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Referee #2: Comments and Responses 
 
Analysis of three-dimensional groundwater flow toward a radial collector well in a finite-

extent unconfined aquifer 
 

The authors present a solution for transient flow toward a radial collector well. The title suggests that the solution 

covers transient flow in an unconfined aquifer, but the boundary conditions along the phreatic surface are 

simplified to such an extent that I doubt that the approximation is sufficiently close to the stated problem to be of 

much use. The phreatic surface is not only assumed to be a horizontal straight line, which in itself is a severe 

approximation, it is also assumed to remain in its original position at all times. The boundary along the moving 

phreatic surface, equation (7) in the paper, is simplified to equation (8), which implies that the vertical component 

of flow is equal to minus the specific yield multiplied by the rate of decrease in elevation of the phreatic surface, 

maintained at the original position (z = 0). Compressibility of the aquifer is included, but not in the sense of poro-

elasticity, but using the Terzaghi approximation. I agree that this approximation is usually acceptable dealing with 

groundwater flow, but the authors should state their approximations carefully, including this one. 

Response (1st): The simplification from Eq. (7) to Eq. (8) was first proposed by Boulton (1954) and later used to 

develop analytical solutions by, for example, Neuman (1972), Zhan and Zlotnik (2002), and Yeh et al. (2010). 

The simplification has been validated by agreement on drawdown measured by a field pumping test and predicted 

by Neuman (1972) solution based on Eq. (8) (e.g., Goldscheider and Drew, 2007, p. 88). We inserted the following 

sentence right below Eq. (8): 

“Goldscheider and Drew (2007) revealed that pumping drawdown predicted by Neuman (1972) analytical 

solution based on Eq. (8) agrees well with that obtained in a field pumping test.” (lines 198 � 199 of the revised 

manuscript) 

We also inserted the following sentence to indicate the governing equation (i.e., Eq. (1)) is based on a concept 

proposed by Terzaghi: “The first term on the RHS of Eq. (1) depicts aquifer storage release based on the concept 

of effective stress proposed by Terzaghi (see, for example, Bear, 1979, p.84; Charbeneau, 2000, p.57).” (lines 171 

� 173 of the revised manuscript) 

 

The boundary conditions along the two streams are applied over the height of the aquifer (full penetration); 

this is not mentioned (referee 1 also mentions this point). 

Response (2nd): We inserted following two sentences in Abstract and Introduction sections, respectively: 

“The streams with low-permeability streambeds fully penetrate the aquifer thickness.” (lines 22 � 23 of the 

revised manuscript) and “The  streams  fully  penetrate   the  aquifer thickness and connect the aquifer with low-

permeability  streambeds.” (lines 133 � 134 of the revised manuscript) 

odls
The governing equation is not based upon the concept of effective stress, but rather on the approximation that the total vertical stress is not changing. This is a good assumption for most groundwater flow problems. The concept of effective stress is not, in itself, sufficient to obtain the equation used here from Biot's equations. 

odls
I am aware that this approximation is not uncommon, but radial collector wells are often used for pumping large quantities of water. The approximation breaks down when draw-downs become too large. The issue is that the authors fail to make this point clear, and to explain what the limitations are of their approach. In the case considered in the paper, the release from storage as a result of drawing down the water table will be larger than release from elastic storage and is therefore important. The approximation replacing (7) by (8) implies that the release from storage is entirely accounted for by the vertical component of flow, neglecting the horizontal components. This approximation breaks down when the water table slopes more than a certain amount. I suggest that the authors verify in the results section that the gradients of the water table are indeed within acceptable limits.

odls
The word
Approximate 
should be added as the first word in the title.
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In addition, we also added a sentence shown below in Introduction section: “A  stream  of  partial penetration can 

be considered as fully penetrating if the distance between the stream and well is larger than 1.5 times the aquifer 

thickness (Todd and Mays, 2005).” (lines 134 � 135 of the revised manuscript) 

 

The authors integrate a point sink along the legs of the radial collector well, but fail to mention what boundary 

condition applies along the legs. The head should be maintained constant along the legs, whereas the condition 

applied by the authors is constant influx, as far as I have been able to gather from the description. 

