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Abstract

Accurate rainfall data are the key input parameter for modelling river discharge
and sediment soil loss. Remote areas of Ethiopia often lack adequate precipitation
data and where it is available, there might be substantial temporal or spatial gaps.
To counter this challenge, the Climate Forecast System Reanalysis (CFSR) of the
National Centers for Environmental Prediction (NCEP) readily provides weather
data for any geographic location on earth between 1979 and 2014. This study
assesses the applicability of CFSR weather data to three watersheds in the Blue
Nile Basin in Ethiopia. To this end, the Soil and Water Assessment Tool (SWAT)
was set up to simulate discharge and sediment soil loss, using CFSR and conven-
tional weather data, in three small-scale watersheds ranging from 102 112 to 477
ha. Calibrated simulation results were compared to observed river discharge and
observed sediment soil loss over a period of 32 years. The conventional weather
data resulted in very good discharge outputs for all three watersheds, while the
CFSR weather data resulted in unsatisfactory discharge outputs for all of the three
gauging stations. Sediment soil loss simulation with conventional weather inputs
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yielded satisfactory outputs for two of three watersheds, while the CFSR weather
input resulted in three unsatisfactory results. Overall, the simulations with the con-
ventional data resulted in far better results for discharge and sediment soil loss
than simulations with CFSR data. The simulations with CFSR data were unable to
adequately represent the specific regional climate for the three watersheds, per-
forming even worse in climatic areas with two rainy seasons. Hence, CFSR data
should not be used lightly in remote areas with no conventional weather data where
no prior analysis is possible.

Accurately represented, spatially distributed rainfall is one of hydro-meteorological and
hydro-climatic data are the most important input parameters for hydrological modelling
with the Soil and Water Assessment Tool(SWAT ), called SWAT hereafter (???) . Al-
though a great deal of effort is being invested into rainfall and climatic data collection,
many areas of Ethiopia have no adequate precipitation data, and where such data are
available, the monitoring network contains substantial temporal and spatial gaps. This
makes it necessary to use other sources of modeled rainfall data for SWAT modelling.
The Global Weather Data for SWAT website Climate Forecast System Reanalysis (? )
readily provides, for any coordinates coordinated on the globe, a Climate Forecast Sys-
tem Reanalysis (CFSR) data set for downloadclimate data set adapted to SWAT. This
data set is the result of the close cooperation between two United States organizations,
the National Centers for Environmental Prediction (NCEP) and the National Center for
Atmospheric Research (NCAR), which have completed a global climate data reanaly-
sis over 35 36 years from 1979 through 2014. The CFSR data is based on a spectral
model which includes the parametrisation of all major physical processes as described
indetailin?;?;,?,and?.

However, a first comparison the applicability of the CFSR data for small-scale catch-

ments in the Ethiopian Highlands has not been adequately investigated yet. Afore-

mentioned studies did focus on large basins with numerous CFSR stations, which tend

to balance errors in rainfall patterns. A first evaluation, carried out by our research

group, of CFSR-modelled rainfall data with that measured by the Water and Land Re-
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source Centre (WLRC, formerly the Soil Conservation Research Programme [SCRP])
in Ethiopia has shown substantial differences in daily, monthly, and annual rainfall. So
far, few studies have been conducted in the Ethiopian context on the impact of rain-
fall data on streamflow simulations. The impact of spatial variability of precipitation
on model run-off showed that standard uniform rainfall assumptions can lead to large
uncertainties in run-off estimation (?) . Several studies evaluating the CFSR data set
have suggested that climatic models tended to overestimate interannual variability but
underestimate spatial and seasonal variability (?) Fuka et al. (? ) used CFSR data in a
1200 km? watershed in Ethiopia with SWAT suggesting CFSR data performs as good
or even better than conventional precipitation. Worglul et al. (? ) correlating conven-
tionally recorded rainfall with CFSR data over the Lake Tana basin (15’000 km?2). They
suggested that seasonal patterns could adequately be captured although the CFSR
data did uniformly overestimate and underestimate measured rainfall. A recent study
(?) from ? evaluated the use of CFSR data for hydrological prediction using SWAT in
the Lake Tana basin, Ethiopia. The study achieved satisfactory results in its simulations
for both CFSR and conventional data. While the outcome was better with conventional
weather data, the study concludes that CFSR could be a valuable option in data-scarce
regions. Other studies using CFSR data not in the Ethiopian context (??) and with
large to very large catchments (13’750 to 73'000 km?) concluded that CFSR data gave
good to very good results and the SWAT model responded reasonably to the data set.
One CFSR application in China (?) with meso-scale watersheds (366 to 1098 km?)
concluded that CFSR data was significantly different and that the CFSR data spatial
distribution might be the cause for the weak performance.

The impact of spatial variability of precipitation on model run-off showed that standard

uniform rainfall assumptions can lead to large uncertainties in run-off estimation (?) .

Several studies evaluating the CFSR data set have suggested that climatic models

tended to overestimate interannual variability but underestimate spatial and seasonal

variability (?) . In another study, Cavazos and Hewitson (?) performed statistical down-

scaling of daily CFSR data with Artificial Neural Networks, and their predictions showed
C5771

low performance in near-equatorial and tropical locations, which led them to conclude
that the CFSR data is most deficient in locations where convective processes dominate.
Another study found the CFSR data set performed well on a continental scale but that
it failed to adequately reproduce some regional features (?). A study in China per-
formed streamflow simulations by SWAT using different precipitation sources in a large
arid basin using rain gauge data combined with Tropical Rainfall Measuring Mission
(TRMM) data (?). The study established that streamflow modelling performed better
using a combination of TRMM and rain gauge, as opposed to rain gauges only. Dif-
ferent interpolation schemes with the use of univariate and covariate methods showed
that Kriging and Inverse Distance Weighting performed similarly well when used with
the SWAT model (?).

