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Dear Reviewer: 

We greatly appreciate your comments and suggestions, which are valuable and very 

helpful for revising and improving our paper. The responses to the comments are 

listed below. 

 

Comment 1: The term ‘problem decomposition’ introduced in the title of the 

article and throughout the text is somewhat misleading. This term 

commonly refers to approaches when a complex problem is ‘decomposed’ in 

a number of simpler problems that can be solved in an easier manner. The 

approach in this article is different because here the same optimization 

problem is being solved, just with reduced number of decision variables. My 

suggestion is to change this term both in the title and throughout the text 

into something like: “Improving………with sensitivity-informed reduction 

of problem size” (for the title). 

 
Response: 

We agree with the reviewer that the term “dimension reduction” is better for the paper. 

We have changed the term “problem decomposition” into the term “dimension 

reduction” throughout the revised manuscript including the title. 

 

Comment 2: Section 1 ‘Introduction’ does not present any reference to 

addressing optimization of ROS by algorithms that seek the optimal 

reservoir operation policy as trajectories through time (e.g. Dynamic 



Programming, Stochastic Dynamic Programming and more recently 

Reinforcement learning and others). This is not the approach taken in the 

current article where MOEA algorithms are used that treat the rule curve 

values in time as individual decision variables (parameters). However some 

recognition of the existence of the other methods mentioned above is needed 

in the introduction. There are sufficient references in HESS as well as in 

numerous other journals regarding these approaches. 

 
Response: 

We agree with the reviewer, and have added the description of relevant algorithms 

that seek the optimal reservoir operation policy as trajectories through time (e.g. 

Dynamic Programming, Stochastic Dynamic Programming and more recently 

Reinforcement learning and others) as follows. 

“In order to solve the ROS problem, there are different approaches, such as 

implicit stochastic optimization (ISO), explicit stochastic optimization (ESO), and 

parameter-simulation-optimization (PSO) (Celeste and Billib, 2009). ISO uses 

deterministic optimization, e.g., dynamic programming, to determine a set of optimal 

releases based on the current reservoir storage and equally likely inflow scenarios 

(Young, 1967; Karamouz and Houck, 1982; Castelletti et al., 2012; François et al., 

2014). Instead the use of equally likely inflow scenarios, ESO incorporates inflow 

probability directly into the optimization process, including stochastic dynamic 

programming and Bayesian methods (Huang et al., 1991; Tejada-Guibert et al., 1995; 

Powell, 2007; Goor et al., 2010; Xu et al., 2014). However, many challenges remain 

in application of these two approaches due to their complexity and ability to 

conflicting objectives (Yeh, 1985; Simonovic, 1992; Wurbs, 1993; Teegavarapu and 

Simonovic, 2001; Labadie, 2004). 

In a different way, PSO predefines a rule curve shape and then utilizes 

optimization algorithms to obtain the combination of rule curve parameters that 

provides the best reservoir operating performance under possible inflow scenarios or a 

long inflow series (Nalbantis and Koutsoyiannis, 1997; Oliveira and Loucks, 1997). 



In this way, most stochastic aspects of the problem, including spatial and temporal 

correlations of unregulated inflows, are implicitly included, and reservoir rule curves 

could be derived directly with genetic algorithms and other direct search methods 

(Koutsoyiannis and Economou, 2003; Labadie, 2004). Because PSO reduces the curse 

of dimensionality problem in ISO and ESO, it is widely used in reservoir operation 

optimization (Chen, 2003; Chang et al., 2005; Momtahen and Dariane, 2007). In this 

study, the PSO-based approach is used to solve the ROS problem.” 

 

Comment 3: Some clarifications are needed regarding Equation (1) on page 3725 

that introduces the general formulation of the objective functions. 