Response (3rd): Thanks for the suggestion. We add following sentence in the last paragraph of the Introduction 

section:  “The flux across the well screen is assumed to be uniform along each of the laterals.”  (lines 132 � 133 

of the revised manuscript). 

 

The mathematical model resulting from the highly simplified boundary conditions and the application of the 

various transforms is not presented in sufficient detail for me to be able to verify the steps without re-deriving 

much of the work, which should not be necessary. 

Response (4th): Please refer to the first response for the fact that the boundary condition is reasonably simplified. 

Regarding the application of those transforms, we added several intermediate equations and rewrote the associated 

text shown at the end of this reply. 

 

The flow problem shown in Figure 2 is not clearly defined. The authors comment about existing models 

assuming 2-D flow with neglecting the vertical flow component; based on this comment, I assume that this figure 

applies to 3D flow, but this is not stated clearly. The sections shown in the figure do not mention whether these 

are horizontal or vertical; neither do they mention where the sections apply. If the flow considered is three-

dimensional, then there does not exist a stream function, but the authors define one in equation (65). If the flow 

is transient (𝑡̅  = 107), then the transient storage is yet another reason for the stream function not to exist; the 

divergence of the specific discharge vector is not zero. Perhaps the authors made the assumption that the time 

considered is so large that change in storage can be neglected, but this approximation must be stated. Furthermore, 

equation (65) is not obvious and, besides stating the approximation, the derivation should be presented. 

Response (5th): Thanks for the comment. The derivation of the stream function is shown in Appendix C of the 

revised manuscript and also given at the end of this reply. In addition, we added the following sentence in section 

3.1. 

“\ഥ = 𝐾௬𝐻\/𝑄 is the dimensionless stream function describing 2-D streamlines at the vertical plane of 𝑦ത = 1 

based on ℎത௪ in Eq. (44) with 𝑡̅ = 10଻ for steady state.” (lines 427 � 428 of the revised manuscript) 

 

odls
I disagree with this statement. The flow pattern at distances of about 1.5 times the aquifer thickness indeed reduces to flow that is uniform over the vertical (de Saint Venant's principle). A stream, or well, with given discharge is therefore indeed indistinguishable at such distances. However, the boundary condition along a partially penetrating stream certainly affects the discharge the stream captures and replacing a head boundary condition over limited depth by one over the full depth will have an impact, not on the flow pattern at distance, but on the discharges computed. If the authors apply the constant head boundary condition over the full vertical, they must state this clearly, and, if they do this, a resistance between stream and aquifer needs to be added to obtain the proper flow rates.

odls
I am not sure how it is possible in practice to maintain the flow rate constant along the lengths of the radii of the well. If this is an approximation of an actual well of constant head radii, then it should be remembered, and stated, that the head varies along the legs in the solution. It would be of more practical value to break the legs up onto segments, and solve a system of equations to fix the heads at the centers of each segment to some prescribed value.
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Summary 
The authors present a very complex solution based on highly simplified boundary conditions and with insufficient 

detail. The authors do not present any comparison with existing solutions for simplified boundary conditions as 

a validation, both of their equations, and of their simplifying assumptions. 

Response: Please refer to 1st response for the validation of the boundary condition. 

 

The derivations are very difficult to follow and lack sufficient detail. The authors refer to equations further 

in the text, a procedure that violates standard approach in scientific work, and forces the reader to look ahead for 

equations that have not been digested yet. 

Response: Please refer to 4th response for more detailed derivation. 

 

I believe that the authors in their use of the stream function, violate basic principles; however, they may have 

made assumptions that are not stated clearly but if so, this needs to be rectified. 

Response: Please refer to 5th response for the application of the stream function. 

 

I suggest that the paper be shortened substantially and rewritten as follows: 

z Remove the claim that the work applies to unconfined flow; it does not. 

z Focus on one particular case, e.g., a radial collector well in a confined aquifer. 

Response: Please refer to 1st response for the fact that the present solution is applicable to unconfined flow. In 

addition, we already demonstrated the application of the present solution to the well in confined aquifers in the 

second paragraph of section 3.4. 

 

z State all boundary conditions clearly, including the ones along the legs of the radial collector well and the 

ones along the streams. 

Response: Please refer to 2nd response for the statement of fully-penetrating streams and to 3rd response for the 

assumption of uniform flux on the laterals of the well.  