In this paper, WLRC and SCRP rainfall data (hereafter called WLRC data) are com-
pared to CFSR data over a period of 35 maximum period of 34 years from 1981 to
2014. 2014 (Maybar, 33 years for Andit Tid and 32 years for Anjeni). The main objec-
tive of this paper is to compare the two data sets for annual, interannual, and seasonal
cycles and subsequently to compare the effects on discharge and sediment soil loss
modeling when using these data sets in three locations in the Ethiopian highlands (see
figure 1). Calibrated CFSR modeled discharge and sediment soil loss is then compared
to calibrated WLRC modelled discharge and sediment soil loss, and the applicability
of the CFSR data in small-scale catchments for hydrological predictions is statistically
evaluated and compared.

1 Methods and materials

The effects of spatial and temporal variability in the CFSR rainfall data set for the study
area were examined in several steps. First the CFSR data were statistically compared
to measured WLRC rainfall data for accurate representation of annual, interannual,
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and seasonal cycles. This is important because temporal occurrence of rainfall has a
great impact not only on discharge but moreover on sediment yield generation. Many
crop types are sowed at the beginning of the rainy season(s), which implies extensive
extensive ploughing beforehand, which leaves fields unprotected for the first few rainfall
events. Hence, is clear that temporal occurrences of annual, interannual and seasonal
cycles play a crucial role for the validation of a data set like the CFSR climatic data.
Second, the impact of spatial and temporal variability of rainfall on hydrology and soil
loss was assessed by modeling discharge and sediment soil loss with the SWAT model.
The SWAT model was calibrated for discharge once using WLRC rainfall climatic data
and once using the CFSR rainfall climatic data set. Afterwards sediment soil loss
was calibrated for each catchment. In a last step discharge and sediment soil loss
on a monthly basis were statistically and visually compared using performance ratings
established by Moriasi et al. (?).

1.1 Study area

The study areas of the three micro-scale catchments are located in the eastern and
central part of the Blue Nile Basin. The Anjeni (AJ) and the Andit Tid (AT) are sub-
basins of the Blue Nile Basin, which drains towards the west into the main Nile at
Khartoum. The Maybar (MA) catchment drains into the Awash river to the East of the
Ethiopian highlands. The catchment sizes range from 104 ha to 447 112 ha to 477 ha
and their altitudinal ranges extend from 2400 to 3548 2406 to 3538 masl (see table 1
on page C5791 for details). The catchments have a sub-humid to humid climate with
an annual temperature ranging from 12C to 16 C and a mean annual rainfall ranging
from 1211 mm to 1690 mm. The rainy seasons are divided into two seasons for Anjeni
has a unimodal rainfall pattern with a main rainy season from June to September while
Andit Tid and Maybar and into one for Anjenihave a bimodal rainfall regime with a
small rainy season from April to May (belg) and a main rainy season from June to
September (kremt) followed by a long dry season from October to March. Land use
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is dominated by smallholder rain-fed farming-systems with grain-oriented production,
ox-plough farming, and uncontrolled grazing practises.

1.2 Hydrometeorological data

The hydrometeorological data consists of two sets. The conventional or measured
data contains daily rainfall and maximum and minimum temperature from one climatic
station for each watershed. These climatic stations have been installed in the early
1980s and span the period until 2014 with some larger gaps (see Table 1 for details)
mainly from 2000 to 2010. The CFSR data (The Texas A&M University spatial sci-
ences website, globalweather.tamu.edu) was obtained for the entire Blue Nile Basin
(Bounding box: latitude 8.60— 12.27 N and longitude 33.94 — 40.40 E) before choosing
the four closest stations for each watershed. It includes daily rainfall, maximum and
minimum temperature as well as wind speed, relative humidity, and solar radiation for
12 locations, 4 for each watershed (see Figure 1 for details).

1.2.1 Hydrologic model
ArcSWAT (Version 2012.10.14
1.3 Hydrologic model

SWAT (SWAT2012 rev. 620) was used to assess the impact of different rainfall patterns

on run-off and sediment loss dynamics (?) soil loss dynamics through the ArcSWAT in-

terface (Version 2012.10_1.14). Here, we present the SWAT model only briefly, as it

has been widely used in the past, with extensive review of its performance and pa-

rameterization in Ethiopia and other regions (?2?????). SWAT is a physically-based

river basin or watershed modelling tool. The SWAT model requires specific information
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about weather, soil properties, topography, vegetation, and land management prac-
tices occurring in the watershed (?). ArcSWAT divides the catchment into hydrological
response units (HRUs) based on unique combinations of soil type, land use, and slope
classes that allow for a high level of spatial detail simulation. Runoff is predicted sep-
arately for each HRU and routed at subbasin level to obtain the total runoff for the
watershed (Neitsch et al., 2011). The surface run-off is estimated in the model using
one of two options (1) the Green and Ampt method (?) or (2) the Natural Resources
Conservation Service Curve Number (SCS-CN) method (?). The flow routing is esti-
mated using the variable storage coefficient method (?), or the Muskingum method (?).
Sediment soil loss for each HRU is calculated through the Modified Universal Soil Loss
Equation (MUSLE). Sediment routing in channels is estimated using stream power (?)
and deposition in channels is calculated through fall velocity (??).

