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Abstract 14	  

Twenty years of in situ soil moisture data from 306 stations located in China were used 15	  

to perform an evaluation of two surface soil moisture datasets: (1) a microwave-based 16	  

multi-satellite product (ESA CCI SM) and (2) soil moisture estimations from the Community 17	  

Land Model 4.5 (CLM4.5), forced by observation-based atmospheric forcing data. Both soil 18	  

moisture products generally showed a good agreement with in situ observations, with 19	  

unbiased root mean square differences (ubRMSD) of 0.05 m3 m−3. The average Spearman 20	  

rank correlation coefficient (Rsp) between the ESA CCI SM product and all in situ 21	  

observations was 0.37. In contrast, the CLM4.5 model produced better temporal variation of 22	  

surface soil moisture (Rsp = 0.42) than the ESA CCI SM product, but showed larger ubRMSD 23	  

in southwestern China, which may have been related to inaccurate precipitation data. The 24	  

ESA CCI SM product is more likely to be superior to the CLM4.5 model in semi-arid regions, 25	  

mainly because of the accurate data retrievals and high observation density, but inferior over 26	  

areas covered by dense vegetation. Furthermore, the ESA CCI SM product showed a stable to 27	  
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slightly better performance in China over time, except for a decline in performance during 28	  

2007–2010, when different data for the satellite product were blended. Results from this 29	  

study can provide comprehensive insight into the performances of the two soil moisture 30	  

datasets in China, which will facilitate improvements in merging algorithms or model 31	  

simulations and for applications in soil moisture data assimilation. 32	  
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1. Introduction 34	  

Soil moisture is a key variable in hydrological, climatological, biological and ecological 35	  

processes. It is central to land–atmosphere interactions because of its control on the 36	  

partitioning of water and energy fluxes at the Earth's surface (Dai et al., 2004). Soil moisture 37	  

also affects the seasonal and inter-annual dynamics of vegetation, which is an essential 38	  

component of the coupled hydrological and carbon cycles (Ciais et al., 2005). Many studies 39	  

have been conducted to obtain estimates of soil moisture using remote sensing techniques 40	  

(Njoku et al., 2003; Owe et al., 2008; Kerr et al., 2012), land surface modeling (Dirmeyer et 41	  

al., 2006; Wang et al., 2011; Liu and Xie, 2013) or a combination of both through a land data 42	  

assimilation system (e.g., Dharssi et al., 2011, de Rosnay et al., 2013). 43	  

Spaceborne microwave instruments can provide quantitative information about surface 44	  

soil water content (Schmugge, 1983), particularly in the low-frequency microwave region 45	  

from 1 to 10 GHz (Albergel et al., 2012). Several microwave-based soil moisture datasets 46	  

have been generated using satellite data retrievals from active microwave sensors, e.g. the 47	  

European Remote Sensing Satellites 1 and 2 Active Microwave Instrument Wind 48	  

Scatterometer (AMI-WS; Scipal et al., 2002) and Advanced SCATterometer (ASCAT) 49	  

onboard the Meteorological Operational satellite program (MetOp; Bartalis et al., 2007), and 50	  

from passive microwave sensors, including the Scanning Multichannel Microwave 51	  

Radiometer (SMMR; Owe et al., 2008), the Special Sensor Microwave Imager (SSM/I) of the 52	  
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Defense Meteorological Satellite Program (DMSP; Owe et al., 2008), the Tropical Rainfall 53	  

Measuring Mission microwave imager (TMI; Jackson and Hsu, 2001; Gao et al., 2006; Owe 54	  

et al., 2008), and more recently the Advanced Microwave Scanning Radiometer–Earth 55	  

observing system (AMSR-E) onboard the Aqua satellite (Njoku et al., 2003; Owe et al., 56	  

2008). The AMSR-E radiometer was switched off in October 2011 because of rotation 57	  

problems with its antenna; however, the AMSR2, launched in May 2012 onboard the Global 58	  

Change Observation Mission 1–Water (GCOM–W1), was intended to extend its valuable 59	  

heritage (Parinussa et al., 2015). Even though none of these sensors were specifically 60	  

designed for measuring soil moisture, good correspondences have been found between the 61	  

individual datasets and ground-based observations taken over a large variety of 62	  

environmental conditions (Albergel et al., 2009, 2012; Draper et al., 2009; Gruhier et al., 63	  

2010; Brocca et al., 2011). 64	  

However, none of the individual microwave products cover the decadal timescales  65	  

required to be considered for use in climate applications. Recently, a multi-satellite soil 66	  

moisture dataset (ESA CCI SM) spanning over thirty years was constructed by merging two 67	  

active and six passive microwave products (Liu et al., 2011, 2012). The combined product, 68	  

which was initially developed under the European Space Agency (ESA) Water Cycle 69	  

Multi-Mission Observation Strategy (WACMOS) project, is now being extended and 70	  

improved within the Climate Change Initiative (CCI) (http://www.esa-soilmoisture-cci.org/; 71	  

Wagner et al., 2012). A few studies have evaluated the ESA CCI SM product using in situ 72	  

observations. Liu et al. (2011, 2012) indicated that the merged dataset had a similar accuracy 73	  

to that of the best input product but with an increased temporal sampling density. Albergel et 74	  

al. (2013a) found that the ESA CCI SM dataset agreed well with in situ measurements 75	  

between 2007 and 2010 for 196 sites from five networks across the world, but that its 76	  

performance over most networks remained poorer than that of the most recent reanalysis 77	  
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products. Dorigo et al. (2015) provided a more in-depth evaluation; they used 596 stations 78	  

from 28 historical and active monitoring networks worldwide. Whilst the performance of the 79	  

ESA CCI SM dataset appeared to be relatively stable over time, large discrepancies were 80	  

observed among different networks. In addition, the ESA CCI SM can also capture long-term 81	  

systematic changes in trends of ground-based observations (Dorigo et al., 2012; Albergel et 82	  

al., 2013b), which suggests that it has a large potential for climate trend assessments (Loew et 83	  

al., 2013). 84	  

China has the third largest land area and diverse climates and biomes. Previous studies 85	  

have used only 34 sites for the period 1981–2000 across China and only 20 sites for the 86	  

period 2008–2010 from the Maqu network in northwest China to investigate the performance 87	  

of the ESA CCI SM product (Albergel et al., 2013a; Dorigo et al., 2015). Such sparse 88	  

observations clearly affect the evaluation results, leading to large uncertainties. Recently, 89	  

Chinese soil moisture observations for 306 sites from 1993 were updated by the China	  90	  

Meteorological Administration (CMA) National Meteorological Information Center (NMIC). 91	  

These data have been extensively used to investigate the variations of soil moisture and 92	  

evaluate the land surface modeling (Li et al, 2005; Wang and Zeng, 2011; Liu and Xie, 93	  

2013).  94	  

Land surface modeling is another strategy to produce large-scale surface and root zone 95	  

soil moisture estimations. When forced by high quality atmospheric forcing data, this strategy 96	  

has proved to be an effective tool to complement the commonly use of in situ measurements 97	  

and for the evaluation of satellite retrievals at both regional and global scales (Albergel et al., 98	  