 

z Make a comparison with an existing solution for at least one case. 

Response: We already compared transient distributions of SDR predicted by the present solution and the Hunt 

(1999) solution in Fig. 6. 

 

z Present the details of the analysis, taking into account that the reader should be able to follow the steps 

without the need to redo the analysis. 

odls
I maintain that it should be made clear that this approximation is valid only under limited conditions, where draw downs do not exceed some maximum.
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Response: Thanks for the comment. The text has been largely revised, and the new one is given at the end of this 

reply. 

 

z If use is made of a stream function, make it clear that the flow is two-dimensional and steady. Otherwise, 

there does not exist a stream function at all. 

Response: Please refer to 5th response for the statement of two-dimensional, steady-state flow. 
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Text abstracted from lines 202 � 286 and 583 � 671 of the revised manuscript 

Define dimensionless variables as ℎത = (𝐾௬  𝐻  ℎ) 𝑄⁄ , 𝑡̅ = (𝐾௬  𝑡) (𝑆௦  𝑦଴ଶ)⁄ , 𝑥̅ = 𝑥 𝑦଴⁄ , 𝑦ത = 𝑦 𝑦଴⁄ , 𝑧̅ =

𝑧 𝐻⁄ , 𝑥̅଴ᇱ = 𝑥଴ᇱ 𝑦଴⁄ , 𝑦ത଴ᇱ = 𝑦଴ᇱ/𝑦଴ , 𝑧଴̅ᇱ = 𝑧଴ᇱ 𝐻⁄ , 𝑤ഥ௫ = 𝑤௫ 𝑦଴⁄  and 𝑤ഥ௬ = 𝑤௬ 𝑦଴⁄  where the overbar denotes a 

dimensionless symbol, and 𝑦଴ , a distance between stream 1 and the center of the RCW, is chosen as a 

characteristic length. On the basis of the definitions, Eq. (1) can be written as 
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where Nx = 𝐾௫ 𝐾௬⁄  and Nz = (𝐾௭  𝑦଴ଶ) (𝐾௬  𝐻ଶ)ൗ . 

Similarly, the initial and boundary conditions are expressed as 

ℎത = 0  at  𝑡̅ = 0  (11) 

∂ℎത/ ∂𝑥̅ = 0  at  𝑥̅ = 0  (12) 

∂ℎത/ ∂𝑥̅ = 0  at  𝑥̅ = 𝑤ഥ௫  (13) 
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and 

0/  ww zh   at  𝑧̅ = −1  (17) 

where N�� �(𝐾ଵ  𝑦଴) (𝐾௬  𝑏ଵ)⁄ � N�� �(𝐾ଶ  𝑦଴) (𝐾௬  𝑏ଶ)⁄ �and�J� �𝑆௬ (𝑆௦  𝐻)⁄ � 

2.2 Head solution for point sink 

The model, Eqs. (10) � (17), reduces to an ordinary differential equation (ODE) with two boundary 

conditions in terms of 𝑧̅ after taking Laplace transform and finite integral transform. The former transform 

converts ℎത(𝑥̅, 𝑦ത, 𝑧̅, 𝑡̅) in the model into ℎ෠(𝑥̅, 𝑦ത, 𝑧̅, 𝑝), δ(𝑥̅ − 𝑥̅଴ᇱ )  δ(𝑦ത − 𝑦ത଴ᇱ )δ(𝑧̅ − 𝑧଴̅ᇱ ) in Eq. (10) into δ(𝑥̅ −

𝑥̅଴ᇱ )  δ(𝑦ത − 𝑦ത଴ᇱ )δ(𝑧̅ − 𝑧଴̅ᇱ )/𝑝, and 𝜕ℎത 𝜕𝑡̅⁄  in Eqs. (10) and (16) into 𝑝ℎ෠ − ℎതห
௧̅ୀ଴

 where p is the Laplace parameter, 

and the second term, initial condition in Eq. (11), equals zero (Kreyszig, 1999). The transformed model becomes 

a boundary value problem written as 
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with boundary conditions ∂ℎ෠/ ∂𝑥̅ = 0 at 𝑥̅ = 0 and 𝑥̅ = 𝑤ഥ௫ , 0ˆ/ˆ 1  �ww hyh N  at 𝑦ത = 0, 0ˆ/ˆ 2  �ww hyh N  