1.4 Spatial data

The spatial data used in ArcSWAT for the present study included the digital elevation
model (DEM), land use data, and soil data (see table 1 for details). The DEM for the
three WLRC watersheds was developed by the Centre for Development and Environ-
ment (CDE) of the University of Bern, Switzerland, for the former SCRP (???) and has
a resolution of 2 m. The spatial distribution of soils for Anjeni was adapted from a soil
survey carried out by the SCRP (?) and a PhD dissertation by Gete Zeleke (?). The
physical and chemical parametrisation of the soil was adapted from the soil database
in Zeleke’s thesis and from Kejela’s report. The soil characteristics for Maybar were
adapted from the SCRP’s Soil Conservation Research Report 7 (?) and for Andit Tid
from the SCRP’s Research Report 3 (?). Land use data were adapted from yearly sur-
veys carried out by SCRP and WLRC through land use mapping and interviews and
by own surveys in 2008 and 2012. To adapt to annually changing land use patterns, a
generic map was adapted from the WLRC land use maps of 2008, 2012, 2014 (Anjeni),
and 2010, 2012, 2014 (Andit Tid, Maybar). The planting and harvesting times were av-
C5775

eraged over the entire period and planted at similar dates for the entire simulation. To
simulate crop growth we used the heat unit function in ArcSWAT. Teff, for example, was
planted beginning of July and harvested beginning of December with several tillage
operations preceding planting. Tillage operations were adapted to the usage of the
traditional Ethiopian plough called “Maresha” according to Temesgen et al. (? ).

1.5 SWAT model setup

The watersheds were delineated using the Arc—SWAT delineation tool and its stream
network compatibility was checked against the stream network from satellite images
. The sub-basin sizes were fixed at 2 ha. (one satellite image for each watershed).
SWAT compiled 1038 HRUs for Anjeni, 1139 HRUs for Maybar, and 728 HRUs for An-
dit Tid respectively. All HRUs were defined using a zero percentage threshold area,
which means that all land use, soil, and slope classes were used in the process. Daily
precipitation and minimum and maximum temperature data at three WLRC stations
were used to run the model with conventional weather inputs. All three WLRC stations
The CFSR time series were complete from 1979 to 2014. The WLRC data had sub-
stantial gaps in the time series, mostly in the early 1990s and after 2000 (see Table 1
on page C5791 1 for details). The SWAT weather generator was used to fill the gaps
for rainfall, temperature, solar radiation, and relative humidityin the WLRC data set for
rainfall and temperature. Otherwise daily precipitation and minimum and maximum
temperature data were used to run the model. Potential evapotranspiration (PET) was
estimated using the Hargreaves method (Hargreaves et al., 1985). Daily river flow and
sediment concentration data were measured at the outlet of the three WLRC water-
sheds. The flow observations are available throughout the entire year while sediment
concentrations calculated sediment concentrations from grab samples are only avail-
able during rainstorm events , when sediment concentrations are visible in the river
and are extrapolated over the whole time period. Personnel at the research station are
instructed to take grab samples only during rainfall events, when the river is turning
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brown. The planting and harvesting times were averaged over the entire period and
planted at similar dates for the entire simulation. To simulate crop growth we used the
heat unit function in ArcSWAT. Teff (eragrostis teff), a widely cultivated and highly nutri-
tional crop native to Ethiopia, was planted beginning of July and harvested beginning of
December with several tillage operations preceding planting. Tillage operations were
adapted to the usage of the traditional Ethiopian plough called Maresha according to
Temesgen et al. (? ) with a tillage depth of 20 cm and a mixing efficiency of 0.3. During
the dry season and outside rainfall events the monitored rivers are assumed sediment
free.

The model was run for 32 years from 1983 to 2014 with daily data inputs but monthly
outputs. Calibration and validation periods were chosen equally balanced regarding
high-flow and low-flow years in all three catchments. The model was first calibrated
and validated for discharge and then calibrated and validated for sediment soil loss
(see Table 1 on page C5791 for details).

SWAT Swat parameters used for discharge and soil loss calibration with initial ranges and fitted value final parameter ranges.
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Variable Parameter name Definition Initial range Fitted parameter ranges
Andit Tid Anjeni Mayb
Discharge a*a_ CN2.mgt Curve number —2510 15 16.7t0 18.7 ~7t0—4 15t0 ¢
**v__GWQMN.gw Threshold depth of water in shallow 0 to 5000 4761 to 4990 0to 1611 2500 to 50(
aquifer required for return flow to occur
a__ESCO.hru Soil evaporation compensation factor Oto1 -0.0038 to 0.046 0.0023 to 0.067 0t0 0.
v__GW_REVAPgw Groundwater "revap" coefficient 0.02t0 2 0.1810 0.19 0.17to 0.21 0.15t00
a__CH_Ka.rte Effective hydraulic conductivity in channel —0.01 to 500 6to13to 13 —11t0 58 —0.01to 1
a_ CH_N2.rte Manning’s "n" value for the main channel -0.01t00.3 0.0012 to 0.067 —0.15 to 0.062 0.025 to 0.0¢
a__SURLAG.bsn Surface runoff lag time 0.05t0 24 -0.084 to0 3.98 010 6.63 0.05t0 1
a__RCHRG_DPgw Deep aquifer percolation fraction Oto1 0.36 to 0.66 —0.51100.23 0to
v__EPCO.hru Plant uptake compensation factor Oto1 0.7810 1.55 0.22't0 0.745 0to
v__SOL_AWC(1).sol Available water capacity of the soil layer Oto1 0.1310 0.22 0.191t0 0.47 0to
Sediment a__SLSUBBSN.hru Average slope length —10 to 45 8.85t0 42.34 —6.24 to -4.60 -5to
a__HRU.SLP_SLP.hru Average slope steepness -0.1t0 0.4 —0.16 to —0.04 —0.12t0 —0.09 -0.5t00.7
a__USLE_K(1).sol USLE equation soil erodibility (K) factor —0.111t00.24 0.079t0 0.14 0.44 t0 0.49 0.04t0 0.2
a__USLE_C.plant.dat Min value of USLE C factor 0.04 to 0.24 0.0009 to 0.004 0.4810 0.5 0.34 t0 0.6%
applicable to the land cover/plant
a_ USLE_Pmgt USLE equation support practice 0.42100.79 —0.411t00.19 0.16 t0 0.26 0.09t0 0.¢
v__SPCON.bsn Linear parameter the maximum amount 0.0001 to 0.01 0.005 to 0.007 0.0067 to 0.010 —0.011t0 0.C
of sediment that can be reentrained
v__SPEXPbsn Exponent parameter for calculating 1to 1.5 1.27t01.5 1.32t0 1.37 1.23t0 1.0
sediment reentrained
v__CH_COVi.rte Channel cover factor —0.05t0 0.6 0.2t0 0.39 0.057 to 0.099 —0.02 .05 to 0.C
v__PRF_BSN.bsn Peak rate adjustment factor for sediment Oto2 09to 1.1 12t01.6 0.89to 1