2010, 2012). The ESA CCI SM product has also demonstrated a potential for evaluating 99	  

climate model performances (Loew et al, 2013; Szczypta et al., 2014). As one of the 100	  

state-of-art land surface models, the Community Land Model version 4.5 (CLM4.5) from the 101	  

National Center for Atmospheric Research (NCAR) was released in 2013 (Oleson et al., 102	  
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2013). To our knowledge, few studies have focused on the performance of CLM4.5 soil 103	  

moisture simulations in China. Lai et al. (2015) validated the temporal variation of soil 104	  

moisture simulated from the CLM4.0, a previous version of CLM4.5, but used only 30 sites 105	  

to cover China for the period 1981–1999; they also compared the spatial variation of soil 106	  

moisture in China using the ESA CCI SM product. However, the performance of the ESA 107	  

CCI SM product was not discussed in their work. 108	  

In this study, we conducted an in-depth evaluation of the ESA CCI SM product and 109	  

CLM4.5 simulation in China using ground-based observations from 306 sites. We 110	  

investigated their performances over various sub-regions under different climate conditions. 111	  

This in-depth evaluation provided a better understanding of the quality of both soil moisture 112	  

products and their potential problems than was hereafter available, and can be used to 113	  

improve their accuracy. The soil moisture datasets used in this study and the methodology for 114	  

their evaluation are described in Section 2. The results and discussion are then presented in 115	  

Section 3 and Section 4, respectively. Finally, our conclusions are given in Section 5. 116	  

2. Material and methods 117	  

2.1 Community Land Model (CLM4.5) 118	  

The NCAR/CLM is a community-developed model for simulating land surface 119	  

processes, such as water, energy, and carbon fluxes. The CLM4.5 version is the latest of the 120	  

CLM family of models (Oleson et al., 2013). It contains several notable improvements over 121	  

previous releases, including the decrease of biases associated with the modeled terrestrial 122	  

carbon cycle and modifications of canopy and hydrology processes (Oleson et al. 2013). In 123	  

CLM4.5, spatial land surface heterogeneity is represented as a nested subgrid hierarchy in 124	  

which grid cells are composed of multiple land units, snow/soil columns, and plant functional 125	  

types (PFTs). The model has one vegetation layer, fifteen layers for soil and up to five layers 126	  

for snow, depending on snow depth. The soil depths for the uppermost five layers are 1.75, 127	  
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4.51, 9.06, 16.55 and 28.91 cm. For soil points, temperature calculations are performed over 128	  

all layers, but hydrology calculations are performed over the top 10 layers only; the bottom 129	  

five layers are classified as bedrock. A detailed description of the physical processes included 130	  

within CLM4.5 can be found in Oleson et al. (2013). It should be noted that although 131	  

CLM4.5 includes the option to be operated with a dynamic vegetation or prognostic 132	  

carbon-nitrogen model, in our study, CLM4.5 was used with prescribed satellite-based 133	  

phenology, taken from the Moderate Resolution Imaging Spectroradiometer (MODIS; 134	  

Lawrence and Chase, 2007). 135	  

In this study, CLM4.5 was forced by a 34-yr (1979–2012) observation-based 136	  

atmospheric forcing dataset from the Institute of Tibetan Plateau Research, Chinese Academy 137	  

of Sciences (hereafter ITP), with a spatial resolution of 0.1° × 0.1° at a three-hourly temporal 138	  

resolution over China (15–55 °N, 70–140 °E). This dataset was constructed by merging the 139	  

observations from 740 operational stations of the CMA with the corresponding 140	  

meteorological forcing dataset from the Global Land Data Assimilation System (Rodell et al., 141	  

2004) to produce near-surface air temperature, pressure, wind speed and specific humidity 142	  

fields. It combined three precipitation datasets, including ground-based observations and two 143	  

satellite retrieval products (Chen et al., 2011), to determine the precipitation field. It also 144	  

corrected the Global Energy and Water Cycle Experiment–Surface Radiation Budget (Pinker 145	  

and Laszlo, 1992) with reference to radiation estimates (Yang et al., 2010) to ascertain the 146	  

incident shortwave radiation fields. Chen et al. (2011) demonstrated that simulations driven 147	  

by the ITP forcing data improve land surface temperature modeling for dry land in China. 148	  

The soil moisture simulations of CLM3.5, an old version of CLM4.5, forced by four different 149	  

atmospheric forcing datasets were compared against a common set of in situ observations and 150	  

results showed that, over most regions of China, the soil moisture estimations forced by the 151	  
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ITP forcing dataset had closer correlations with ground-based observations than did the three 152	  

other simulations (Liu and Xie, 2013). 153	  

2.2 ESA CCI SM data 154	  

In response to the Global Climate Observing System endorsement of soil moisture as an 155	  

essential climate variable, the ESA-WACMOS and CCI projects have supported the 156	  

generation of the ESA CCI SM product by merging multiple microwave-based soil moisture 157	  

products (Wagner et al., 2012), including passive data derived from SMMR, SSM/I, TMI, 158	  

and AMSR-E and active data from the ERS and ASCAT (Liu et al. 2011, 2012). The ESA 159	  

CCI SM version 2.0 (v2.0), released by the Vienna University of Technology in July 2014, 160	  

was used in this study. Compared to previous versions, the merging schemes and procedures 161	  

for ESA CCI SM v2.0 has been improved. Furthermore, the dataset was extended to the year 162	  

2013 by including the WindSat and AMSR2 data (Parinussa et al., 2012, 2015). Initially, the 163	  

ESA CCI SM data were separated into two homogenized products (one for active and one for 164	  

passive data); and then merged into a single active-passive product according to their relative 165	  

sensitivity to vegetation density (Liu et al, 2011, 2012; Wagner et al., 2012). The ESA CCI 166	  

SM has a spatial resolution of 0.25° × 0.25° (unit: m3 m−3) and a daily time-step centered at 167	  

0:00 UTC, although the actual observation time corresponds to that of the input products at a 168	  

specific time (Liu et al., 2012). Quality “flags” of the input products were transferred to ESA 169	  

CCI SM to mask pixels affected by snow coverage, temperature below 0 °C, dense vegetation, 170	  

and pixels where the retrieval of soil moisture data failed (Dorigo et al., 2015). 171	  

2.3 In situ measurements in China 172	  

This study made use of in situ soil moisture measurements from agricultural 173	  

meteorological stations across mainland China, collected by the CMA-NMIC, to evaluate the 174	  