Specifically, the term Wi,j(x), which represents the sum of delivered water 

for water demand i in year j, needs to be clarified. My understanding is that 

during one optimization trial the rule curve values for the selected periods 

in one year are set and then the system is simulated for 40 years (1956-2006) 

using predicted demands of 2030. This simulation results in storage volumes 

that are sometimes below the rule curves, which are resulting in water 

shortages calculated as demand – actually delivered water. The question is 

the following: Is the water actually delivered in these periods calculated with 

the reduction factors (α1 and α2) discussed in the paragraph just above 

Equation (1) or not? If these are used – please elaborate how these reduction 

factors are introduced (are they constant or dependent on how far below is 

the actual reservoir storage volume below the rule curve(s)?). 

 
Response: 

Firstly, water supply operation rule curves represent the limited storage volume for 

water supply in each period of an operating year, which is divided into 24 time 

periods (with ten days as scheduling time step from April to September, and one 

month as scheduling time step in the remaining months). Decision variables are 

storage volumes at different time periods on the operation rule curves. To provide 

long-term operation guidelines for reservoir management to meet expected water 



demands for future planning years, the projected water demands and long-term 

historical inflow are used. The optimization objective for water supply operation rule 

curves is to minimize water shortages during the long-term historical period. 

Therefore, Equation (1) computes the water shortages in all historical years. The 

explanations of symbols have been updated in the revised manuscript. 

Secondly, during the long-term simulation, when actual water storage is below 

the water supply rule curve, the water demand has to be rationed, i.e., applying the 

rationing factor. In general, a reservoir has more than one water supply targets, and 

the different water demands can have different reliability requirements and thus 

different levels of priority in practice. During drought, water demand with lower 

priority should be rationed first, the reduction degree ought to be larger and 

water-supply reliability ought to be smaller. Therefore, the operation rule curve for the 

water supply with the lower priority and larger reduction degree is located above the 

operation rule curve for the water supply with the higher priority and smaller 

reduction degree. In this paper, Fig. 1 shows water supply operation rule curves for 

agriculture and industry, where 𝛼1 and 𝛼2 are the reducing factors for industrial 

water demand and agricultural water demand, respectively. 

 
Fig. 1 Reservoir operational rule curves 

Thirdly, the rationing factors used to determine the amount of water supply for 

different water demands can be either assigned according to the experts’ knowledge or 

determined by optimization (Shih and ReVelle, 1995). In this paper, rationing factors 

are given at the reservoir’s design stage according to the tolerable elastic range of 



each water user in which the damage caused by rationing water supply is limited. As 

mentioned above, rule curves for different water demands have different rationing 

factors, which remain constant and are not dependent on how far below is the actual 

reservoir storage volume below the rule curve during the long-term simulation. That 

is, as long as actual water storage is below the water supply rule curve, the water 

demand has to be rationed. Specifically, in Equation (1), the term 𝑊𝑖,𝑗(𝑥) is the 

actually delivered water for water demand 𝑖 during the 𝑗th year, and is calculated 

below using agricultural water demand (𝑖 = 1) as an example. If the actual water 

storage is above the water supply rule curve for agricultural water demand (𝑖 = 1) at 

period 𝑡 in a year, the delivered water at period 𝑡 is its full demand without being 

rationed, 𝐷1,𝑡. If the actual water storage is below the water supply rule curve for 

agricultural water demand at period 𝑡, the delivered water for agricultural water 

demand at period 𝑡 is its rationed demands, 𝛼1 ∗ 𝐷1,𝑡. 

We have added the relevant clarifications in the revised manuscript. 

 

Comment 4: Please provide some clarification regarding Figure 1. Is this just an 

example of rule curves for a reservoir (as suggested in the figure caption), or 

these are actual (currently used?) rule curves for Dahuofang reservoir (as 

suggested in the text on page 3723, lines 9-10)? 

 
Response: 

Fig. 1 is just an illustration of rule curves for Dahuofang reservoir based on the 

projected water demands and long-term historical inflow, and they are not actual 

(current used) rule curves. The currently used rule curves are in a similar shape but 

are based on the current water demands. This has been made clear in the revised 

manuscript. 