routing in the main channel

a__means a given value is added to the existing parameter value

v__ means the existing parameter value is to be replaced by a given value
1.6 Calibration setup, parameterization validation, and uncertainty sensitivity analysis

The SUFI-2 algorithm (??) in SWAT-Cup (??) was used for the calibration and validation
procedure and for sensitivity, and uncertainty analysis. SWAT-Cup calculates the 95%
prediction uncertainty band (95PPU) in a iterative process. For the goodness of fit
two indices called "p-factor" and "r-factor" are used. The P-factor is the fraction of
measured data inside the 95PPU band, and varies from 0 to 1 where 1 indicates perfect
model simulation. The r-factor is the ratio of the average width of the 95PPU band
and the standard deviation of the measured variable. There are different approaches
regarding balance of p-factor and r-factor. The p-factor should preferably be above
0.7 for discharge and the r-factor value should be below 1.5 (?), but when measured
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data are of lower quality other values apply. Once acceptable p-factor and r-factor are
reached statistical parameters for time series analysis are compared.

For this study we used the Nash-Sutcliff Nash-Sutcliffe Efficiency (NSE), the stan-
dardized Root Mean Square Error (RSR), and the Percent Bias (PBIAS). All are very
commonly used statistical parametersThese are well-known statistical parameters,
which are often used for comparison of time-series especially in hydrological mod-

studies. This study refers to the model evaluation techniques described by Moriasi et
al. (?), who established guidelines for the proposed statistical parameters (see table 2
below for details). The NSE is a normalised statistic that indicates how well a plot of
observed versus simulated data fits the 1:1 line and determines the relative magnitude
of the residual variance compared to the measured data variance (?). NSE ranges
from —co (negative infinity) to 1, with a perfect concordance of modelled to observed
data at 1, a balanced accuracy at 0 and a better accuracy of observations below zero.
The RSR is a standardized RMSE, Root Mean Square Error (RMSE, standard devia-
tion of the model prediction error), which is calculated from the ratio of the RMSE and
the standard deviation of measured data. RSR incorporates the benefits of error index
statistics and includes a scaling factor. RSR varies from the optimal value of 0, which
indicates zero RMSE or residual variation, which indicates perfect model simulation to
a large positive value, which indicates a large residual value and therefore worse model
simulation performance (?).

The PBIAS measures the average tendency of the simulated values to be larger or
smaller than their observed counterparts. The optimal value of PBIAS is zero. PBIAS
is the deviation of data being evaluated, expressed as a percentage. A positive PBIAS
value indicates the model is under—predicting measured values, whereas negative val-
ues indicate over—predicting.

For this article the recommendations for reported values were strictly applied for dis-
charge calibration and lowered for sediment loss soil loss calibration.
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The model performance was also evaluated using the hydrograph visual technique,
which allows a visual model evaluation overview. As suggested by Legates and Mc-
Cabe (?) ? this should typically be one of the first steps in model evaluation. Adequate
visual agreement between observed and simulated data was compared on discharge
and sediment soil loss plots on a monthly basis.

2 Results and discussion
2.1 General comparison of CFSR and WLRC rainfall data

The raw CFSR and WLRC rainfall input data showed significantly different patterns and
rainfall amounts. For Andit Tid, situated on the eastern escarpment of the Blue Nile
Basin, the belg and kremt rainfall seasons were temporally adequately represented;
i.e., the timely occurrences of the rainy seasons were correctly represented through
the CFSR data. However, total CFSR rainfall amounts were far from adequately repre-
sentedmeasured values: while the belg rainfall season in the CFSR data showed some
overestimation, the total rainfall and length of the kremt rainy season were strongly un-
derestimated. WLRC data distinctly show a main rainy season from July to September
and a light rainy season from March to May, while the CFSR data only show mildly
increased rainfall in March, April, July, and August but no distinct rainy season (see
figure 2 on page C5790 for comparison).

The CFSR data for Anjeni highly overestimated rainfall in the region. While WLRC data
showed a clear trend towards only one main rainy season from May/June to September
with average monthly rainfall ranging from 100 mm (May) to 380 mm (July), the CFSR
data showed a pronounced main rainy season with monthly averages ranging from 400
mm to 1000 mm from June to September and a distinct small rainy season from March
to May with monthly averages three times as high as the WLRC rainfall data. The total

C5780



annual CFSR rainfall was three times the WLRC annual rainfall.