at 𝑦ത = 𝑤ഥ௬, zhpzh NJ /ˆ/ˆ � ww  at 𝑧̅ = 0 and 0/  ww zh  at 𝑧̅ = −1. We then apply finite integral transform 

to the problem. One can refer to Appendix A for its detailed definition. The transform converts ℎ෠(𝑥̅, 𝑦ത, 𝑧̅, 𝑝) in 
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the problem into ℎ෨(𝛼௠, 𝛽௡, 𝑧̅, 𝑝) , and δ(𝑥̅ − 𝑥̅଴ᇱ )  δ(𝑦ത − 𝑦ത଴ᇱ )  in Eq. (18) into cos  (α௠𝑥̅଴ᇱ )𝐾(𝑦ത଴ᇱ )  and 

N௫ 𝜕ଶℎ෠ 𝜕𝑥̅ଶ⁄ + 𝜕ଶℎ෠ 𝜕𝑦തଶ⁄  in Eq. (18) into −(N௫𝛼௠ଶ + 𝛽௡ଶ)ℎ෨  where (m, n)� 1,   2,   3,   …   f , 𝛼௠ = 𝑚  𝜋 𝑤ഥ௫⁄ , 

𝐾(𝑦ത଴ᇱ ) is defined in Eq. (A2) with 𝑦ത = 𝑦ത଴ᇱ , and 𝛽௡ are eigenvalues equaling the roots of the following equation 

as (Latinopoulos, 1985) 
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The method to determine the roots is discussed in section 2.3. In turn, Eq. (18) becomes a second-order ODE 

defined by 
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Eq. (20) can be separated into two homogeneous ODEs as 
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where ha and hb, respectively, represent the heads above and below 𝑧̅ = −𝑧଴̅ᇱ  where the point sink is located. Two 

continuity requirements should be imposed at 𝑧̅ = −𝑧଴̅ᇱ . The first is the continuity of the hydraulic head denoted 

as 

ℎ෨௔ = ℎ෨௕  at  𝑧̅ = −𝑧଴̅ᇱ   (25) 

The second describes the discontinuity of the flux due to point pumping represented by the Dirac delta function 

in Eq. (20). It can be derived by integrating Eq. (20) from zത = −𝑧଴̅ᇱ  ି to zത = −𝑧଴̅ᇱ  ା as 
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Solving Eqs. (23) and (24) simultaneously with Eqs. (21), (22), (25), and (26) yields the Laplace-domain 

head solution as 

ℎ෨௔(𝛼௠, 𝛽௡, 𝑧̅, 𝑝) = Ω(−𝑧଴̅ᇱ , 𝑧̅, 1)  for  −𝑧଴̅ᇱ ≤ 𝑧̅ ≤ 0  (27a) 

and 
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ℎ෨௕(𝛼௠, 𝛽௡, 𝑧̅, 𝑝) = Ω(𝑧̅, 𝑧଴̅ᇱ , −1)  for  −1 ≤ 𝑧̅ ≤ −𝑧଴̅ᇱ   (27b) 

with 
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𝜆 = ඥ(𝜅௫𝛼௠ଶ + 𝛽௡ଶ + 𝑝)/𝜅௭  (29) 

where a, b, and c are arguments. Taking the inverse Laplace transform and finite integral transform to Eq. (28) 

results in Eq. (31). One is referred to Appendix B for the detailed derivation. A time-domain head solution for a 

point sink is therefore written as 

ℎത(𝑥̅, 𝑦ത, 𝑧̅, 𝑡̅) = ൜
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𝜇௠,௡,଴ = 2 exp(𝑝଴  𝑡̅) {𝑝଴[(1 + 2  𝛾)  𝜅௭  𝜆଴   cosh 𝜆଴ + (𝑝଴  𝛾 + 𝜅௭) sinh 𝜆଴]}⁄   (36) 

ν௠,௡,௜ = 2 exp(𝑝௜  𝑡̅) {𝑝௜[(1 + 2  𝛾)  𝜅௭  𝜆௜   cos 𝜆௜ + (𝑝௜  𝛾 + 𝜅௭) sin 𝜆௜]}⁄   (37) 
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and 