ESA CCI SM and CLM4.5. The original data for 20 years (1993–2012) from 778 stations 175	  

were obtained every 10 days (i.e., on the 8th, 18th and 28th day of every month) at soil 176	  
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depths of 0–10, 10–20, 20–50, 50–70 and 70–100 cm, respectively. No measurements were 177	  

recorded in frozen soil. Soil water content was measured using the gravimetric technique and 178	  

originally recorded as mass percentage. It was converted to volumetric soil moisture using 179	  

field capacity and soil bulk density observations (Liu and Xie, 2013). This soil moisture 180	  

observation dataset has been widely used to study temporal variations in soil moisture and 181	  

evaluate land surface model simulations in China (Li et al., 2005; Wang and Zeng, 2011; Liu 182	  

and Xie, 2013), and is constantly updated. However, not all datasets are suitable for the 183	  

evaluation of remote sensing products and model simulations. In this study, we used a simple 184	  

quality control procedure (Wang and Zeng, 2011; Liu and Xie, 2013) on the updated soil 185	  

moisture observations in terms of observation frequency; specifically, the ratio of valid 186	  

measurements during the period from March to October (1993–2012) was required to be 187	  

greater than 50%. It is noted that if more than one in situ station remained in a single 0.25° 188	  

grid box, only one of them was included. The correlation check method was adopted to 189	  

remove the redundant sites (Dorigo et al., 2015); in this procedure, the correlation between 190	  

the in situ measurements and ESA CCI SM product and that between the in situ 191	  

measurements and CLM4.5 were first calculated, respectively, and their average value was 192	  

compared for each site, after which the site with the highest average correlation was selected. 193	  

Finally, the monthly soil water content values at depths of 0–10 cm at 306 stations were used 194	  

in this study to evaluate the remotely sensed and simulated values. These stations were 195	  

grouped into eight sub-regions on the basis of the spatial patterns of the centers of dryness 196	  

and wetness throughout China, based on Zhu (2003) and Liu and Xie (2013), and are defined 197	  

in Table 1. Figure 1 shows the eight sub-regions and the location of all 306 in situ 198	  

measurement sites, 289 of which were located in the eight sub-regions in this study. 199	  

2.4 Evaluation strategy 200	  

For the CLM4.5 simulation, we first spun up 300 years by repeating 30-yr (1979–2009) 201	  
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ITP meteorological forcing data to achieve an equilibrium state. The 1979–2012 atmospheric 202	  

forcing data were then used to force CLM4.5 and the simulated results were used in this 203	  

study. To be consistent with the ESA CCI SM dataset, these simulations were all made at 204	  

spatial resolution of 0.25° × 0.25° at 30-min time-steps. It should be noted that the data 205	  

affected by snow cover and temperatures below 0 °C for both the in situ measurements and 206	  

CLM4.5 predictions between March and October were masked using the quality flags of the 207	  

ECV CCI SM product. Given the low temporal frequency of the in situ datasets, the 208	  

validation of the ESA CCI SM and CLM4.5 was conducted at the monthly timescale to 209	  

reduce the effect caused by the mismatch between actual observation and model time (Wang 210	  

and Zeng, 2011; Liu and Xie, 2013). Only daily data of the ESA CCI SM product and 211	  

CLM4.5 simulation on the days of each month when in situ observations were available were 212	  

used to compute their monthly mean values. 213	  

The ‘nearest neighbor’ approach was retained to match the grid point location from the 214	  

ESA CCI SM product or CLM4.5 simulation with that of the in situ measurements. Since soil 215	  

layer thickness of CLM4.5 model did not match that of in situ observations (0−10 cm), the 216	  

weighted average was computed based on top four soil layer thicknesses (1.75, 2.76, 4.55, 217	  

0.94 cm, respectively).  218	  

Previous studies (Loew et al., 2013; Dorigo et al., 2015) pointed out that the statistical 219	  

metrics, e.g., the bias and the root mean square difference (RMSD), principally reflected the 220	  

differences between the in-situ data and the GLDAS-Noah model dataset that was used as a 221	  

reference for scaling, and thus were scientifically not meaningful. Besides, at the level of the 222	  

individual stations little is known about the accuracy of the measurements themselves and the 223	  

ability of the sites to represent absolute soil moisture levels over the coarse satellite footprint 224	  

scale (Gruber et al., 2013). Therefore, the unbiased RMSD (ubRMSD) was used to	  express 225	  

differences in soil moisture levels in this study, and can be calculated using Eq. (1): 226	  
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in which S represents soil moisture from either the ESA CCI SM dataset or CLM4.5 228	  

simulation, O is the in situ measurement and S  and O  are the corresponding mean values 229	  

related to S and O. It is noted that, prior to computing the ubRSMD, both the ESA CCI SM 230	  

dataset and CLM4.5 simulations were scaled into the dynamic range of the in situ data using 231	  

a linear rescaling method based on the mean and standard deviation (Brocca et al., 2013): 232	  
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S
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−

= ,                                                       (2) 233	  

where Sres is the linearly rescaled soil moisture dataset, and σS and σO are the corresponding 234	  

standard deviations related to S and O, respectively. In addition, the Spearman rank 235	  

correlation (Rsp) was calculated to describe the temporal agreement between the in situ data 236	  

and the ESA CCI SM dataset and CLM4.5 simulation (Dorigo et al., 2015). 237	  

Because the different products used to develop ESA CCI SM vary over space and time, 238	  

the differences in the microwave observation channels and sampling densities are expected to 239	  

influence the quality of the different periods for evaluating the new merged satellite product 240	  

(Liu et al., 2012; Dorigo et al., 2015). The following describes the eight sub-periods used to 241	  

construct the ESA CCI SM dataset (Albergel et al., 2013a; Dorigo et al., 2015): 242	  

• blend 1: January 1979–August 1987, based on SMMR observations only; 243	  

• blend 2: September 1987–June 1991, based on SSM/I only; 244	  

• blend 3: July 1991–December 1997, based on a combination of SSM/I and ERS AMI; 245	  

• blend 4: January 1998–June 2002, based on a combination of TMI and AMI between 246	  

40 °N and 40 °S, and a combination of SSM/I and ERS AMI elsewhere; 247	  

• blend 5: July 2002–December 2006, based on a combination of AMSR-E and ERS AMI; 248	  

• blend 6: January 2007–September 2011, based on a combination of AMSR-E and ASCAT; 249	  
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• blend 7: October 2011–June 2012, based on a combination of WindSat and ASCAT; 250	  

• blend 8: July 2012–December 2013, based on a combination of AMSR2 and ASCAT. 251	  

To illustrate the potential effects of these	  developmental stages on the quality of the ESA CCI 252	  

SM dataset, the product evaluation was repeated for the last five time periods (during which 253	  

in situ observations were available). 254	  

3. Results 255	  

3.1 Availability of the ESA CCI SM data in China 256	  

Previous studies (Loew et al., 2013; Dorigo et al., 2015) showed that the performance of 257	  

the ESA CCI SM product may be strongly affected by data gaps and the period of 258	  

observation. Therefore, we first analyzed the data availability of the ESA CCI SM product in 259	  

China for the entire period (1979–2013) as well as for the eight individual time periods 260	  

(described in Section 2.4). A clear increase of observation density can be observed over time 261	  

(Fig. 2), which is mainly due to the growing number of satellites available for soil moisture 262	  

data retrieval (Liu et al., 2012; Dorigo et al., 2015). The improved instrument design and 263	  

sensor performance also contributes to this effect. Better sensors have led to a convergence of 264	  

active and passive remote sensing products, especially over areas with intermediate 265	  

vegetation cover (Liu et al., 2012), and an increase over time in the number of areas where 266	  

both products are used in a synergistic way. 267	  

For example, for the second period (1 September 1987–30 June 1991), the ESA CCI SM 268	  

product was generated using the SSM/I Ku-band (19.3 GHz) data alone, which was strongly 269	  

attenuated by the vegetation canopy; thus, large areas were masked due to moderate to dense 270	  

vegetation, such as northeast and southern China (Fig. 2b). The introduction of the ERS AMI 271	  

