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I appreciate Anonymous Referee #1's comments and suggestions.  Where possible, these 
will be used to improve the manuscript during revision.  Specific responses to individual 
comments are detailed below.   
 
GENERAL COMMENTS 
 
This manuscript extends the results of the companion paper (“Aggregation in environmental 
systems: seasonal tracer cycles quantify young water fractions, but not mean transit times, in 
spatially heterogeneous catchments”) to the case of non-stationary hydrologic systems. Like 
in Paper 1, the author makes use of benchmark testing procedures based on a well-designed 
virtual experiment. Several results are presented from different system configurations, 
precipitation forcing, flow regimes, tracer data. Overall, the paper is well written and 
represents an important contribution to our understanding of catchment transport processes. 
 
Many thanks for your kind remarks about the paper.   
 
The first part of the manuscript (Sections 2-3.3) introduces and investigates the virtual 
hydrologic system. The author shows an interesting procedure to accurately solve the main 
transport equations and to reduce the equifinality of model parameters (which is typical of 
non-linear storage-discharge relationships). Although the author should add more reference to 
the existing literature (which in some cases already showed similar results with similar 
models – see Detailed Comments), the results are clear and of good scientific quality. 
 
The second part (Sections 3.4-3.8) explores sine wave fitting methods applied to the virtual 
experiments. The results show that in a non-steady-state system, mean transit times (MTT) 
estimated from sine wave fitting methods generally do not match the “real” average MTT. 
Instead, such methods reliably estimate the average “young water fractions” (Fyw, introduced 
in Paper 1). This part is engaging and innovative, but, as such, it needs to be better framed. 
The central issues that, in my opinion, need to be solved are: 
 
1) The reader may struggle with the definition of Fyw, because the definition of the threshold 
age is necessarily imprecise in real catchments (as shown in Paper 1). Hence, more effort 
could be put in explaining why the lack of a precise threshold age has minor importance.  
 
There are three ways that this can be handled.  The first approach is to note that, for 
distributions as widely varying as gamma distributions with alpha=0.2 to alpha=2 (see 
Figure 2 of Paper 1), the threshold age tau_yw (for which the young water fraction Fyw 
is close to the amplitude ratio As/Ap) only varies in the range of 1.4-3.1 months.  For 
more common (or at least more commonly assumed) travel time distribution shapes 
(corresponding roughly to alpha=0.5 to alpha=1.5), the threshold age varies only from 
1.7 to 2.7 months.  Thus if As/Ap is measured at (for example) 0.3 for a particular 
catchment, this means that about 30% of discharge is younger than 1.7-2.7 months (or 
1.4-3.1 months, if one wants to consider an even wider range of distributions).  The key 
point here is that in practice, the difference between 1.4 and 3.1 months will not have a 
big effect on how this result would be interpreted (particularly in comparison to the 
mean transit time, which may be years). 
 
The second approach is to quantify how much a wrong guess about the shape of the 
transit time distribution would affect the value of the young water fraction.  The 
thought experiment goes like this: let's assume that (for example) we have an 
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exponential distribution (shape factor=1.0), for which the threshold age is 2.3 months.  
From tracer observations, we calculate that the amplitude ratio of the seasonal cycle is 
0.3, and we infer that "30% of streamflow is younger than 2.3 months".  Now, what if 
our assumption is wrong, and our transit time distribution actually has a shape factor of 
0.5 instead of 1.0 (but damps the seasonal tracer cycle by the same amount that we have 
observed)?  The key question is: what fraction of this alternative distribution is younger 
than 2.3 months?  That is, how wrong will our inference that "30% of streamflow is 
younger than 2.3 months" actually be?  The answer can be calculated from equation 
(10) of Paper 1 and the incomplete gamma distribution.  For this alternative 
distribution, 36 percent of streamflow is younger than 2.3 months, rather than 30 
percent.  Our original estimate was wrong by about 6 percent (of the range of a priori 
uncertainty, which runs from 0 to 100 percent) or equivalently about 20 percent of our 
original estimate.  If the true shape factor were 0.2 instead of 1.0, the error would only 
be about 4 percent.   
 
Many readers and reviewers have been curious about this point, so I will include a 
systematic sensitivity analysis along these lines in the revised version of Paper 1.  This 
will appear in Paper 1 so that it is handled when it first comes up, and because Paper 2 
is already long and complex.  
 