 

Comment 5: If the rule curves in Figure 1 are actual for Dahuofang reservoir, the 

periods when there seem to be conflicting objectives (flood protection, 

agricultural water supply and industrial water supply) are limited (April- 



October). Industrial water supply curve is very close to minimum storage 

throughout the year and agriculture water supply curve is considered only 

in the period April-October. The sensitivity–related results presented in 

Figure 4 are then not really clear. For example, how can the high sensitivity 

for industrial water supply curve in periods 1,2,3,10,11 and 12 (presumably 

January-March and October-December) be explained? Is this related to the 

interactive effects, only briefly mentioned in lines 22-24 on page 3730? The 

authors are kindly asked to provide clarifications / explanations regarding 

the sensitivity-related results presented in Figure 4. 

 
Response: 

As mentioned above, Fig. 1 is just an illustration of rule curves for Dahuofang 

reservoir based on the projected water demands and long-term historical inflow, and 

they are not actual (current used) rule curves. 

The rule curves for Dahuofang reservoir from the final Pareto fronts based on the 

projected water demands and long-term historical inflow are shown in Fig. 8 (S2). 

Firstly, the optimal operational rule curves in Fig. 8 (S2) have the same 

characteristics as they are used in practice. During the pre-flood season (from April to 

June), the curves gradually become lower so that they can reduce the probability of 

limiting water supply and empty the reservoir storage for the flood season (from July 

to early September). During the flood season, the curves also stay in low positions 

owing to the massive reservoir inflow and the requirement of flood control, so that it 

is beneficial to supply as much water as possible. However, during the season from 

mid-September to March, the curves remain high, especially from mid-September to 

October, in order to increase the probability of limiting water supply and retaining 

enough water for later periods to avoid severe water-supply shortages as drought 

occurs. 

Secondly, Fig. 8 (S2) shows that different water demands occur at different 

periods, e.g., industrial water demand occurs throughout the whole year, and 

agricultural water demand occurs only at the periods from the second ten-day of April 



to the first ten-day of September. Due to the higher priority of industrial water supply 

than agricultural water supply, the industrial water supply curve is more close to 

minimum storage throughout the year than the agricultural water supply curve. Due to 

the conflicting relationship between industrial and agricultural water demands, the 

industrial water supply curve is higher during the non-flood season. Thus, if the 

industrial water supply curve is too low during the non-flood season from January to 

April, which implies that the industrial water demand is satisfied sufficiently, there 

would not be enough water supplied for the agricultural water demand in the same 

year. Similarly, if the industrial water supply curve is too low during the non-flood 

season from September to December, there would not be enough water supplied for 

the agricultural water demand in the next one or more years. 

Thirdly, the inflow and industrial water demands are relatively stable during the 

non-flood seasons from January to March and from October to December, so one 

month is taken as the scheduling time step, which is in accordance with the 

requirement of Dahuofang reservoir operation in practice. Due to the larger amount of 

industrial water demand in periods 1, 2, 3, 10, 11 and 12 (January-March and 

October-December) than other periods, the water storages at these time periods are 

very important to industrial water supply, making them the most sensitive variables. 

Because the agricultural water demand is very high during the non-flood period from 

April to May, the agricultural water supply curve at this time period is higher, and the 

water storages at time periods from agr4-2 to agr5-3, i.e., the water storages at the 

first five time periods of water supply operation rule curve for agricultural water 

demand, are the most important variables. On the other hand, in practice, if the 

agricultural water demand could not be satisfied at the first few periods of water 

supply operation rule curve, the agricultural water supply at each period throughout 

the year would be limited, i.e., the interactive effects from variables are noticeable at 

time periods from agr4-2 to agr5-3. 

We have added the above figure and more clarifications and explanations in the 

revised manuscript. 

 



Comment 6: From Figure 1 it can be noticed that the second half of the period 

when water from the Dahuofang reservoir is needed for agriculture 

(irrigation) coincides with the flood season (therefore the conflict, since the 

reservoir storage needs to be reduced to accommodate the flood wave). This 

is also confirmed in the text on page 3728 (lines 17-19), when the decision 

variables for the agriculture water supply curve have been selected for the 

period April-September. However this is somewhat counter-intuitive. Why 

would irrigation be needed during the flood (wet) season? Can you please 

clarify this? 