C-band (5.3 GHz) scatterometer during the subsequent period (1 July 1991–31 December 272	  

1997) was able to partly fill these gaps (Fig. 2c), e.g. there was a clear increase in the number 273	  

of observations over southern China. With the introduction of the high quality AMSR-E 274	  
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C-band (6.9 GHz) data in July 2002, a large increase of the observation density can be found 275	  

over most areas of China, except the Tibetan Plateau (Fig. 2e). As a result of the 276	  

unavailability of the AMSR-E data in October 2011, the observation density decreased over 277	  

large parts of northwest China and Inner Mongolia, which are mainly arid or semiarid areas, 278	  

despite the inclusion of the high quality WindSat data for this period (Fig. 2g). In addition, 279	  

the introduction of the AMSR2 product clearly increases the fractions of valid observations 280	  

over most areas of China, except central and southern China (Fig. 2h). 281	  

3.2 Evaluation using in situ data 282	  

Figure 3 presents the Spearman rank correlation coefficients (Rsp) of the ESA CCI SM 283	  

product and CLM4.5 simulation against in situ measurements, in which the values from both 284	  

techniques are ranked using the same intervals. The data gaps for the ESA CCI SM product 285	  

(Fig. 2) lead to only 299 stations available; over 61% of these stations had correlation values 286	  

between 0.2 and 0.6 (shown in green and purple, Fig. 3a), with a mean of 0.27 (Table 2). In 287	  

contrast, the CLM4.5 model captured surface soil moisture temporal variability better 288	  

(averaged R value is 0.35, Table 2) than the ESA CCI SM product; about 10% of the stations 289	  

had Rsp values greater than 0.6 (shown as orange and blue, Fig. 3b), whereas only 5% stations 290	  

for the ESA CCI SM achieved such correlations (Fig. 3a). When only the configurations 291	  

associated to significant correlation values (p < 0.05) are considered (cycles), there were 212 292	  

and 253 stations available for the ESA CCI SM and CLM4.5, respectively. In the current 293	  

study, the averaged Rsp value of the ESA CCI SM is 0.37, which is slightly higher than that 294	  

(Rsp = 0.32) from 34 sites over China in Dorigo et al. (2015); the averagd Rsp is 0.42 for the 295	  

CLM4.5 model. 296	  

As described in several studies (Liu et al., 2011, 2012; Dorigo et al., 2015), the mean 297	  

and dynamic range of the ESA CCI SM time series represent those of the GLDAS-Noah 298	  

surface soil moisture product. Therefore, we used a linear rescaling method (Eq. 2) to rescale 299	  
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both the ESA CCI SM dataset and CLM4.5 soil moisture predictions prior to computing their 300	  

ubRMSDs (Brocca et al., 2013) against in situ measurements (Fig. 4). For the ESA CCI SM 301	  

product, there were 214 stations (72% of total) with the ubRMSD values less than 0.06 m3 302	  

m–3. The CLM4.5 showed a slightly improved ubRMSD, of which about 29% of the stations 303	  

had a value less than 0.04 m3 m–3 (Fig. 4b), compared to 22% using the ESA CCI SM product 304	  

(Fig. 4a). Table 2 shows that averaged ubRMSD values are 0.053 and 0.050 m3 m–3 for the 305	  

ESA CCI SM product and CLM4.5 simulation, respectively, which suggests that the CLM4.5 306	  

simulation is closer to in situ measurements in China than is the ESA CCI SM product. When 307	  

only sites with a significant (p < 0.05) positive Spearman’s correlation were considered 308	  

(cycles in Figs. 3 and 4), the averaged ubRMSD values were 0.050 and 0.048 m3 m–3 for the 309	  

ESA CCI SM product and CLM4.5 simulation, respectively. It should be noted that because 310	  

the ubRMSD is only an indication of the mismatch between in situ data and remote sensing 311	  

or model simulated datasets, the errors in each dataset are also included. The triple 312	  

collocation technique has proven to be an independent technique for estimating the random 313	  

error component of soil moisture datasets and been applied to the direct comparison with the 314	  

ubRMSD metric (Dorigo et al., 2010; Gruber et al., 2013; Dorigo et al., 2015). Therefore, 315	  

future work is expected to use this method to reduce the effect of random errors in each 316	  

dataset on the comparison. 317	  

3.3 Performances over eight sub-regions 318	  

Since soil moisture has a close relationship with the status of climate dryness and 319	  

wetness, eight sub-regions were defined (Table 1 and Fig. 1) in this study based on Zhu 320	  

(2003), which used a time series for dryness and wetness encompassing the last 530 years to 321	  

analyze the spatial patterns of the centers of dryness and wetness throughout China by 322	  

applying the rotated empirical orthogonal function method. To evaluate the performance of 323	  

the satellite-based product and process-based model simulation over eight sub-regions, two 324	  
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evaluation strategies were adopted in our study: (1) we computed the statistical metrics for 325	  

the stations individually (e.g., Figs. 3 and 4) and then averaged their values over each region 326	  

(hereinafter referred to as "S1"); (2) we generated the time series of soil moisture by 327	  

averaging available observations at all stations of each region, only considering those grid 328	  

cells closest to the relevant observation stations for the ESA CCI SM product and CLM4.5 329	  

simulation, and then calculated their statistical metrics against in situ measurements 330	  

(hereinafter referred to as "S2"). It should be noted that only sites with a significant (p < 0.05) 331	  

positive Spearman’s correlation (cycles in Figs. 3 and 4) for both ESA CCI SM product and 332	  

CLM4.5 simulation were considered in the following analysis whatever the evaluation 333	  

strategy. After screening using the criteria above, 200 stations remained available for the 334	  

following evaluation, 189 of which were located in the eight sub-regions; the number of valid 335	  

stations for each sub-region is shown in Table 2 (in the brackets). The statistical metrics of 336	  

the ESA CCI SM product and CLM4.5 simulation against in situ measurements for both 337	  

evaluation strategies are presented in Fig. 5. 338	  

Over most regions (except for China V), the ESA CCI SM product, of which average 339	  

ubRMSD values ranged between 0.044 and 0.059 m3 m-3, had slightly higher ubRMSD 340	  

values than CLM4.5 simulations (0.042−0.056 m3 m-3) for the first evaluation strategy (Fig. 341	  

5a), which is consistent with the results from Fig. 4 and Table 2. Figure 5b shows that the 342	  

average Spearman correlation coefficients of the ESA CCI SM product ranged between 0.27 343	  

and 0.47, while higher correlations in situ measurements were achieved by CLM4.5 344	  

simulations (0.34–0.54), except in China V. Good performance over China V, which is a 345	  

semi-arid region, for the ESA CCI SM product was also found by Albergel et al. (2013b) and 346	  

Dorigo et al., (2015) using in situ observations from the Maqu network, which is located over 347	  

the southern part of this sub-region. Our finding suggests that the ESA CCI SM product has a 348	  

good potential for application in areas where models cannot realistically represent soil 349	  
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moisture (Albergel et al., 2013b). 350	  

