Hydrol. Earth Syst. Sci. Discuss., 12, C5479–C5483, 2015 www.hydrol-earth-syst-sci-discuss.net/12/C5479/2015/
© Author(s) 2015. This work is distributed under the Creative Commons Attribute 3.0 License.

Interactive comment on "Experimental evidence of condensation-driven airflow" by P. Bunyard et al.

P. Bunyard et al.

pbecologist@gn.apc.org

Received and published: 8 December 2015

We would respectfully urge the three reviewers to take into account the latest experimental data in considering their advice on our submitted manuscript. We are well aware that we will need to make corrections and adjustments to the manuscript and are willing to do so.

We realize our oversight in that previous to the December experiments we had omitted the gravity constant from our calculations. That has been remedied. Nevertheless, our previous results of the airflows associated with refrigeration, as indicated in the original manuscript, show strong correlations between the trajectories of airflow and the rate of condensation. We believe that those associations were correctly analysed.

Recent experiments, carried out at the beginning of December, 2015, and the results analysed with the changes to the equations variously recommended by the reviewers,

C5479

in our view indicate that air density differences between the two columns cannot be responsible for the observed airflow. Another factor must prevail and the obvious candidate is the rate of change in condensation. Accordingly, we now submit the results from two experiments, as shown in figures 1 and 2 below.

In analysing the force associated with changes in air density of the right hand column of our experimental equipment, we carry out a number of calculations (Mass x Gravity): 1) the kg change per second of the volume of air associated with the cooling coils; 2) the kg change per second of the remaining air in that section (subtracting the surface area of the cooling coils from the cross-sectional area of the right column); 3) the kg change per second of the volume of air beneath the cooling coils and 4) the kg change per second of the remaining air in the mid to lower part of the right-hand column. We do the same for the left-hand column and then subtract the result from the total obtained from the right-hand column.

The results of the calculations of net air density force are seen in the graphs displayed below. That of December 1st, 2015, indicates that the net air density force is positive only before and after the period of refrigeration. That result is confirmed by the directionality observed in the overall airflow (anemometer) in those periods. During refrigeration the airflow is observed to be clockwise and therefore counter to that indicated by the air density force. That finding suggests that another factor must be responsible for the clockwise flow. Inevitably we return to the consideration that a small percentage of the total energy associated with condensation and partial pressure change would suffice to bring about clockwise airflow. We suggest that the initial downward flow of the chilled air could act as a 'trigger' to distort the kinetic energy associated with condensation.

In conclusion, we believe that we have a sufficient body of evidence that condensation, as studied in the experiments, is the prevailing factor in causing the air circulation. We are well aware that in an ideal situation, which in the real world may never exist, the implosion of air from all around the point of condensation would nullify the associated

kinetic energy. However, in the world of the experiments, by means of refrigeration we have artificially created a distinct difference in the conditions above the coils and below, thereby providing a distortion in the distribution of kinetic energy from the sudden volume change associated with water vapour condensation.

In the case of a spherical implosion in static air (a very strange situation!) then the forces probably do cancel, resulting in no net movement. However, as the process of condensation and hence pressure reduction is continuous, air must be drawn in towards the zone of condensation, continuously, and the rising air already has momentum.

In the experiment and in cloud formation, condensation is a continuous process (likely, many hours for cloud formation) with a continuous supply of rising humid air whose movement is initially driven by density differences. This rising air clearly has momentum. In the case of cloud formation in the humid tropics, the rising air is often is discrete units, forming individual clouds and then later, perhaps thunderheads. In this situation condensation occurs in a more cylindrical rather than spherical zone.

We therefore suggest that air density differences above and below the cooling coils may act as a trigger to the lopsidedness of the energy flow generated by condensation. Whether or not similar distortions play a role in the atmosphere at large is at present a moot point.

Interactive comment on Hydrol. Earth Syst. Sci. Discuss., 12, 10921, 2015.

C5481

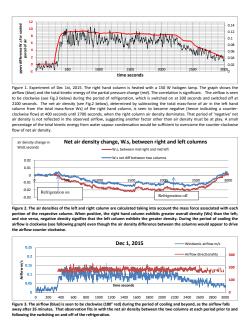


Fig. 1. Experiment December 1, 2015

1

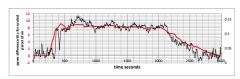


Figure 1. Experiment 3 December, 2015. The lower right column is heated with a 150 W halogen lamp. Refrigeration is switched on at 300 seconds. and switched off at 2100 seconds. Again, the fit is good between the airflow (blue) and the rate of condensation (red). Prior to switching on the refrigeration the airflow is

Figure 2. The net air density indicates that the flow will be counter-clockwise. That counter-clockwise flow is seen both prior to switching on the refrigeration and after switching off and it accords with that seen in the observed airflow (Fig. 3). During the partied of refrigeration that flow is clockwise, unwested in this clockwise unwested in the flow of the proposition of the flow.

Figure 3. The airflow (blue) is counter lockwise (red) prior to switching on the refrigeration at 300s, and following the switching of the refrigeration at 300s, and following the switching of at 2000s. Once to cooling is switching to not the directionally of airflow changes significantly and flows closely (80° red). That flow is in the opposite direction to that dictated by the air density difference between the right and left columns (Fig. 2). Absent any other factors, a negation et air density change should be right of excellent production and that any air flow would be counter fockwise, and a positive et air density change should bring a clockwise flow suggests that a factor etable than or factors that will be counter for the suggests which is a factor etable than or factors that will be a factor etable than or factors that the fact of that the red factors when the production of the suggests that a factor etable than or factors that the fact that the red factors when the production of the suggests that a factor etable than or factors that the production of the suggests that a factor etable than or factors that the suggests that a factor etable than or factors that the production of the suggests that a factor etable than or factors that the suggests that the suggests that the suggests that the suggests that the suggest that

Fig. 2. Experiment December 3, 2015

C5483