𝑋௠,௡ = cos(𝛼௠  𝑥̅଴ᇱ )  [𝛽௡   cos(𝛽௡  𝑦ത଴ᇱ ) + 𝜅ଵ   sin(𝛽௡𝑦ത଴ᇱ )]  (39) 

where 𝜆௦ = ඥ(𝜅௫𝛼௠ଶ + 𝛽௡ଶ)/𝜅௭, 𝑝଴ = 𝜅௭𝜆଴ଶ − 𝜅௫𝛼௠ଶ − 𝛽௡ଶ, 𝑝௜ = −𝜅௭𝜆௜ଶ − 𝜅௫𝛼௠ଶ − 𝛽௡ଶ, 𝜙௡ and Xn equal 𝜙௠,௡ 

and Xm, n with 𝛼௠ = 0, respectively, and the eigenvalues 𝜆଴ and 𝜆௜ are, respectively, the roots of the following 

equations: 
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The determination for those eigenvalues is introduced in the next section. Notice that the solution consists of 

simple series expanded in 𝛽௡ , double series expanded in 𝛽௡  and 𝜆௜  (or 𝛼௠  and 𝛽௡ ), and triple series 

expanded in 𝛼௠, 𝛽௡ and 𝜆௜. 
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Appendix A: Finite integral transform 

Latinopoulos (1985) provided the finite integral transform for a rectangular aquifer domain where each side 

can be under either the Dirichlet, no-flow, or Robin condition. The transform associated with the boundary 

conditions, Eqs. (12) � (15), is defined as 

ℎ෨(𝛼௠, 𝛽௡) = ℑ൛ℎത(𝑥̅, 𝑦ത)ൟ = ∫ ∫ ℎത(𝑥̅, 𝑦ത)  cos(𝛼௠  𝑥̅) 𝐾(𝑦ത)
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where cos(𝛼௠  𝑥̅)   𝐾(𝑦ത) is the kernel function. According to Latinopoulos (1985, Eq. (9)), the transform has the 

property of 
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The formula for the inverse finite integral transform can be written as (Latinopoulos, 1985, Eq. (14)) 
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1 cos,~2,0~1,~, DEDEED   (A4) 

 

Appendix B: Derivation of equation (31) 

The function of p in Eq. (28) is defined as 

𝐹(𝑝) = ୡ୭ୱ୦[(ଵା௔)ఒ][ିNzఒ ୡ୭ୱ୦(௕ఒ)ା௖௣ఊ ୱ୧୬୦(௕ఒ)]
Nzఒ(௣ఊ ୡ୭ୱ୦ఒାNzఒ ୱ୧୬୦ఒ)

           (B1) 

Notice that the term cos(𝛼௠𝑥̅଴)𝐾(𝑦ത଴) in Eq. (28) is excluded because it is independent of p. 𝐹(𝑝) is a single-

value function with respect to p. On the basis of the residue theorem, the inverse Laplace transform for 𝐹(𝑝) 

equals the summation of residues of poles in the complex plane. The residue of a simple pole can be derived 

according to the formula below: 

Res|௣ୀ௣೔ = lim
௣→௣೔

𝐹(𝑝) exp(𝑝𝑡̅) (𝑝 − 𝑝௜)  (B2) 

where 𝑝௜ is the location of the pole in the complex plane.  

The locations of poles are the roots of the equation obtained by letting the denominator in Eq. (B1) to be 

zero, denoted as 

𝑝  𝜅௭  𝜆(𝑝  𝛾 cosh 𝜆 + 𝜅௭  𝜆 sinh 𝜆) = 0            (B3) 

where 𝜆 is defined in Eq. (29). Notice that 𝑝 = −𝜅௫𝛼௠ଶ − 𝛽௡ଶ obtained by 𝜆 = 0 is not a pole in spite of being 

a root. Apparently, one pole is at p = 0, and the residue based on Eq. (B2) with 𝑝௜ = 0 is expressed as 

Res|௣ୀ଴ = lim
௣→଴

ୡ୭ୱ୦[(ଵା௔)ఒ][ିNzఒ ୡ୭ୱ୦(௕ఒ)ା௖௣ఊ ୱ୧୬୦(௕ఒ)]
Nzఒ(௣ఊ ୡ୭ୱ୦ఒାNzఒ ୱ୧୬୦ఒ)

exp(𝑝𝑡)̅        (B4) 
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Eq. (B4) with 𝑝 = 0 and 𝜆 = 𝜆௦ reduces to 𝜓௠,௡ in Eq. (33).  