Compared to S1, the other strategy (S2) showed large variations in ubRMSD (Fig. 5a) 351	  

and Rsp (Fig. 5b) between different sub-regions. However, the two strategies produced similar 352	  

results although CLM4.5 simulations showed a slightly higher Rsp and lower ubRMSD than 353	  

the ESA CCI SM product. In addition, compared with performance in other regions, both 354	  

remotely sensed and modeled soil moisture datasets showed larger ubRMSD values over 355	  

southwest China (China VII and VIII), which is mainly covered with moderate to dense 356	  

vegetation, including mixed evergreen coniferous and broadleaf deciduous forests, and 357	  

broadleaf deciduous forests. This result is mainly due to strong attenuation by the vegetation 358	  

canopy of the microwave retrievals for the ESA CCI SM product (Liu et al., 2012; Dorigo et 359	  

al., 2015). For the CLM4.5 simulation, the precipitation data in the ITP atmospheric forcing 360	  

data were generated by merging ground-based observations and two satellite retrieval 361	  

products, because few in situ precipitation measurements were available over these areas 362	  

(Chen et al., 2011). 363	  

Figure 6 compares the annual soil moisture cycle (March−October) of the ESA CCI SM 364	  

product and CLM4.5 simulation against in situ measurements, averaged over the eight 365	  

sub-regions using the S2 evaluation strategy (without the linear scaling). Both the ESA CCI 366	  

SM product and CLM4.5 simulation generally captured the annual cycle well in most 367	  

sub-regions. However, soil moisture simulated by the CLM4.5 model was usually greater 368	  

than the observations, showing systematic overestimation in all sub-regions except for China 369	  

VI and VIII; this is consistent with the research of Liu and Xie (2013), which was based on 370	  

simulations with the CLM3.5 model using the same atmospheric forcing data as we used. The 371	  

comparable findings suggest that land surface model simulation may reproduce temporal 372	  

variations well, but fail to simulate the mean soil moisture (Entin et al., 2000; Gao and 373	  

Dirmeyer, 2006; Liu and Xie, 2013). In contrast, the ESA CCI SM product was closer to 374	  
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matching in situ measurements than the CLM4.5 model over some areas (e.g., China V in this 375	  

study, a semi-arid region), although it represents the dynamic range of the GLDAS-Noah 376	  

surface soil moisture product (Liu et al., 2012; Dorigo et al., 2015). 377	  

3.4 Comparison of the anomaly time series 378	  

The results presented above are based on comparisons of the multi-year observation 379	  

dataset and the ESA CCI SM or CLM4.5 datasets on a monthly timescale, which may be 380	  

somewhat affected by the seasonal cycle of soil moisture. The time series of the soil moisture 381	  

anomaly from the three datasets (ESA CCI SM, CLM4.5, and in situ observations) for the 382	  

eight sub-regions using the S2 strategy (Section 3.3), computed by removing the multi-year 383	  

annual cycle (only March−October available), are presented in Fig. 7. In general, both the 384	  

ESA CCI SM product and the CLM4.5 simulation captured the temporal evolution of the 385	  

observed soil moisture anomalies reasonably well for most of the regions, except a slight 386	  

overestimation in the amplitude of fluctuations over China VII and VIII by the ESA CCI SM 387	  

product, which was consistent with the results shown in Fig. 5.  388	  

As a further quantitative illustration of the effects of seasonal cycle on the evaluation 389	  

results, Fig. 8 shows the Spearman correlation coefficients (R′sp) for the anomaly data of both 390	  

the ESA CCI SM product and CLM4.5 simulation over the eight sub-regions. In general, R′sp 391	  

values (Fig. 8) were lower than Rsp (Fig. 5) for most sub-regions, especially over China VI 392	  

and VIII. This differences suggested that the seasonal cycle in soil moisture has a large effect 393	  

on the comparison of Spearman correlation values over the areas with pronounced wet and 394	  

dry periods (Liu et al., 2012; Albergel et al., 2013a; Dorigo et al., 2015). 395	  

3.5 Evolution of the ESA CCI SM over time 396	  

The microwave observation channels and sampling densities were expected to affect the 397	  

quality of the dataset for different periods because the different products that were used to 398	  

generate the ESA CCI SM dataset vary over space and time (Liu et al., 2012; Albergel et al., 399	  
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2013a). Figure 9 presents the averaged ubRMSDs and Rsp of the ESA CCI SM product for 400	  

the last five individual time periods defined in Section 2.4. Due to limited time length and 401	  

sparse samples for the last two blended periods (blend 7 and blend 8), they were combined 402	  

into one period. Considering the sites that have significant Rsp values (p = 0.05) for all 403	  

periods (denoted by red in Fig. 9), averaged correlations ranged from 0.42 to 0.62 while 404	  

ubRMSD values ranged from 0.024 m3 m−3 to 0.045 m3 m−3. A similar pattern was obtained 405	  

when considering the sites for which the correlation was significant for each blended period 406	  

with averaged Rsp values ranging from 0.56 to 0.93. 407	  

For the fourth period (January 1998–June 2002), a higher correlation was observed (Fig. 408	  

9b) compared to the previous period (January 1993–December 1997), which may be related 409	  

to the introduction of the circular non-polar orbiting TMI data in 1998 (Doirgo et al., 2015). 410	  

In July 2002, a high quality soil moisture dataset from C-band AMSR-E retrievals was 411	  

introduced instead of the SSM/I and TMI, which increased the correlations of the ESA CCI 412	  

SM dataset with in situ measurements and reduced its ubRMSD values for the fifth period 413	  

(July 2002–December 2006). These observations were consistent with the results of the 414	  

comparison between the ESA CCI SM and the ERA-Land, an update of the land surface 415	  

component of the ERA-Interim reanalysis from the European Centre for Medium-Range 416	  

Weather Forecasts (Albergel et al. 2013a), and that between the ESAI CCI SM product and in 417	  

situ measurements from other soil moisture networks (Dorigo et al., 2015). Unexpectedly, 418	  

there was a decrease in quality in the sixth period (January 2007–September 2011), with 419	  

weaker correlations and higher ubRMSD (Albergel et al., 2013a, Dorigo et al., 2015). The 420	  

cause of this degradation is still not entirely clear, but it may be related to the resampling and 421	  

scaling strategy used to incorporate a new active input product from ASCAT (Dorigo et al., 422	  

2015). The best performance for all metrics was obtained for the last two periods (October 423	  

2011–December 2012), which was expected, given the higher quality satellite 424	  
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instrumentation (AMSR2) and improved retrieval algorithms. However, the shorter length of 425	  

time within the two periods may have had a slight effect on the statistical metrics and 426	  

therefore more in situ measurements would be needed to confirm our results. 427	  

4. Discussion 428	  

During the past twenty years, huge efforts have been made to make more in situ soil 429	  

moisture observations available in China. These measurements are important for the 430	  

evaluation of both remotely sensed and modeled soil moisture. In this study, we evaluated the 431	  

performances of the ESA CCI SM product and CLM4.5 simulation in China using 20 years 432	  

of in situ observations from 306 sites. However, some limitations to the evaluation should be 433	  

noted. The spatial representativity, temporal mismatch, instrumental errors, and installation 434	  

depth of in situ observations may have had a negative effect on the evaluation results. Such 435	  

limitations have been extensively reported in previous studies (Brocca et al., 2010; Crow et 436	  

al., 2012). Therefore, future work is expected to reduce these uncertainties through the 437	  

enhancement of ground-based measurements and the improvement of the evaluation strategy. 438	  