The imprecision in the threshold age also leads to a legitimate (though provoking) question: 
why bothering about young water fractions and not just studying tracer cycle amplitudes and 
shifts? 
 
First, we need to keep the "imprecision in the threshold age" in perspective.  Mean 
transit time determinations also require assuming a shape for the transit time 
distribution, and the results are highly sensitive to that assumption.  For the same 
conditions as the thought experiment outlined above (As/Ap=0.3), for example, the 
mean transit time varies by a factor of 20 as the shape factor ranges between 0.2 and 1.0. 
 
But to answer the question that was posed: one could of course compare tracer cycle 
amplitudes and phase shifts from one catchment to the next, but what would one learn 
by doing so?  Without a theory to link these observable quantities to phenomena within 
the catchments themselves, why bother making such comparisons?  The obvious 
advantage of Fyw over just amplitudes and phase shifts is that Fyw tells us something 
about transit times, which amplitude ratios and phase shifts don't, at least not directly.   
 
2) The author sets the threshold age for the virtual experiment equal to that of a stationary 
exponential TTD, even if the system is non-stationary and its marginal TTD does not 
resemble an exponential pdf. Such a choice is not discussed and may look arbitrary. To what 
extent are the results affected by this choice? 
 
This question can be answered through the sensitivity analysis presented in response to 
point (1) above. 
 
3) The procedure to estimate Fyw (Section 4.3) shows two possible strategies. The first one is 
clear (as it was explained in Paper 1), but the second one, which includes phase shift 
information, is not described in paper 1 and is not critically discussed in this manuscript. 
Such a discussion is necessary (here, or in Paper 1) to understand how (and maybe why) this 
strategy works. 
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As indicated in the responses to the reviews of Paper 1, when I revise that paper I will 
be giving step-by-step instructions explaining how to include phase shifts in the 
estimates of Fyw. 
 
A last general note is that the paper presents quite some results (18 figures, more than 15000 
words), so it makes it difficult for the reader to get till the end. Any effort to reduce the 
manuscript length is welcome. 
 
I will see what I can do.  The paper is long because there are many interesting results to 
show. 
 
 
DETAILED COMMENTS 
 
3108 l. 29: “from tracer concentration” it should be specified that it regards sine wave fitting 
methods. 
 
The sentence is correct as stated, because the model can potentially be used to test many 
other methods besides sine-wave fitting (although that is the only application that I have 
space for in the present paper). 
 
3109 l. 12: avoid referring to “effective precipitation”, even if many tracer studies do, 
because it implies that evapotranspiration only affects particles with age 0, which is 
unrealistic. 
 
Good point! 
 
3110 l. 4: this threshold age is not justified, nor it is checked a posteriori for the calibrated 
model. Indeed, depending on the parameter combination, the marginal distributions of the 
individual boxes and of the streamflow may resemble gamma distributions with shape 
parameter alpha quite different from 1. 
 
Yes, but that is exactly the point.  In the real world we would not know what the shape of 
the transit time distribution was.  In the real world, all we have is the tracer behavior. 
 
Therefore if, as part of these tests, we looked at the transit time distributions produced 
by the model and then chose the correct alpha value, we would be cheating, because in 
the real world we would not have this information.  And in any case, my results show 
that the shape of the distributions generated by the model (and thus the "correct" alpha 
value) would be continually shifting. 
 
The rationale for choosing alpha=1 is that this corresponds to the most commonly 
assumed distribution in many catchment studies (that is, exponential).  The analysis 
presented here shows that we can get reasonable results, even if we assume the wrong 
alpha value, as also shown by the sensitivity analysis described in response to point (1) 
above. 
 
3110 l. 9: this is also called “random sampling” scheme. 
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I deliberately avoided referring to this as random sampling for two reasons.  First, it's a 
deterministic model, and I wouldn't want any readers to think that I was actually 
sampling particles from the boxes at random.  Second, although random sampling is 
also an equal-probability sampling scheme, not all equal-probability schemes are 
random.  Thus, calling this "random sampling" would be overly (and misleadingly) 
specific. 
 
3110 l. 13: as the analytical solution exists for well-mixed volumes (e.g. Rinaldo et al., 
(2011)), why is the author tracking age numerically? 
 
I assume the reviewer is referring to Rinaldo et al.'s equation A4 and A5.  This so-called 
"analytical solution" is not in closed form.  Instead it involves two integrals (one of 
which must somehow be solved over infinite time) for each slice of the age distribution 
and for each time step.  Thus Rinaldo's approach appears to be vastly more 
computationally complex than the approach that I have taken.   
 