Other poles are determined by the equation of 

𝑝  𝛾 cosh 𝜆 + 𝜅௭  𝜆 sinh 𝜆 = 0              (B5) 

which comes from Eq. (B3). One pole is at p = p0 between p = 0 and   𝑝 = −𝜅௫  𝛼௠ଶ − 𝛽௡ଶ in the negative part of 

the  real  axis.  Newton’s  method  can be used to obtain the value of 𝑝଴. In order to have proper initial guess for 

Newton’s  method,  we  let   𝜆 = 𝜆଴ and then have 𝑝 = 𝜅௭  𝜆଴ଶ − 𝜅௫  𝛼௠ଶ − 𝛽௡ଶ based on Eq. (29). Substituting 𝜆 =

𝜆଴ , 𝑝 = 𝜅௭  𝜆଴ଶ − 𝜅௫  𝛼௠ଶ − 𝛽௡ଶ , cosh 𝜆଴ = (𝑒ఒబ + 𝑒ିఒబ)/2  and sinh 𝜆଴ = (𝑒ఒబ − 𝑒ିఒబ)/2  into Eq. (B5) and 

rearranging the result leads to Eq. (40). Initial guess for finding root 𝜆଴ of Eq. (40) is discussed in section 2.3. 

With known value of 𝜆଴, one can obtain 𝑝଴ = 𝜅௭  𝜆଴ଶ − 𝜅௫  𝛼௠ଶ − 𝛽௡ଶ. According to Eq. (B2), the residue of the 

simple pole at 𝑝 = 𝑝଴ is written as  

Res|௣ୀ௣బ = lim
௣→௣బ

ୡ୭ୱ୦[(ଵା௔)ఒ][ିNzఒ ୡ୭ୱ୦(௕ఒ)ା௖௣ఊ ୱ୧୬୦(௕ఒ)]
௣Nzఒ(௣ఊ ୡ୭ୱ୦ఒାNzఒ ୱ୧୬୦ఒ)

exp(𝑝𝑡̅) (𝑝 − 𝑝଴)   (B6) 

where both the denominator and nominator equal zero when 𝑝 = 𝑝଴.  Applying  L’Hospital’s  Rule  to  Eq.  (B6)  

results in 

Res|௣ୀ௣బ = lim
௣→௣బ

ଶୡ୭ୱ୦[(ଵା௔)ఒ][ିNzఒ ୡ୭ୱ୦(௕ఒ)ା௖௣ఊ ୱ୧୬୦(௕ఒ)]
௣[(ଵାଶఊ)Nzఒ ୡ୭ୱ୦ఒା൫ఊ௣ାNz൯ ୱ୧୬୦ఒ]

exp(𝑝𝑡̅)   (B7) 

Eq. (B7) with 𝑝 = 𝑝଴ and 𝜆 = 𝜆଴ reduces to 𝜓௠,௡,଴ in Eq. (34). 

On the other hand, infinite poles are at p = pi behind   𝑝 = −𝜅௫  𝛼௠ଶ − 𝛽௡ଶ. Similar to the derivation of Eq. 

(40), we let 𝜆 = √−1𝜆௜ and then have 𝑝 = −𝜅௭  𝜆௜ଶ − 𝜅௫  𝛼௠ଶ − 𝛽௡ଶ based on Eq. (29) for the absence of the 

imaginary unit. Substituting 𝜆 = √−1𝜆௜ , 𝑝 = −𝜅௭  𝜆௜ଶ − 𝜅௫  𝛼௠ଶ − 𝛽௡ଶ , cosh 𝜆 = cos 𝜆௜  and sinh 𝜆 =