In addition, soil moisture was measured using the gravimetric technique. This destructive 439	  

sampling method may affect the evaluation results (Dorigo et al., 2015). According to the 440	  

user guide of in situ soil moisture measurements from agricultural meteorological stations of 441	  

CMA (in Chinese, http://cdc.nmic.cn), soil moisture observation technique can be 442	  

summarized as follows: (1) the observation field of each station is divided to four parts and 443	  

four soil samples will be collected each time; (2) their soil moisture contents in dry weight 444	  

basis (the ratio of water mass to dried soil’s weight) are determined by drying the soil, 445	  

respectively; (3) the average value from the four samples are recorded as mass percentage for 446	  

this station. It is noted that the horizontal distance between two successive samples at the 447	  

same part of each station is no more than 2 meters, which leads to almost the same 448	  

meteorological and soil conditions. Moreover, to reduce the effect of soil moisture 449	  
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heterogeneity, the station was usually chosen to be over flat surface. However, the original 450	  

observations from the four samples at each station were not available; thus, we could not 451	  

investigate the effect of destructive sampling on the comparison results in this study. Previous 452	  

studies (Brocca et al., 2014a, b) showed that soil moisture had enormous variability even at 453	  

local scales, in particular in absolute terms. These methods will be used in our future work to 454	  

discuss the impacts of spatial variability and destructive sampling method. 455	  

Land surface models can capture the temporal dynamics of soil moisture well when 456	  

forced by high quality atmospheric forcing data (Albergel et al., 2010, 2012) and are usually 457	  

employed to upscale in situ surface soil moisture observations or complete the evaluation of 458	  

satellite derived products (Albergel et al., 2013a). In this study, the CLM4.5 was forced by an 459	  

atmospheric forcing dataset generated using many ground-based observations, and showed 460	  

better correlation with in situ soil moisture observations than did the ESA CCI SM product. 461	  

However, many precipitation measurements were located in the same 0.25° grid box as the in 462	  

situ soil moisture observations; although the two types of data were obtained from different 463	  

sources and were not collected at the same locations, it was necessary to investigate the effect 464	  

of in situ precipitation measurements on the comparison results. The averaged statistical 465	  

metrics over the sites with ("Rain") and without ("No Rain") in situ precipitation 466	  

measurements are presented in Fig. 10. It is noted that only the sites (200 of 306) with a 467	  

significant (p < 0.05) positive Spearman’s correlation for both the ESA CCI SM product and 468	  

CLM4.5 simulation were considered, as described in Section 3.2. Figure 10 shows that, for 469	  

the CLM4.5 simulation, in situ precipitation measurements (101 of 200) led to a slightly 470	  

higher correlation (Rsp = 0.46) with in situ soil moisture measurements than was obtained 471	  

without the precipitation measurements (Rsp = 0.44, 99 of 200). This may be related to the 472	  

issues of spatial resolution. The observations from 740 operational stations of the CMA were 473	  

merged with other meteorological forcing datasets to generate the ITP forcing data with a 474	  



	   20	  

spatial resolution of 0.1° × 0.1°, while the CLM4.5 was run at 0.25° × 0.25° resolution in this 475	  

study. If the CLM4.5 had been run at 0.1° × 0.1° resolution, the effect of ground-based 476	  

precipitation on the comparison results may have been clearer (not shown in this study). 477	  

The in situ observations used in this study are average soil moisture values of surface 478	  

soil of 0−10 cm; to be consistent with the in situ observations, the weighted average of 479	  

CLM4.5 at 0−10 cm was computed based on the uppermost four soil layer thicknesses 480	  

(Section 2.4). However, the ESA CCI SM data represent the upper 0−2 cm of the soil (Liu et 481	  

al., 2011, 2012; Dorigo et al., 2015). As in situ soil moisture observations of 0−2 cm are not 482	  

available, it is difficult to investigate the effect of the mismatch between soil depths on the 483	  

statistical results. Instead, we compared the in situ observations and ESA CCI SM data with 484	  

average soil moisture values of CLM4.5 at different soil depths: first layer (“L1”, 0−1.75 cm), 485	  

uppermost two layers (“L1−2”, 0−1.75 cm, 1.75−4.51 cm), uppermost three layers 486	  

(“L1−2−3”, 0−1.75 cm, 1.75−4.51 cm, 4.51−9.06 cm), 0−2 cm, 0−5 cm, and 0−10 cm. Their 487	  

statistical metrics, including ubRMSD and Rsp, are presented in Fig. 11. Results showed that 488	  

the choice of soil depth for CLM4.5 had a significant effect on the statics. The average Rsp 489	  

against in situ observations ranged between 0.417 and 0.425 at different soil depths while the 490	  

ESA CCI SM had higher Rsp values and a larger range, which was between 0.507 and 0.546. 491	  

CLM4.5 agreed better with in situ observations at 0−10 cm than those at other soil depths, 492	  

confirming that it is better to evaluate the CLM4.5 using the weighted average values at 0−10 493	  

cm. In contrast, the best agreement between the CLM4.5 simulation and ESA CCI SM 494	  

product was found at the first layer (0−1.75 cm). These findings suggest that the mismatch in 495	  

soil depths between the ESA CCI SM and in situ observations may have had a large effect on 496	  

the statistical metrics, which is one of the reasons for its higher ubRMSD and lower Rsp. 497	  

In addition, although the CLM4.5 model had better performance against in situ 498	  

observations than the ESA CCI SM product over most regions in China, there were still many 499	  
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unrealistic representations in model parameterizations (soil water and temperature, for 500	  

example) and large uncertainties in land surface datasets (such as soil texture and PFTs) for 501	  

the CLM4.5 model, which affected its accuracy in soil moisture simulation. To improve soil 502	  

moisture estimations, many studies have incorporated remotely sensed brightness 503	  

temperatures (Jia et al., 2013) or soil moisture retrievals (Draper et al., 2012) into land 504	  

surface models using various modern land data assimilation systems. Our study provides an 505	  

in-depth evaluation of both the ESA CCI SM product and CLM4.5 model in China, including 506	  

their performances over different sub-regions. This evaluation is expected to be useful for the 507	  

assimilation of the ESA CCI SM product into land surface models, especially the CLM4.5, 508	  

because the observation and model errors have been estimated approximately. 509	  

For the ESA CCI SM product, only soil moisture retrievals acquired by night time 510	  

overpasses (occurring between 19:00 and 08:00 local time) were used (Liu et al., 2012) 511	  

because all input products had varying local observation times (Dorigo et al., 2015). However, 512	  

the original in situ soil moisture observations were available every 10 days (three times each 513	  

month) and the time step of CLM4.5 was 30 min. To reduce the effect caused by the 514	  

mismatch between actual observation and model time, we compared the three datasets at a 515	  

coarser time scale using their monthly values, in a similar way as previous studies (Li et al., 516	  