WLRC Maybar data showed a clear seasonality, with two rainy seasons, one in March
and April, and one from July to August. The belg rainy season showed only mild in-
crease of average rainfall to around 75 mm/month and the kremt rainy season showed
a distinct increase of rainfall to an average of 270 mm/month. From the CFSR rainfall
data, no clear distinction could be made between the belg and the kremt rainy season
— both showed a rainfall increase to around 150 mm/month and the total annual rainfall
was strongly underestimated.

In general, all CFSR rainfall patterns showed a similar composition: data variability was
more uniformly distributed and the distinct seasonality of the WLRC data was not well
represented. CFSR data underestimated the bimodal rainfall climates and strongly
overestimated the unimodal rainfall climate. The WLRC data has a highly variable
rainfall range in the bimodal rainfall locations, which is not reflected by the CFSR data.
In general, the CFSR rainfall data does not represent the high variability of rainfall
measured by WLRC data.

2.1.1 Seasonal comparison of rainfall data

The seasonal components of the CFSR rainfall were assessed for the three stations by
breaking the monthly data into seasons (dry season from October to March, small rainy
season (belg) from April to May, and large rainy season (kremt) from June to Septem-
ber) and by comparing only these. The comparison of measured rainfall to modelled
rainfall for the dry season from October to March was unsatisfactory (NSE < 0.50) with
negative NSEs for three stations (AT: —1.92, AJ: —12.19, MA: -0.77). The PBIAS in-
dicated model underestimation for Anjeni and Maybar (AJ: 134.2, MA: 30.7) and an
overestimation of the rainfall for Andit Tid (AT: —55.2). The RSR showed large positive
values (AT: 1.68, AJ: 3.55, MA: 1.3) indicating a low model simulation performance and
again an unsatisfactory rating (see table ).
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For the belg rainy season from April to May the model performed badly. Surprisingly,
the model performed worst in Anjeni, where no small rainy season occurs. The CFSR
model performance for Anjeni was unsatisfactory, with an NSE of —5.42, a PBIAS of
106.1, and an RSR of 2.48. The CFSR model overestimated the monthly rainfall in
all but 5 out of 22 years. Andit Tid and Maybar were slightly more adequate but still
unsatisfactory. NSE was —0.79 and —0.24 respectively, indicating unsatisfactory perfor-
mance. PBIAS was —39.4 and 24.3, respectively. RSR was 1.31 and 0.85, which again
indicates an unsatisfactory result.

The kremt rainy season from June to September is the season with the heaviest rainfall
throughout the year. On average some 77% of the yearly rain falls within this time
period. This is also the time period where the heaviest soil erosion occurs induced by
rainfall. For Anjeni, Andit Tid, and Maybar the CFSR model performed unsatisfactorily
(see Table 7 and Figure 3 in appendix A) with NSEs below 0.50 (AT: -9.79, AJ: -50.09,
MA: -3.28), RSRs above 0.70 (AT: 3.23, AJ: 7.0, MA: 2.03), and PBIAS values ranging
from —69.2 (AT) and —47.1 (MA) to +128 (AJ).

The kremt rainy season was underestimated by the CFSR model for the bimodal rain-
fall pattern in Andit Tid and Maybar, while the unimodal rainfall pattern was heavily
overestimated by the CFSR model.

2.2 Discharge modeling with WLRC and CFSR data

The performance ratings for each of the three catchments including SWAT-Cup p—
factor and r—factor are summarised in Table 4 on page C5793. The table is divided into
discharge comparison and sediment soil loss comparison. Each model was calibrated
with one to five iterations using 500 simulations each. The data was split into calibration
and validation periods, which contained similar amplitudes (see figure 3 for further
details) over their respective periods. Parameters initially contained original ranges ,
which were gradually adapted according to modeling results. The final ranges Final
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parameter ranges are presented in Table 1.5 2 on page C5778.
2.2.1 Andit Tid

Calibration of Andit Tid with WLRC rainfall data yielded very good results. With an p—
ractor of 0.71 and a p—factor of 0.53 (see Chapter 1.6 on page C5778 for performance
rating) the statistical parameters RSR, NSE and PBIAS yielded "very good"” results
(0.46, 0.79, 3.1 respectively). Validation for Andit Tid yielded in satisfactory results
with The CFSR rainfall data, which underestimated the WLRC rainfall pattern, yielded
unsatisfactory results with RSR, NSE, and PBIAS of 0.80, 0.36, and 31.4. Parameter
ranges settings were maximised, but still inside SWAT absolute values ((?) . The hy-
drograph on page C5790 shows that the underestimation of rainfall amounts for Andit
Tid did result in a constant underestimation of peak flows and of base flows throughout
the whole time period.

Validation of discharge for Andit Tid with WRLC data showed very good results with
RSR:0.46, NSE:0.79 and PBIAS 9.6 and marginally unsatisfactory results for the
CFSR dataset (RSR:0.74, NSE: 0.45, PBIAS: 37.9).

2.2.2 Anjeni

Anjeni showed very good result for calibration with WLRC rainfall data. RSR, NSE and
PBIAS were well inside the optimal performance ratings (0.39, 0.85, and 3.7 respec-
tively), see table 2 on page C5792 and figure 3 on page C5790 for comparison.

Calibration Satisfactory calibration could not be reached with CFSR data , where the
CFSR rainfall data did strongly overestimate the measured rainfall data proved impos-
sible. With parameter ranges set to maxima, and neither baseflow, nor peaks could be
adequately represented. With a p—factor of 0.49 and an p—ractor of 1.91 the statisti-
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cal parameters were unsatisfactory (RSR: 2.70, NSE:-6.27, and PBIAS: -226.0). The
hydrograph (Figure 3 on page C5790) shows that the strong overestimation of CFSR
rainfall data during belg lead to a modelled discharge with extreme peaks during kremt,
which do not correspond to the discharge regime of measured WLRC data.

