We thank the reviewer for their positive feedback and constructive suggestions to
improve the manuscript.

The reviewer’s main points relate to the need to further explain the advantage of
TopREML in computation and conceptual terms, taking Top-Kriging as implemented
in the rtop package as a baseline comparison. We propose (a) providing a new
supplement to the manuscript that details a comparison of the computational
algorithms and efficiency for both methods for different gauge densities and
different (differentiable and non-differentiable) correlation functions. Secondly, (b)
we have revised the text in sections 5.1 to reflect the outcomes of this additional
analysis.

While we note the reviewer’s comment that the elucidation of the implications of
TopREML for the global challenge of PUB could be bolstered by additional analysis,
we consider that to provide such analysis would provide a great expansion of the
scope of the current paper, and is better suited to a follow-up study.

(a) Proposed new supplementary section:

While we agree with the reviewer that further analysis is justified to explore the
computational advantages of TopREML relative to alternative interpolation options,
we propose locating this analysis in a supplementary section for two reasons:

(i) to avoid unnecessarily elongating the paper; and

(ii) because we will not undertake a formal optimization of the algorithms used to
implement TopREML or Top-Kriging, but simply provide a comparison of the
current implementations provided by the authors, we do not want to over-state the
finality of a comparison of the numerical implementation. The authors are not
computer scientists, and we do not wish to claim that the computational differences
between TopREML and Top-Kriging in their current implementations would persist
under all possible numerical schema.

Within the supplement, we will provide the following information:

1. A new algorithmic chart that illustrates the computational steps involved in
implementing TopREML (Figure S1).

As outlined in this chart, IDAs and the topology of the stream network are extracted
from the nested catchment using differential overlay. TopREML uses the BFGS
algorithm (Wright and Nocedal, 1999) to maximize the restricted log likelihood,
with the option of using a stochastic optimization algorithm (Simulated Annealing,
Bellisle 1992) if a non-differentiable (e.g., spherical) covariance function is selected.
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Fig. $1. Algorithmic chart of the provided TopREML implementation. Dashed frames
and arrows represent vector data and operations and the bold arrow represents the
step requiring numerical optimization. The complexity of the computational tasks
represented by the remaining plain arrows is driven by matrix inversion, which is of
polynomial complexity. In the figure, X is a matrix of observed covariate and y a vector
of outcomes measured at the available gauges, as defined in Eqn. (1); x is a vector of
identical covariates observed at the prediction location. A, U and cij are matrices of
relative catchment areas, network topology and inter-centroidal distances of the
available gauges, as defined in Eqn (6); a, Uou, and ci°t are equivalent matrices for the
prediction location. a2, @, £ are estimated variance parameters as defined in Eqn (3); T,
u and G are the estimated fixed and random effects (Eqn 10.) and variance-covariance
matrix (Eqn 7); g is the estimated covariance at the prediction location (used in Eqn
11). Finally, your and Var(your-y) are the predicted outcome and the related prediction
variance.



2. A new analysis of the Austrian dataset used to evaluate runtime as a function of
the input data complexity, correlation structure and choice of interpolation method
(TopREML versus Top-Kriging).

In this analysis, we randomly select one validation gauge, and resample the
remaining gauges randomly (no repetition) to generate a given prediction set size.
The resampled gauges are used to estimate summer flow at the validation gauge
using TopREML and Top-Kriging, and assuming firstly an exponential and secondly
a spherical variogram. In each case, relative error and runtime are recorded. This
process is repeated 200 times for each size of prediction set. The results are shown
in Figure S2:
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Fig S2. Leave-one-out cross-validation results for Austrian summer flow when
resampling a subset of the training gauges. Computational performances
(subfigure a) are represented in terms of log relative runtime
[log(RTropreEML/R TT0p-Kriging)]. Prediction performances are represented as log
ratio of relative errors [log(REtopremL/RETop-kriging)]- TOPREML performances
when using gradient based and stochastic optimization algorithms are
represented as circles and triangles respectively. Points represent the median
value and error bars represent 90% confidence intervals over 200 repetitions.



The results indicate that the gradient-based optimization algorithm used by
TopREML for differentiable variograms reduces the computation runtime by an
order of magnitude, relative to the implementation of Top-Kriging in the rtop
package. This computational advantage vanishes if a differentiable variogram
function cannot be assumed and stochastic optimization is required. The results
also indicate that the relative computational performance of TopREML improves
with the number of gauges, while its predictive performance remains constant and
approximately equivalent to Top-Kriging.

(b) Amended text in sections 5.1

We propose new text in this section to clarify the computational performance of
TopREML.

TopREML has considerably lower computational requirement than Top-Kriging,
both in terms of input data and optimization complexity. While vector input data are
necessary input data for Top-Kriging, which requires polygons to discretize
catchment areas in the regularization procedure, vectors are not fundamentally
indispensable for TopREML. Indeed, TopREML does not rely on a distributed point
process but assumes homogenous IDAs. It follows that its only fundamental data
requirement is a table (i.e. a data.frame) of IDAs displaying the observed
regionalization variable and the area, centroid coordinates and network position
(i.e. own ID and downstream ID) of the IDA. When considering runtime, both
methods rely on numerical optimization, but Top-Kriging uses it to back-calculate
the point semi-variogram in its regularization procedure. This may substantially
increase the dimensionality of the optimization task, depending on the grid
resolution chosen for the discretization of the catchment areas, which in turn has a
highly significant effect on prediction performances (Skoien 2006). By contrast, the
dimensionality of the optimization in TopREML is driven by the number of
catchments (not an arbitrary grid). More importantly, TopREML admits a well-
defined objective function (the restricted likelihood) that is differentiable if the
selected variogram function is differentiable. This allows using gradient
optimization methods that are much less computationally intensive than the
stochastic optimization algorithm required by TopKriging.