2005; Wang and Zeng, 2011; Liu and Xie, 2013). However, it should be noted that the effect 517	  

of the temporal mismatch among different soil moisture datasets was not considered in this 518	  

study. 519	  

5. Conclusions 520	  

In this study, the performances of a microwave-based merged satellite product (ESA 521	  

CCI SM) and the CLM4.5 simulation were investigated using 20 years of in situ observations 522	  

from 306 stations in China. In general, both soil moisture products represent in situ 523	  

observations well, with ubRMSD values of about 0.05 m3 m−3. The ESA CCI SM product has 524	  
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slightly weaker Spearman correlations (Rsp = 0.37) than the CLM4.5 model, but the CLM4.5 525	  

simulation produces better temporal variation of surface soil moisture (Rsp = 0.42). 526	  

Both the satellite product and model simulation show large discrepancies over eight 527	  

sub-regions in China. The CLM4.5 model shows larger ubRMSDs in southwestern China 528	  

(China VII and VIII) than other regions, which may be related to the scarcity of in situ 529	  

precipitation measurements available in these areas. The ESA CCI SM product is likely to be 530	  

best-suited for applicaiton in semi-arid regions (such as China V), even better than the 531	  

CLM4.5 model, mainly because of accurate data retrievals and high observation density; in 532	  

contrast, the ESA CCI SM product is not well suited for areas covered by dense vegetation 533	  

(such as China VII and VIII). In addition, the statistical scores of the ESA CCI SM product in 534	  

China corroborate the findings of Albergel et al. (2013a) and Dorigo et al. (2015) of a stable 535	  

to slightly improving performance over time in China, with the exception of a decrease 536	  

during the 2007–2010 blending period, which may be related to the resampling and scaling 537	  

strategy used to incorporate the ASCAT product into the ESA CC SM dataset. 538	  

In response to the sparse observation temporal frequency (three times each month), all 539	  

analyses were performed on a monthly timescale. Future efforts are expected to make more in 540	  

situ soil moisture observations available in China for the evaluation of either remote sensing 541	  

retrievals or modeled simulation. Furthermore, data assimilation has been an effective tool to 542	  

incorporate remotely sensed soil moisture into land surface models to improve soil moisture 543	  

simulation (Draper et al., 2012). The in-depth evaluation of the ESA CCI SM product and 544	  

CLM4.5 model in China provided by this study will facilitate soil moisture data assimilation, 545	  

which is expected to provide further information regarding observation and model errors. 546	  
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Table 1. Locations of the eight sub-regions in China. 737	  

Identification Region Name Location 
Number of 
Observational 
Stations 

China I northeast China 120–135 °E, 
40–50 °N 61 (40) 

China II northern North China 110–120 °E, 
40–45 °N 15 (5) 

China III southern North China 110–120 °E, 
34–40 °N 57 (47) 

China IV central and lower Yangtze 
River Basin 

110–122 °E, 
30–34 °N 28 (18) 

China V eastern northwest China 95–110 °E,  
34–42 °N 77 (53) 

China VI western northwest China 80–95 °E,  
34–50 °N 20 (8) 

China VII northern southwest China 100–110 °E, 
28–34 °N 22 (12) 

China VIII southern southwest China 100–110 °E, 
20–28 °N 9 (6) 

aThe values in the brackets represent the number of sites having significant (p < 0.05) 738	  

positive Spearman’s correlations for both the ESA CCI SM product and CLM4.5 simulation. 739	  

740	  
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Table 2. Averaged performance metrics and standard deviations of the ESA CCI SM product 741	  

and CLM4.5 model for all available in situ sites. (Stations: Number of stations; N: Averaged 742	  

value of number of valid measurements per station; ubRMSD: unbiased root mean square 743	  

difference; Rsp: Spearman correlation coefficient). 744	  

 ESA CCI SM CLM4.5 

Stations 299 (212)a 306 (253) 

N 124 (127) 126 (128) 

ubRMSD (m3 m−3) 0.053±0.017 
(0.050±0.014) 

0.050±0.017 
(0.048±0.015) 

Rsp 
0.27 ± 0.21 
(0.37 ± 0.14) 

0.35 ± 0.21 
(0.42 ± 0.14) 

aThe values in the brackets represent the average values from the sites having significant (p < 745	  

0.05) positive Spearman correlations. 746	  

747	  
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Figures 748	  

Fig. 1 Locations of the 306 in situ soil moisture measurement sites (red dots) in China. Also 749	  

shown (blue boxes) are the eight sub-regions defined in Table 1. 750	  

Fig. 2 Fraction of days with valid observations, expressed as the number of days with 751	  

observations divided by the total number of days per period, split into six different merging 752	  

periods: (a) 1 January 1979–31 August 1987, (b) 1 September 1987–30 June 1991, (c) 1 July 753	  

1991–31 December 1997, (d) 1 January 1998–30 June 2002, (e) 1 July 2002–31 December 754	  

2006, (f) 1 January 2007–30 September 2011, (g) 1 October 2011–30 June 2012, (h) 1 July 755	  

2012–31 December 2013; and (i) for the total period 1 January 1979–31 December 2013.	    756	  

Fig. 3 Spearman rank correlation coefficients (Rsp) between the in situ measurements and (a) 757	  

ESA CCI SM and (b) CLM4.5 from 1993 to 2012 at 306 sites in China. Open circles 758	  

represent statistically significant Spearman correlation (p < 0.05) while closed circles are not 759	  

significant. 760	  

Fig. 4 Unbiased root mean square differences (ubRMSDs) between the in situ measurements 761	  

and (a) ESA CCI SM and (b) CLM4.5 from 1993 to 2012 at 306 sites in China. 762	  

Fig. 5 Statistical scores, including ubRMSD (5a and 5c) and Rsp (5b and 5d), for the ESA 763	  

CCI SM product (red) and CLM4.5 model (blue) between 1993 and 2012 in the eight studied 764	  

sub-regions of China using two evaluation strategies (S1 and S2). S1: average values of 765	  

statistical metrics for the stations over each region. S2: statistical metrics with in situ 766	  

observations for the soil moisture time series averaged at the stations of each region. 767	  

Fig. 6 Multi-year (1993–2012) mean monthly volumetric soil moisture (SM, m3 m−3) for the 768	  

period between March and October as described by in situ observations, the ESA CCI SM 769	  

product, and CLM4.5 simulation in the eight studied sub-regions of China. 770	  

Fig. 7 Comparison of the anomaly time series of monthly soil moisture derived from the ESA 771	  

CCI SM product, CLM4.5 simulation, and in situ observations between 1993 and 2012 for 772	  
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the eight studied sub-regions of China. 773	  

Fig. 8 Spearman correlations (R’sp) between the anomalies (seasonal cycle removed) of the 774	  

ESA CCI SM product (red) or CLM4.5 model (blue) and those of in situ observations 775	  

between 1993 and 2012 in the eight studied sub-regions of China using two evaluation 776	  

strategies (S1 and S2). 777	  

Fig. 9 Averaged ubRMSD and Rsp values of the ESA CCI SM product against in situ 778	  

observations for five blended time periods. Red bars represent the sites with significant Rsp 779	  

values (p < 0.05) for all periods (1993–2012) while blue bars consider sites with significant 780	  