Validation of discharge for Anjeni with WRLC data showed very good results with
RSR:0.41, NSE: 0.83 and PBIAS —6.7 and unsatisfactory results for the CFSR dataset
with RSR: 1.24, NSE:-0.53, and very good PBIAS:8.1.

2.2.3 Maybar

Calibration of Maybar with WLRC rainfall data proved to be less straight forward than
Anjeni and Andit Tid. The rugged topography of Maybar combined with a inade-
quate cross-section proved challenging to model. Nonetheless, satisfactory result were
achieved for discharge with RSR, NSE, and PBIAS of 0.63, 0.60, and —23.4 respec-
tively.

The CFSR rainfall data yielded an unsatisfactory discharge simulation result with RSR:
, NSE: , NSE, and PBIAS: . As the CFSR modelled rainfall shows two similar rainy
seasons where WLRC rainfall data has distinct belg and kremt rainy season, SWAT
modelled discharge showed similar trends. The hydrograph with CFSR data on page
C5790 shows Figure 3 shows regular discharge peaks from February to April for every
year, when there are none measured while showing only small CFSR peaks for the
main rainy season from June to September, when measured discharge is significantly
increasing. Again, the SWAT modelled discharge reflected the March, in accordance
to rainfall pattern deviation as seen on Figure 2, when no increase of discharge was
measured at the research station. The SWAT model reflected input rainfall pattern
adequately, which lead to discharge peaks during belg, when there are none in the
measured data. At the same time it lead to reduced discharge peaks during kremt,
when the measured WLRC data are clearly pronounced.
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Validation of discharge for Maybar with WRLC data showed good results with
RSR:0.56, NSE: 0.74 and PBIAS 17.3 and unsatisfactory results for the CFSR dataset
with RSR:0.98, NSE: 0.04, and very good PBIAS:—-1.9.

2.3 Sediment Soil loss modelling with WLRC and CFSR data

Sediment Soil loss modelling was calibrated using the same set of 9 parameters for
each catchment (see Table 1.5 2 on page C5778 for description). Calibration of soil
loss was conducted using the parameter ranges for discharge calibration, and adapting
the sediment parameters while leaving discharge parameters untouched. Performance
ratings for each of the three catchments including SWAT-Cup p—factor and p—ractor
are summarised in table 4 on page C5793 and visually represented on Figure 4 on
page C5790. Performance rating levels were considerably lowered for sediment soil
loss modeling. Threshold for the p—factor was set at 0.40 with an r—factor below 1.80
and standard performance ratings for RSR, NSE and PBIAS.

2.3.1 Andit Tid

The good results from WLRC discharge modeling facilitated sediment soil loss calibra-
tion and resulted in satisfactory performance ratings for RSR, NSE (0.69, 0.65), and
an unsatisfactory PBIAS, which was slightly below threshold with —=56.3. Graphic rep-
resentation showed good visual results (see figure 4 on page C5790) in general, but
also showed constant overestimation of the modelled data except for three years 1988,
1989, and 1994.

Sediment loss modelling with CFSR data reflected the results from discharge model-
ingValidation of sediment yield for Andit Tid with WRLC data showed a marginally sat-
isfacroy result with RSR:0.68, NSE:0.51 and unsatisfactoy PBIAS —64.3 indicating a
general overestimation and unsatisfactory results for the CFSR dataset with RSR: 1.39,
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NSE:—-0.94, and satisfactory PBIAS:—11.9 indicating underestimation.
2.3.2 Anjeni

Sediment Soil loss modeling with WLRC rainfall data and calibrated discharge yielded
satisfactory results.With a P—factor of 0.40 and an r—factor of 0.65, and statistical pa-
rameters RSR: 0.67, NSE: 0.55, and PBIAS: -19.9 the model was just satisfactory. The
graphic showed adequate results with a constant overestimation of the model except
for two years in the early nineties. Modelling with CFSR data, resulted in strongly un-
satisfactory results (RSR: 1.01, NSE: —0.02, and PBIAS: -33.9), which can easily be
explained with the strong model overestimation of rainfall and subsequently discharge.
Parameters could not be adapted further to achieve better results as they were already
set to the edge of the possible ranges.

Validation of sediment yield for Anjeni with WRLC data showed satisfactory results with
RSR:0.67, NSE: 0.64 and PBIAS —14.1 indicating a general overestimation and unsat-
isfactory results for the CFSR dataset with RSR: 1.02, NSE:-0.03, and satisfactory
PBIAS: —1.9 indicating underestimation.

2.3.3 Maybar

Sediment Soil loss calibration with WLRC rainfall data and calibrated discharge re-
sulted in unsatisfactory statistical results (RSR: 1.24, NSE: —-0.54, PBIAS: -34.1). P—
factor and r—factor were 0.42 and 0.60, respectively.

Calibration in Maybar with CFSR rainfall data yielded unsatisfactory results (RSR:1.02,
NSE:-0.03, PBIAS:54.4). As described in the discharge calibration section (Section
2.2.3), CFSR rainfall data in Maybar tended towards overestimation of belg and un-
derestimation of kremt, which resulted in overestimation of monthly discharge during
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belg and underestimation during kremt. This trend was redrawn with sediment calibra-
tion resulting in small but distinct peaks during belg and smaller peaks than measured
during kremt. There was no satisfactory calibration possible with CFSR rainfall data.

Validation of sediment yield for Maybar with WRLC data showed satisfactory results
for both data sets with a very strong overestimation from the CFSR data set and an
equally strong overestimation from the WLRC data set.

