑛 cosh 𝜆0,𝑚,𝑛+(1−𝜀𝛾0,𝑚,𝑛)sinh𝜆0,𝑚,𝑛]
       (A13) 
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which is obtained by Eq. (A12) with 𝜆 = 𝜆0,𝑚,𝑛 and 𝑝 = −𝑓𝑚,𝑛 + 𝜅𝑧𝜆0,𝑚,𝑛
2 = 𝛾0,𝑚,𝑛. On the other hand, 

infinite poles behind p = 𝑓𝑚,𝑛 are at 𝑝 = 𝛾𝑗,𝑚,𝑛 where j  1, 2, … . Let 𝜆 = √−1𝜆𝑗,𝑚,𝑛, and Eq. (A2) 

yields 𝑝 = −𝑓𝑚,𝑛 − 𝜅𝑧𝜆𝑗,𝑚,𝑛
2 . Substitute 𝜆 = √−1𝜆𝑗,𝑚,𝑛 , 𝑝 = −𝑓𝑚,𝑛 − 𝜅𝑧𝜆𝑗,𝑚,𝑛

2 , cosh(√−1𝜆𝑗,𝑚,𝑛) =

cos 𝜆𝑗,𝑚,𝑛 and sinh(√−1𝜆𝑗,𝑚,𝑛) = √−1 sin𝜆𝑗,𝑚,𝑛 into Eq. (A9) and rearrange the result, and then we 

have Eq. (32). These poles are at 𝑝 = −𝑓𝑚,𝑛 − 𝜅𝑧𝜆𝑗,𝑚,𝑛
2  with numerical values of 𝜆𝑗,𝑚,𝑛. On the basis of 

Eq. (A12) with 𝜆 = √−1𝜆𝑗,𝑚,𝑛 and 𝑝 = −𝑓𝑚,𝑛 − 𝜅𝑧𝜆𝑗,𝑚,𝑛
2 = 𝛾𝑗,𝑚,𝑛, the residues for these poles at 𝑝 =

−𝑓𝑚,𝑛 − 𝜅𝑧𝜆𝑗,𝑚,𝑛
2  can be expressed as  

𝜙𝑗,𝑚,𝑛 =
−2𝜆𝑗,𝑚,𝑛cos[(1+�̅�)𝜆𝑗,𝑚,𝑛]exp(−𝛾𝑗,𝑚,𝑛�̅�)

𝛾𝑗,𝑚,𝑛[(1+2𝜀𝜅𝑧)𝜆𝑗,𝑚,𝑛 cos 𝜆𝑗,𝑚,𝑛+(1−𝜀𝛾𝑗,𝑚,𝑛)sin𝜆𝑗,𝑚,𝑛]
       (A14) 

where j  1, 2, … . As a result, the inverse Laplace transform for Eq. (A1) is the sum of Eqs. (A9) and 

(A13) and a simple series expended in the RHS function in Eq. (A14) with j  1, 2, …  (i.e., 𝜙𝑚,𝑛 +

𝜙0,𝑚,𝑛 + ∑ 𝜙𝑗,𝑚,𝑛
∞
𝑗=1 ). Finally, Eq. (30) can be derived after taking the inverse double-integral transform 

for the result using the formula that (Latinopoulos, 1985, Eq. (14)) 

ℎ̅(�̅�, �̅�, 𝑧̅, 𝑡̅) = 𝜉 ∑ ∑ (𝜙𝑚,𝑛 + 𝜙0,𝑚,𝑛 + ∑ 𝜙𝑗,𝑚,𝑛
∞
𝑗=1 )𝐹𝑚𝐹𝑛𝑈𝑚𝑈𝑛

∞
𝑛=1

∞
𝑚=1    (A15) 

where 𝜉 and 𝑈𝑚𝑈𝑛 result from 𝜉𝑈𝑚𝑈𝑛 in Eq. (28). 