3116 l. 18-27: this paragraph could be moved earlier in the text (Section 2), to make the use 
of the model clear from the beginning. 
 
This is already made clear in the paragraph that comes right before the Section 2 
heading.  I will think about whether it makes sense to move the Section 2 heading one 
paragraph earlier in the text. 
 
3119 l. 12-29: this paragraph should include reference to other papers that showed these 
findings in theoretical and applied contexts (e.g. van der Velde et al., (2012), Botter (2012), 
Hrachowitz et al., (2013), Harman (2015)). 
 
I will look again at these papers and reference them where appropriate.  Because the 
language and mathematical formalism in these papers is so different from the present 
manuscript, the same ideas may look quite different (or, conversely, different ideas 
might look quite similar). 
 
3120 l. 8: this was also shown by Harman (2015). 
 
I have read Harman (2015) – twice – and I cannot find an equivalent statement 
anywhere.  Perhaps it is somehow implicit in the formalism and results (indeed it should 
be), but is it explicitly stated? 
 
3125 l. 23-25: this is very well explained! 
 
Thank you (although I think it's far from the best prose in the paper). 
 
3129 l. 24: the definition provided by the author in Paper 1 is actually more complicated, 
because as one does not know the shape of the TTD, the threshold age cannot be specified. 
 
The statement is correct as stated.  By definition, for some threshold age tau_yw, Fyw is 
the fraction of water younger than that age. 
 
It is an exaggeration to say that "as one does not know the shape of the TTD, the 
threshold age cannot be specified."  Yes, the threshold age cannot be specified to 
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absolute arbitrary precision, and not without making any assumptions.  But for a 
reasonable range of TTD shapes, one can obtain a reasonably well constrained range of 
threshold ages.  If we are looking for assumption-free analyses, we will need to throw 
out basically all of modern hydrology. 
 
3130 l. 1-11: this is quite unclear. The second of the two strategies is not described in paper 
1, nor it is critically discussed prior to its use. 
 
As indicated in the responses to the reviews of Paper 1, when I revise that paper I will 
be giving step-by-step instructions explaining how to include phase shifts in the 
estimates of Fyw. 
 
3130 l. 14: here the author could be more explicit and specify that the method was proved 
reliable for compositions of gamma distributions with shape parameter ranging from 0.5 to 2. 
 
Section 4.2 of Paper 1 (see also Figure 12 of Paper 1) shows that these methods work for 
combinations of gamma distributions with shape factors ranging from 0.2 (not 0.5) to 2, 
and mean transit times ranging from 0.1 to 20 years.  The point is that once you 
combine two of these distributions you get a distribution that is not gamma-distributed 
at all.  Thus, what I have shown is that this analysis also works for combinations of 
distributions that are not gamma-distributed.  That's what this statement is meant to 
say. 
 
3130 l. 16: I am not totally sure this virtual experiment can be considered representative of a 
“homogeneous” catchment. Or I don’t understand the author’s definition of homogeneity. 
Indeed, the system is made of two different sub-systems, characterized by markedly different 
time-scales. 
 
OK, I get the point, and this needs to be clarified when the manuscript is revised.  What 
I mean by "homogeneous" is that we have a single two-box model, and its parameters 
don't change throughout the catchment.  One could say that this is vertically stratified 
but horizontally homogeneous.  By contrast, what I call "heterogeneous" is the case 
where we have a different two-box model for each subcatchment.  This is, in other 
words, both vertically stratified and horizontally heterogeneous.  The terminology is 
intended to be analogous to the situation in Paper 1, where a "homogeneous" catchment 
was characterized by a single TTD, and a "heterogeneous" catchment was 
characterized by different TTD's in each subcatchment.   
 
Obviously, one could term the two-box model as "heterogeneous" because it has two 
boxes.  But I think it is useful to distinguish between such a two-box model, which 
exhibits one set of nonstationarity characteristics (depending on its parameter values), 
and an assemblage of such models (representing different subcatchments).  This 
assemblage of models is "nonstationary and heterogeneous", and can potentially exhibit 
more complex nonstationarity, because not only do the individual subcatchments have 
different behaviors, they can also shift in dominance over time (because, for example, 
fast-responding catchments will dominate in early time, and slow responders will 
dominate in late time). 
 