√−1 sin 𝜆௜ into Eq. (B3) and rearranging the result yields Eq. (41). The determination of 𝜆௜ is discussed in 

section 2.3. With known value of 𝜆௜, one can have 𝑝௜ = −𝜅௭  𝜆௜ଶ − 𝜅௫  𝛼௠ଶ − 𝛽௡ଶ. The residues of those simple 

poles at p=pi can be expressed as 𝜓௠,௡,௜ in Eq. (35) by substituting 𝑝଴ = 𝑝௜, 𝑝 = 𝑝௜, 𝜆 = √−1𝜆௜, cosh 𝜆 =

cos 𝜆௜ and sinh 𝜆 = √−1 sin 𝜆௜ into Eq. (B7). Eventually, the inverse Laplace transform for 𝐹(𝑝) equals the 

sum of those residues (i.e., 𝜙௠,௡ = 𝜓௠,௡ + 𝜓௠,௡,଴ + ∑ 𝜓௠,௡,௜
ஶ
௜ୀଵ ). The time-domain result of :(𝑎, 𝑏, 𝑐) in Eq. 

(28) is then obtained as 𝜙௠,௡ cos(𝛼௠𝑥̅଴)𝐾(𝑦ത଴) . By substituting ℎ෨(𝛼௠, 𝛽௡) = 𝜙௠,௡ cos(𝛼௠𝑥̅଴)𝐾(𝑦ത଴)  and 

ℎ෨(0, 𝛽௡) = 𝜙௡𝐾(𝑦ത଴) into Eq. (A4) and letting ℎത(𝑥̅, 𝑦ത) to be )(𝑎, 𝑏, 𝑐), the inverse finite integral transform for 

the result can be derived as 

Φ(𝑎, 𝑏, 𝑐) = ଵ
௪ഥೣ

ൣ∑ ൫𝜙௡  𝐾(𝑦ത଴)𝐾(𝑦ത) + 2∑ 𝜙௠,௡ cos(𝛼௠𝑥̅଴)𝐾(𝑦ത଴) cos(𝛼௠  𝑥̅) 𝐾(𝑦ത)ஶ
௠ୀଵ ൯ஶ

௡ୀଵ ൧  (B8) 

Moreover, Eq. (B8) reduces to Eq. (31) when letting the terms of 𝐾(𝑦ത଴)𝐾(𝑦ത) and cos(𝛼௠𝑥̅଴)𝐾(𝑦ത଴)𝐾(𝑦ത) to be 

2𝑋௡𝑌௡ and 2𝑋௠,௡𝑌௡, respectively. 

 

Appendix C: Derivation of \ഥ in Eq. (65) 
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The dimensionless stream function \ഥ in Eq. (65) can be expressed as 

\ഥ = 𝐶 − √N௭ ∫ 𝜕ℎത௪/𝜕𝑧̅ 𝑑𝑥̅ at 𝑦ത = 1 and 𝑡̅ = 10଻  (C1) 

where C is a coefficient resulting from the integration, and ℎത is defined in Eq. (44). Substituting Eq. (44) into 

Eq. (C1) leads to  

\ഥ(𝑥̅, 𝑧̅) = 𝐶 − √N೥
∑ ௅തೖಿ
ೖసభ

  ∑ ቄ ∫డ஍(ି௭̅బ,௭̅,ଵ)/డ௭̅  ௗ௫̅    for    ି௭̅బஸ௭̅ஸ଴
∫డ஍(௭̅,௭̅బ,ିଵ)/డ௭̅  ௗ௫̅    for    ିଵஸ௭̅ஸି௭̅బ

ே
௞ୀଵ  at 𝑦ത = 1 and 𝑡̅ = 10଻  (C2) 

Φ(𝑎, 𝑏, 𝑐) = ଶ
௪ഥೣ
൛∑ ൣ𝜙௡  𝑋෠௡,௞ + 2∑ 𝜙௠,௡  𝑋෠௠,௡,௞   cos(𝛼௠  𝑥̅)ஶ

௠ୀଵ ൧ஶ
௡ୀଵ   𝑌௡ൟ   (C3) 

where 𝜙௠,௡,  𝑌௡, 𝑋෠௡,௞ and 𝑋෠௠,௡,௞  are defined in Eqs. (32), (38), (45) and (46), respectively, and 𝜙௡  equals 