 
Response: 

During the flood season, there are still agricultural water demands due to temporal 

and spatial variations of rainfall though they are significantly reduced. Also note that 

the water supply curves are developed based on a historical, long-term rainfall series 

and the projected demands are also based on historical demands, covering stochastic 

uncertainties in demands and rainfalls. 

We have added some clarifications in the revised manuscript. 

 

Comment 7: It is not clear how are the rule curve values set for periods that are 

not varied during the optimization (not considered as decision variables) in 

the simplified problems that also provide initial values for the 

pre-conditioned optimization. Please explain this somewhere in the article. 

 
Response: 

In this paper, the simplified problem is solved with the optimization of sensitive 

decision variables; and the insensitive decision variables are set randomly first with 

domain knowledge and kept constant during the solution of the simplified problem. 

Therefore, the solutions from the simplified problem, including optimal sensitive 

decision variables and the constant insensitive decision variables, are used as staring 

points for a complete new search. 



We have added the relevant explanations in the revised manuscript. 

 

Comment 8: Even though the article is largely focused on demonstrating the 

efficiency gains due to the introduction of the sensitivity analysis step, it will 

be good to show some results in terms of actual gains regarding the 

considered objectives after the optimization. Is there a base case (without 

optimization) to which optimal solutions can be compared? If yes, it will be 

good to show the shortages for the base case compared with few solutions 

from the final Pareto front(s) (e.g. one favoring industry, one favoring 

agriculture and one compromise solution), and to show in an additional 

figure the actual optimal rule curves for such solutions (to be compared 

perhaps with those in Figure 1). 

 
Response: 

As mentioned above, the currently used rule curves for Dahuofang reservoir are based 

on the current water demands. However, this paper aims to provide long-term 

operation guidelines for reservoir management to meet expected water demands for 

future planning years based on the projected water demands and long-term historical 

inflow. Therefore, comparisons are made among the optimized solutions from the 

final Pareto fronts, including industry-favoring solution (S0), agriculture-favoring 

solution (S1) and compromised solution (S2). The comparisons of water shortage 

indices among different solutions are shown in Table 3, and the optimal rule curves 

for different solutions are shown in Fig. 8. 

Table 3 Comparisons of water shortage indices among different solutions 

Solutions 
Water Shortage Index (-) 

Industrial 
water demand 

Agricultural 
water demand 

(S0) Industry-favoring solution 0.000 3.550 
(S1) Agriculture-favoring solution 0.020 1.380 

(S2) Compromised solution 0.007 1.932 



 
Fig. 8 Optimal rule curves for different solutions, (S0) Industry-favoring solution; (S1) 

Agriculture-favoring solution; (S2) Compromised solution 

It could be seen from Table 3 and Fig. 8 that there are larger differences among 

different solutions. With industry-favoring solution (S0), the agricultural water supply 

curve at the period from April to May is the highest among the three solutions. 

Because the agricultural water demand is very high during the non-flood period from 

April to May, the highest position of agricultural water supply curve at these periods 

could cause that the agricultural water demand would not be satisfied at the first few 

periods of agricultural water supply operation rule curve, and the agricultural water 

supply at each period throughout the year would be limited easily. Therefore, in S0, 

the industrial water demand could be fully satisfied through limiting agricultural 

water supply to a large extend, and lowering the industrial water supply curve; 

industrial and agricultural water shortage indices are 0.000 and 3.550, respectively. 

Opposite to S0, the agricultural water demand in S1 could be satisfied largely through 

lowering the agricultural water supply curve on the period from April to May and 

raising the industrial water supply curve; and industrial and agricultural water 

shortage indices are 0.020 and 1.380, respectively. Compared with solutions S0 and 

S1, two objectives are balanced in compromised solution (S2), where industrial and 

agricultural water shortage indices are 0.007 and 1.932, respectively. 