3130 l. 12-29 and Figure 10: when comparing the young water fractions (and MTT) derived 
from age tracking to those estimated from seasonal tracer cycle, please specify that the 
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formers are average values (time-average, flow-average, over the whole dataset, over a 
specific flow regime, etc), otherwise it is confusing. 
 
OK, can do. 
 
3131 l. 11: the author mentions “flow-weighted fits to seasonal tracer cycles”. How is this 
done? 
 
This is done by weighted least squares, with weights proportional to flow or 
precipitation volume.  If there are potential outliers one can use IRLS, Iteratively 
Reweighted Least Squares, with flow or precipitation weights, in combination with the 
usual iteratively updated point weights, which are downweighted for points with 
unusually large residuals. 
 
3132 l. 13: as commented above, this virtual experiment does not look homogeneous to me. 
So how can the author separate the effect of non-stationarity from that of heterogeneity? 
 
Please see the discussion above (for 3130 l. 16). 
 
3134 l. 12: please specify that the young water fraction is an average value (in this case, over 
a specific flow regime), because the real Fyw changes in time. Is this a time- of flow-
average? Figure 12: same comment as above 
 
I don't know what is meant by "flow-average".  These are Fyw values that are 
estimated from the behavior observed in individual "slices" of the discharge 
distribution.  Thus they are time-averaged and flow-specific. 
 
I would have thought that it would be obvious that these Fyw values are time-averaged, 
since no time point is specified.  Nonetheless, it can of course be stated explicitly. 
 
3134 l. 20 and figure 13: please specify that the “real” young water fraction is an average 
value 
 
The caption to Figure 13 already says, "Upper panels compare the TIME-AVERAGED 
Fyw in each discharge range..." (emphasis added). 
 
3134 l. 21: this is an interesting results, it would be worth adding further comments. 
 
OK, I will think about whether there is more that is worth saying here (although it's 
hard to know how much one can generalize from the one case of the Smith River data). 
 
3137 l. 27: the young water fraction has a rather specific meaning, so it does not just estimate 
the fraction of “relatively” fast flowpaths. It estimates the fraction of flowpaths that supply 
the stream with water younger than about 2-3 months. 
 
Yes, and by any measure these are relatively fast compared to the mean transit time.  
But yes, the 2-3 month time frame could be specified. 
 
3141 l. 21 to 3142 l. 27: these paragraphs are rather long and could be condensed  
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But I think the point that is being made here is worth emphasizing (and explaining at 
sufficient length so that hopefully nobody misses the point). 
 
3142 l. 15: this “inductive leap” is important. What does one learn from the virtual 
experiment for applying the method to real catchments? 
 
This inductive leap is a very small step, compared to the (usually unspecified and 
possibly unrecognized) inductive leaps required to apply typical predictive models. 
 
3142 l. 21-27: yes, but then one wants to apply the method to real-world catchments. So the 
model structure plays a role in suggesting whether the method is applicable to a real 
catchment at hand. 
 
It only plays a role if one thinks that the model creates a particular kind of complexity 
in the simulated time series, for which the inferential method somehow magically works 
well, clear across the rather wide ranges of structures and parameter values tested 
here... whereas the real-world catchment produces some other kind of complexity in the 
simulated time series, for which the inferential method spectacularly fails. 
 
I am not arguing that there are no conceivable circumstances in which the inferential 
method would fail.  I am arguing, however, that the results of my analysis do not 
strongly depend on the realism of the simulation model, which is only used to generate 
the benchmark time series (rather than generate the inferences that are being tested).  
The model is just being used as a fancy random number generator, which must only 
produce benchmark time series that have realistic degrees of complexity.  I am 
specifically contrasting this situation to typical catchment modeling studies, where 
models are intended to draw conclusions about real-world catchments, and therefore 
the realism of the model is of first-order importance. 
 
Let's keep this in perspective.  I've just spent a lot of time and energy to test an 
inferential method across a rather wide range of conditions, and to demonstrate its 
potential utility.  Benchmark testing at this level of rigor is rare in hydrology.   
 
Others may have different benchmark tests that they would like to try, and that would 
be great.  But let's remember that in our field, conclusions are drawn every day from 
models that are highly sensitive to unverified assumptions, and that have undergone 
almost no rigorous testing at all.  Poke holes in my approach all you want... but also 
poke holes elsewhere, where they are urgently needed. 
 
 
TECHNICAL CORRECTIONS 
 
3132 l.15 “likely to be underestimated” 
 
Figure 18 caption: there is some mismatch between the brackets at lines 8-9 
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