Rsp values (p < 0.05) for each blended period. Blend 3: July 1991–December 1997; Blend 4: 781	  

January 1998–June 2002; Blend 5: July 2002–December 2006; Blend 6: January 782	  

2007–September 2011; and Blend 7–8: October 2011–December 2012. 783	  

Fig. 10 Evaluation of the ESA CCI SM product and CLM4.5 simulation against in situ 784	  

observations over different types of soil moisture stations. "All" is calculated using all valid 785	  

sites (200) with significant (p < 0.05) positive Spearman correlation coefficients for both the 786	  

ESA CCI SM product and CLM4.5 simulation. "Rain" represents the sites (101) located in 787	  

the same 0.25° grid box as the in situ precipitation observations; "No Rain" represents the 788	  

remaining sites (99). Presented are the average values, the standard deviations (as indicated 789	  

by the box), and the maximum and minimum values (whiskers). 790	  

Fig. 11 Average statistical metrics: (a) ubRMSD, and (b) Spearman correlation coefficients 791	  

(Rsp) between the ESA CCI SM product (red) or in situ observations (OBS, blue) and 792	  

CLM4.5 simulation at different soil depths. "L1", "L1−2", "L1−2−3", "2cm", "5cm", and 793	  

"10cm" represent the first layer (0−1.75 cm), uppermost two layers (0−1.75, and 1.75−4.51 794	  

cm), and uppermost three layers (0−1.75, 1.75−4.51, and 4.51−9.06 cm), 0−2 cm, 0−5 cm, 795	  

and 0−10 cm, respectively. The average values of CLM4.5 were computed by using each soil 796	  

layer thickness as the weight; the CLM4.5 simulations were scaled to the dynamic range of 797	  
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the in situ observations or ESA CCI SM dataset using a linear rescaling method (Eq. 1) prior 798	  

to computing the ubRMSD values. 799	  
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 801	  

 802	  

Fig. 1 Locations of the 306 in situ soil moisture measurement sites (red dots) in China. Also 803	  

shown (blue boxes) are the eight sub-regions defined in Table 1. 804	  

805	  
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 806	  

Fig. 2 Fraction of days with valid observations, expressed as the number of days with 807	  

observations divided by the total number of days per period, split into six different merging 808	  

periods: (a) 1 January 1979–31 August 1987, (b) 1 September 1987–30 June 1991, (c) 1 July 809	  

1991–31 December 1997, (d) 1 January 1998–30 June 2002, (e) 1 July 2002–31 December 810	  

2006, (f) 1 January 2007–30 September 2011, (g) 1 October 2011–30 June 2012, (h) 1 July 811	  

2012–31 December 2013; and (i) for the total period 1 January 1979–31 December 2013.	   	  812	  

813	  
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 814	  

Fig. 3 Spearman rank correlation coefficients (Rsp) between the in situ measurements and (a) 815	  

ESA CCI SM and (b) CLM4.5 from 1993 to 2012 at 306 sites in China. Open circles 816	  

represent statistically significant Spearman correlation (p < 0.05) while closed circles are not 817	  

significant. 818	  

819	  



	   40	  

 820	  

Fig. 4 Unbiased root mean square differences (ubRMSDs) between the in situ measurements 821	  

and (a) ESA CCI SM and (b) CLM4.5 from 1993 to 2012 at 306 sites in China. Open circles 822	  

represent statistically significant Spearman correlation (p < 0.05) while closed circles are not 823	  

significant. 824	  

825	  
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 826	  

Fig. 5 Statistical scores, including ubRMSD (5a and 5c) and Rsp (5b and 5d), for the ESA 827	  

CCI SM product (red) and CLM4.5 model (blue) between 1993 and 2012 in the eight studied 828	  

sub-regions of China using two evaluation strategies (S1 and S2). S1: average values of 829	  

statistical metrics for the stations over each region. S2: statistical metrics with in situ 830	  

observations for the soil moisture time series averaged at the stations of each region. 831	  

832	  
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 833	  

Fig. 6 Multi-year (1993–2012) mean monthly volumetric soil moisture (SM, m3 m−3) for the 834	  

period between March and October as described by in situ observations, the ESA CCI SM 835	  

product, and the CLM4.5 simulation in the eight studied sub-regions of China. 836	  

837	  
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 838	  

Fig. 7 Comparison of the anomaly time series of monthly soil moisture derived from the ESA 839	  

CCI SM product, the CLM4.5 simulation, and in situ observations between 1993 and 2012 840	  

for the eight studied sub-regions of China. 841	  

842	  
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 843	  

Fig. 8 Spearman correlations (R’sp) between the anomalies (seasonal cycle removed) of the 844	  

ESA CCI SM product (red) or CLM4.5 model (blue) and those of in situ observations 845	  

between 1993 and 2012 in the eight studied sub-regions of China using two evaluation 846	  

strategies (S1 and S2). 847	  

848	  
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 849	  

Fig. 9 Averaged ubRMSD and Rsp values of the ESA CCI SM product against in situ 850	  

observations for five blended time periods. Red bars represent the sites with significant Rsp 851	  

values (p < 0.05) for all periods (1993–2012) while blue bars consider sites with significant 852	  

Rsp values (p < 0.05) for each blended period. Blend 3: July 1991–December 1997; Blend 4: 853	  

January 1998–June 2002; Blend 5: July 2002–December 2006; Blend 6: January 854	  

2007–September 2011; and Blend 7–8: October 2011–December 2012. 855	  

856	  
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 857	  

Fig. 10 Evaluation of the ESA CCI SM product and CLM4.5 simulation against in situ 858	  

observations over different types of soil moisture stations. "All" is calculated using all valid 859	  

sites (200) with significant (p < 0.05) positive Spearman correlation coefficients for both the 860	  

ESA CCI SM product and CLM4.5 simulation. "Rain" represents the sites (101) located in 861	  

the same 0.25° grid box as the in situ precipitation observations; "No Rain" represents the 862	  

remaining sites (99). Presented are the average values, the standard deviations (as indicated 863	  

by the box), and the maximum and minimum values (whiskers). 864	  

865	  



	   47	  

 866	  

Fig. 11 Average statistical metrics: (a) ubRMSD, and (b) Spearman correlation coefficients 867	  

(Rsp) between the ESA CCI SM product (red) or in situ observations (OBS, blue) and 868	  

CLM4.5 simulation at different soil depths. "L1", "L1−2", "L1−2−3", "2cm", "5cm", and 869	  

"10cm" represent the first layer (0−1.75 cm), uppermost two layers (0−1.75, and 1.75−4.51 870	  

cm), and uppermost three layers (0−1.75, 1.75−4.51, and 4.51−9.06 cm), 0−2 cm, 0−5 cm, 871	  

and 0−10 cm, respectively. The average values of CLM4.5 were computed by using each soil 872	  

layer thickness as the weight; the CLM4.5 simulations were scaled to the dynamic range of 873	  

the in situ observations or ESA CCI SM dataset using a linear rescaling method (Eq. 1) prior 874	  

to computing the ubRMSD values. 875	  