In this paper we studied the applicability of CFSR weather data to three small-scale
watersheds in the Ethiopian highlands with the goal of assessing the usability for future
modelling in data-scarce regions. First, we compared CFSR and WLRC rainfall data at
three stations in the Ethiopian Highlands and therefore rainfall data was compared on
a monthly basis with boxplots. Second, we modelled discharge with the SWAT model;
once with WLRC data and once with CFSR rainfall data. Third, we modelled sediment
soil loss for the three stations with the SWAT model and compared calibrated results
from CFSR rainfall and conventional rainfall to measured data.

The rainfall data comparison for CFSR and WLRC data showed strong discrepancies
in seasonal and monthly rainfall amounts for all three catchments. For Andit Tid, both,
belg and kremt rainy season were levelled downwards resulting in unsatisfactory re-
sults for each season with strongest deviations for kremt (see Tabel 3 on page C5792
for details). Anjeni rainfall data from the CFSR model overestimated the measured
WLRC rainfall very strongly. This resulted in strong deviations with performance rat-
ings well below satisfactory thresholds. Maybar rainfall data from CFSR showed the
highest deviation for the representation of seasonality. Neither belg, nor kremt or the
dry season were adequately modelled. Deviation ranged from slight (dry season) to
overestimation of belg season and a strong underestimation of kremt season. All in all
the CFSR model could not adequately render rainfall patterns for Maybar.

Discharge simulation comparisons with WLRC data produced very good results: the
three catchments could be modelled with very good performance ratings for RSR and
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NSE except for the PBIAS, which was only satisfactory in the case of Maybar and very
good for Andit Tid and Anjeni.

Discharge simulations with CFSR The WLRC rainfall data set resulted in three cali-
brated and validated discharge models while the CFSR data resulted in unsatisfactory
performance ratings for the three catchments. Discharge modelling results yielded re-
sults in line with rainfall data comparison: Anjeni discharge was highly overestimated,
Andit Tid discharge was underestimated and Maybar discharge had overestimation of
belg discharge and underestimation of kremt discharge.

Sediment loss modeling with none. For the soil loss modeling the WLRC rainfall data
and calibrated discharge resulted in two satisfactory (Andit Tid and Anjeni) and one un-
satisfactory (Maybar) calibrations. For Andit Tid the model could render sediment loss
adequately except for some peaks in the mid and late nineties. For Anjeni the model
performed even better with a slight overestimation over the whole period. For Maybar
calibration failed. out of three calibrated and validated models while none could be ad-
equately calibrated or validated for the CFSR data set. The SWAT modelling showed
that CFSR rainfall pattern and rainfall yearly total amount variations were so significant
that SWAT model calibration could not adequately represent measured discharge and
sediment yield.

Sediment loss performance ratings from simulations with CFSR rainfall data and cali-
brated discharge yielded in unsatisfactory results for the three catchments. The same
deviation patterns observed in discharge calibration ensued in sediment loss calibra-
tion. Catchments with high discharge model overestimation resulted in high sediment
loss overestimation and catchments with displaced seasonal discharge patterns re-
sulted in displaced sediment loss patterns.

Andit Tid sediment loss modelling with CFSR data resulted in unsatisfactory results.
The underestimation of the discharge modelling did not allow for satisfactory sediment
loss calibration. The hydrograph (see Figure 4 on page C5790) shows that the general
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underestimation of rainfall data lead to underestimation of discharge, which lead to
reduced sediment loss modelling. Sediment loss modeling with CFSR data in Anjeni
resulted in a constant overestimation of sediment loss and performance ratings were
unsatisfactory. For Maybar the misplaced seasonal rainfall lead to higher discharge for
belg and lower discharge for kremt, which resulted in a shift of sediment loss peaks
from kremt to belg. Performance ratings were unsatisfactory.

Our results clearly show that adequate discharge and sediment soil loss modelling was
not possible, in present case, with the CFSR datain present case. This suggests that
SWAT simulations in small-scale watersheds in the Ethiopian highlands do not perform
well with CFSR data in every case, and that sometimes there is no substitute for high-
quality conventional weather data. Such weather data — with high spatial and temporal
climatic data resolution — were available for the three small-scale catchments used in
the study but are not in many other cases. In these other cases one should care-
fully check CFSR data against similar climatic stations with conventionally measured
data. In addition, discharge and sediment soil loss modelling showed that usage of
CFSR weather data not only resulted in substantial deviation in both total discharge
and total sediment soil loss, but also in the seasonal rainfall pattern. The seasonal
weather pattern is one of the major drivers of sediment soil loss and is especially pro-
nounced in the Blue Nile Basin, with one long rainy season occurring as fields are
ploughed and sowed. Thus, contrary to Dile and Srinivasan (? )previous studies for the
Ethiopian Highlands, this study suggests that CFSR data may not be applicable in any
case for small-scale modelling in data-scarce regions: the authors even suggest that
outcomes of SWAT modelling with CFSR data alone for small-scale catchments may
yield erroneous results which cannot be verified and may lead to wrong conclusions.
Nonetheless, the advantage of CFSR data is its completeness over time, which would
allow for comprehensive watershed modelling in regions with no conventional weather
data or with longer gaps in conventionally recorded rainfall records.
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Fig. 1. Map overview of Blue Nile (Abbay) Basin with the WLRC research stations, agro-
ecological zones according to Hurni ? and emplacements of CFSR stations.

Fig. 2. Monthly CFSR and WLRC rainfall distribution of all stations (1979-2010), Andit Tid,
Anjeni, Maybarstation as boxplots with monthly rainfall distribution. CFSR data from 1979 to
2014 and WLRC data from 1981/1982/1984 to 2014. See Table 1 for details.