We have added the relevant explanations in the revised manuscript. 

 

Comment 9: It will be good if the authors can provide in section 5.3 ‘Discussions’ 



some thoughts regarding the expectations for similar efficiency gains in 

other ROS optimization problems (and other water-related optimization 

problems in general). In other words, how much are the large efficiency 

gains reported case-specific (type of problem and problem formulation, 

selection of initial number of decision variables, etc) compared to gains that 

can be expected in general. 

 
Response: 

This study investigates the effectiveness of a sensitivity-informed optimization 

method for the ROS multi-objective optimization problems. The method uses a global 

sensitivity analysis method to screen out insensitive decision variables and thus forms 

simplified problems with a significantly reduced number of decision variables. The 

simplified problems dramatically reduce the computational demands required to attain 

Pareto approximate solutions, which themselves can then be used to pre-condition and 

solve the original (i.e., full) optimization problem. 

In reality for a very large and computationally intensive problem, the full search 

with all the decision variables would likely be so difficult that it may not be optimized 

sufficiently. However, as shown here, these simplified problems can be used to 

generate high quality pre-conditioning solutions and thus dramatically improve the 

computational tractability of complex problems. The framework could be used for 

solving the complex optimization problems with a large number of decision variables. 

For example, Fu et al. (2012) has used the framework for reducing the complexity 

of the multi-objective optimization problems in water distribution system (WDS), and 

applied it to two case studies with different levels of complexity - the New York 

Tunnels rehabilitation problem and the Anytown rehabilitation/redesign problem. For 

the New York Tunnels network, because the original optimization problem has 21 

decision variables (pipes) and each variable has 16 options, the decision space is 

1621 = 1.934 × 1025. The simplified problem with 8 decision variables based on 

Sobol'’s analysis have a decision space of 168 = 4.295 × 109. To obtain the same 

threshold of hypervolume value 0.78 for the New York Tunnels rehabilitation problem, 



the most the pre-conditioned search need is 60 to 70% fewer NFE relative to the full 

search through 50 random seed trials. In the case of the Anytown network, the original 

problem has a space of 2.859 × 1073, and the simplified problem has a significantly 

reduced space of 8.364 × 1038. Through 50 random seed trials for the Anytown 

rehabilitation/redesign problem, the full search requires average of 800000 

evaluations to reach hypervolume value 0.77, and the pre-conditioned search exceeds 

hypervolume value 0.8 in all trials in fewer than 200000 evaluations. The results also 

show that searching in such significantly reduced space formed by sensitive decision 

variables makes it much easier to reach good solutions, and the sensitivity-informed 

reduction of problem size and pre-conditioning improve the efficiency, reliability and 

effectiveness of the multi-objective evolutionary optimization. 

We have added the relevant explanations in the revised manuscript. 

 

Comment 10: Line 4 - page 3722 : Change ‘neuron’ to ‘neural’. 

 
Response: 

We have changed ‘neuron’ to ‘neural’ in the revised manuscript. 

 

Comment 11: Line 1 - page 3727: Change ‘Since MOEA search is stochastic...’ to 

‘Since MOAE uses random-based search…’ 

 
Response: 

We have re-phrased the sentence to “Since MOEA uses random-based search…” in 

the revised manuscript. 

 

Comment 12: Line 26 – page 3731: I don’t understand the term ‘diminishing 

returns’ here. Perhaps it can be changed to ‘diminishing values’? 

 
Response: 

We have changed ‘diminishing returns’ to ‘diminishing values’ in the revised 



manuscript. 

 

Comment 13: When using the numbers for storage volumes or catchment areas 

in the presented cases, I would suggest to use values expressed as 103 or 106, 

etc (thousands, millions, etc) rather than other expressions like 105 or 108. I 

think it is easier for readers to get quickly the impression about the actual 

sizes. 

 
Response: 

The expressions have been changed in the revised manuscript. 
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