𝜙௠,௡ with 𝛼௠ = 0. In Eq. (C3), variable 𝑥̅ appears only in cos(𝛼௠  𝑥̅), and variable 𝑧̅ appears only in 𝜙௡ 

and 𝜙௠,௡ in Eq. (32). Eq. (C2) therefore becomes 

\ഥ(𝑥̅, 𝑧̅) = 𝐶 − √N೥
∑ ௅തೖಿ
ೖసభ

  ∑ ቄ ஍෡(ି௭̅బ,௭̅,ଵ)    for    ି௭̅బஸ௭̅ஸ଴
஍෡(ି௭̅బ,௭̅,ଵ)    for    ିଵஸ௭̅ஸି௭̅బ

ே
௞ୀଵ  at 𝑦ത = 1 and 𝑡̅ = 10଻  (C4) 

Φ෡(𝑎, 𝑏, 𝑐) = ଶ
௪ഥೣ
ቄ∑ ቂడథ೙

డ௭̅
  𝑋෠௡,௞ ∫ 𝑑𝑥̅ + 2∑ డథ೘,೙

డ௭̅
  𝑋෠௠,௡,௞   ∫ cos(𝛼௠  𝑥̅) 𝑑𝑥̅ஶ

௠ୀଵ ቃஶ
௡ୀଵ   𝑌௡ቅ   (C5) 

Consider 𝑡̅ = 10଻ for steady-state flow that the exponential terms of exp(𝑝଴  𝑡̅) and exp(𝑝௜  𝑡̅) approach zero 

(i.e., 𝑝଴ > 0 and 𝑝௜ > 0) for the default values of the parameters used to plot Figure 2. Then, we have 𝜙௠,௡ =

𝜓௠,௡  defined in Eq. (33) because of 𝜓௠,௡,଴ ≅ 0 , 𝜓௠,௡,௜ ≅ 0 , 𝜇௠,௡,଴ ≅ 0  and ν௠,௡,௜ ≅ 0 . On the basis of 

𝜙௠,௡ = 𝜓௠,௡  and Eq. (33) with 𝑎 = −𝑧଴̅  and 𝑏 = 𝑧̅ for −𝑧଴̅ ≤ 𝑧̅ ≤ 0 and 𝑎 = 𝑧̅ and 𝑏 = 𝑧଴̅  for −1 ≤

𝑧̅ ≤ −𝑧଴̅, the result of differentiation, i.e., 𝜕𝜙௠,௡/𝜕𝑧̅, in Eq. (C5) equals 

డథ೘,೙
డ௭̅

= ൜ −𝜆௦ cosh
[(1 − 𝑧଴̅)𝜆௦] sinh(𝑧̅  𝜆௦) (𝜅௭  𝜆௦   sinh 𝜆௦)⁄   for   − 𝑧଴̅ ≤ 𝑧̅ ≤ 0

−𝜆௦ sinh[(1 + 𝑧̅)𝜆௦] cosh(𝑧଴̅  𝜆௦) (𝜅௭  𝜆௦   sinh 𝜆௦)⁄   for   − 1 ≤ 𝑧̅ ≤ −𝑧଴̅
  (C6) 

Notice that 𝜕𝜙௡/𝜕𝑧̅ in Eq. (C5) equals Eq. (C6) with 𝛼௠ = 0. In addition, both integrations in Eq. (C5) can be 

done analytically as 

∫ cos(𝛼௠  𝑥̅) 𝑑𝑥̅ = ൜sin
(𝛼௠  𝑥̅) /𝛼௠  for  𝛼௠ ≠ 0

𝑥̅  for  𝛼௠ = 0    (C7) 

On the other hand, coefficient C in Eq. (C4) is determined by the condition of \ഥ = 0 at 𝑥̅ = 𝑥̅଴ and results in 

𝐶 = √N೥
∑ ௅തೖಿ
ೖసభ

  ∑ ቄ ஍෡(ି௭̅బ,௭̅,ଵ)    for    ି௭̅బஸ௭̅ஸ଴
஍෡(ି௭̅బ,௭̅,ଵ)    for    ିଵஸ௭̅ஸି௭̅బ

ே
௞ୀଵ   (C8) 
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where Φ෡  is defined in Eq. (C5) with Eqs. (C6) and (C7), 𝑥̅ = 𝑥̅଴ and 𝑦ത = 1. 