Fig. 3. Calibration and validation of Modelled SWAT discharge with compared to measured
discharge (blue) for WLRC (violet) and CFSR (pink) input data and the 95 Percent Prediction
Uncertainty (light blue). Data Each sub-figure contains the calibration and the validation period.
Results are given in m3/s.

Fig. 4. Calibration and validation of sediment Modelled SWAT soil loss with compared to mea-
sured soil loss (blue) for WLRC (red) and CFSR (gree) input data and the 95 Percent Prediction
Uncertainty (light blue). Data Each sub-figure contains the calibration and the validation period.
Results are given in tons (t).

C5790



Table 1. Study Description of study sites, model input data , sources and available time series
and gaps. The subdivision of data relates to calibration and validation periods.

Andit Tid
Year of constructiona 1982
Location 9.815 N
37711 E
Size WLRC 477.3 hab
Size SWAT-delineation 466.78 ha
Altitudinal range 3040-3538 masl
DEM
Land use mapd
Soil mape

Climatic data

Anjeni
1983
10.678 N
37.530 E
113.4 hac
105.23

2406-2506 masl
Data resolution

2m
field scale
5x5m

Maybar
1981
10.996 N
39.657 E
112.8 hab
101.98

Daily precipitation

Daily min. and max. temperature

Hydrology data
Soil loss data

Sources
Andit Tid
Precipitation data 1982-2004
2006
2010-2014
Temperature 1982-1993
1997-2002
2010-2013
Discharge 1982-1993
1995-1997
Sediment 1982-1993
1995-1997
2011-2014
Calibration 1984 - 1993
Validation 1994 - 1997

Sub

Daily discharge
Daily soil loss
SCRP/WLRC/CDE/own
Data availability

Anjeni Maybar
1984-2004 198122001
2010-2014 20042006
2010-2014
1984-1993 1981-1993
1998-2004 1995-1998
2010-2013 2010-2013
1984-1993 1981-1993
1995-2000 1997-2006
2011-2014 2010-2014
1984-1993 1981-1991
1995-1998 1995-2006
2011-2014 2011-2014
division of data
1986 — 1998 1983 - 2006
20102014 2008 - 2014

2530-2857 masl

Source: (?)

Year of construction is the year the station was built and monitoring started.
Source: (?)
Source: (?)

Every field in the watershed was attributed a land use type on the map
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Table 2. General performance ratings recommended by Moriasi et al. (?)

Performance
Rating

Very good
Good
Satisfactory
Unsatisfactory

RSR NSE PBIAS
Streamflow Sediment
0.00<RSR<0.50 0.75<NSE<1.00 PBIAS<+10 PBIAS< +£15
0.50<RSR<0.60 0.65<NSE<0.75 +10<PBIAS<+*15 +15<PBIAS<#+30
0.60<RSR<0.70 0.50<NSE<0.65 +15<PBIAS<#25 430 < PBIAS < +£55
RSR > 0.70 NSE <0.50 PBIAS > 425 PBIAS > 455

Table 3. Seasonal comparison of rainfall datatime series of daily rainfall amounts. Satisfactory
performance ratings are highlighted in bold. Details for duration and gaps can be found in table

1

Andit Tid
(1982-2014)
Dry season
Oct-Nov-Dec-Jan-Feb-Mar

Anjeni
(1984-2014)

Maybar
(1981-2014)

RSR 1.68 3.55 1.3

NSE -1.92 -12.9 -0.77

PBIAS 55.2 134.2 30.7 30.7
Belg

Andit Tid Anjeni Maybar Apr-May

RSR 1.31 2.48 0.85

NSE -0.79 -5.42 -0.24

PBIAS -394 106.1 24.324.3
Kremt

Andit Tid Anjeni Maybar  Jun-Jul-Aug-Sep

RSR 3.23 7.0 2.03

NSE -9.79 -50.09 -3.28

PBIAS —69.2 128 —47.1
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Table 4. Calibration and validation results , of monthly CFSR and WLRC modelled discharge
and soil loss. Values that meet at least the "satisfactory" criteria are highlighted in bold
Andit Tid Anjeni Maybar
CFSR  WLRC CFSR WLRC CFSR WLRC
Discharge - Calibration
p-factor  0.49 0.71 0.49 0.92 0.410.61
r-factor 0.20 0.53 1.91 0.46 0.54 0.96

RSR 0.83 0.46 2.70 0.37 1.16 0.53
NSE 0.31 0.79 -6.27 0.86 -0.35 0.72
PBIAS 46.1 3.1 -226.0 2.0 29.6 1.5
Discharge - Validation
p-factor  0.30 0.66 0.69 0.69 0.38 0.61
r-factor 0.29 0.54 1.41 0.57 0.52 1.11
RSR 0.74 0.46 1.24 0.41 0.98 0.56
NSE 0.45 0.79 -0.53 0.83 0.04 0.74
PBIAS 37.9 9.6 8.1 -6.7 -1.9 -17.3
Soil loss - Calibration
p-factor 0.33 0.45 0.32 0.40 0.44 0.28
r-factor 0.19 0.59 1.30 0.65 4.47 0.28
RSR 1.02 0.67 1.01 0.67 2.55 0.84
NSE -0.03 0.64 -0.02 0.55 -5.51 0.29
PBIAS 54.4 -14.1 -33.9 -19.9 180.5 39.2
Soil loss - Validation
p-factor  0.30 0.39 0.38 0.38 0.23 0.15
r-factor 0.51 1.60 1.61 1.10 2.67 0.06
RSR 1.39 0.68 1.08 0.62 2.24 0.98
NSE -0.94 0.51 -0.17 0.62 -4.04 -0.03
PBIAS 11.9 -64.3 =-30.5 -31.3 -94.7 92.8
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