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System Sciences and is a valuable addition to the existing literature. The paper is well-written 

and concise, and deals with a topic of considerable interest. The mathematical derivations 

are accurate.  

Response: Thank you for the reviewer’s positive comment on our study. 

 

Specific comments: Specific suggestions to improve the quality of the paper are listed below. 

 

1. The authors should mention specific applications of their results to real cases, to help the 

paper convey a take-home message.  
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what kind of correlation exists among these variable, 2) there is little observed or 

measured data to support any type of the correlation assumed, and 3) simple analytical 
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some simple analytical solutions. We believe this is an important first step towards 

solving this complex problem and more research in needed in this direction, especially 
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The effect of the boundary conditions or the area of the influence by the boundary 

conditions would be enhanced in a more permeable aquifer. However, in most 

aquifers areal recharge should be the dominating force affecting groundwater 

level fluctuations and its scaling. 
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Abstract   23 

Analytical solutions for the variance, covariance, and spectrum of groundwater level, 24 

h(x, t), in an unconfined aquifer described by a linearized Boussinesq equation with 25 

random source/sink and initial and boundary conditions were derived. It was found 26 

that in a typical aquifer the error in h(x, t) in early time is mainly caused by the 27 

random initial condition and the error reduces as time progresses to reach a constant 28 

error in later time. The duration during which the effect of the random initial 29 

condition is significant may last a few hundred days in most aquifers. The constant 30 

error in h(x, t) in later time is due to the combined effects of the uncertainties in the 31 

source/sink and flux boundary: the closer to the flux boundary, the larger the error. 32 

The error caused by the uncertain head boundary is limited in a narrow zone near the 33 

boundary and remains more or less constant over time. The aquifer system behaves 34 

as a low-pass filter which filters out high-frequency noises and keeps low-frequency 35 

variations. Temporal scaling of groundwater level fluctuations exists in most part of 36 

a low permeable aquifer whose horizontal length is much larger than its thickness 37 

caused by the temporal fluctuations of areal source/sink.  38 

Key words: Uncertainty of groundwater levels; Temporal scaling; Random source/sink; 39 

Random initial and boundary conditions.40 
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1. Introduction 41 

Groundwater level or hydraulic head (h) is the main driving force for water flow 42 

and advective contaminant transport in aquifers and thus the most important variable 43 

studied in groundwater hydrology and its applications. Knowledge about h is critical 44 

in dealing with groundwater-related environmental problems, such as over-pumping, 45 

subsidence, sea water intrusion, and contamination. One often found that the data 46 

about groundwater level is limited or unavailable in a hydrogeological investigation. 47 

In such cases the groundwater level distribution and its temporal variation are 48 

usually obtained with an analytical or numerical solution to a groundwater flow 49 

model.   50 

It is obvious that errors always exit in the groundwater levels calculated or 51 

simulated with analytical or numerical solutions. The main sources of errors include 52 

the simplification or approximation in a conceptual model and the uncertainties in 53 

the model parameters. Problems in conceptualization or model structure were dealt 54 

with by many researchers (Neuman, 2003;Rojas et al., 2010;Ye et al., 2008;Rojas et 55 

al., 2008;Refsgaard et al., 2007;Zeng et al., 2013). The uncertainties in the model 56 

parameters (e.g., hydraulic conductivity, recharge rate, evapotranspiration, and river 57 

conductance) were investigated based on generalized likelihood uncertainty 58 

estimation and Bayesian methods (Nowak et al., 2010;Neuman et al., 2012;Rojas et 59 

al., 2008;Rojas et al., 2010). The uncertainty in groundwater level has been one of 60 

the main research topics in stochastic subsurface hydrology for more than three 61 

decades. Most of these studies were focused on the spatial variability of groundwater 62 



 

 3 

level due to aquifers’ heterogeneity (Dagan, 1989;Gelhar, 1993;Zhang, 2002). Little 63 

attention has been given to the uncertainties in groundwater level due to temporal 64 

variations of hydrological processes, e.g., recharge, evapotranspiration, discharge to 65 

a river, and river stage (Bloomfield and Little, 2010;Zhang and Schilling, 66 

2004;Schilling and Zhang, 2012;Liang and Zhang, 2013a;Zhu et al., 2012). 67 

Uncertainties of groundwater level fluctuations have been studied by Zhang and 68 

Li (2005, 2006) and most recently by Liang and Zhang (2013a). Based on a linear 69 

reservoir model with a white noise or temporally-correlated recharge process, Zhang 70 

and Li (2005, 2006) derived the variance and covariance of h(t) by considering only 71 

a random source or sink process assuming deterministic initial and boundary 72 

conditions. Liang and Zhang (2013a) extended the studies of Zhang and Li (2005, 73 

2006) and carried out non-stationary spectral analysis and Monte Carlo simulations 74 

using a linearized Boussinesq equation, and investigated the temporospatial 75 

variations of groundwater level. However, the only random process considered by 76 

Liang and Zhang (2013a) is the source/sink. Temporal scaling of groundwater levels 77 

discovered first by Zhang and Schilling Zhang and Schilling (2004) was verified in 78 

several studies (Zhang and Li, 2005, 2006; Bloomfield and Little, 2010; Zhang and 79 

Yang, 2010; Zhu et al., 2012; Schilling and Zhang, 2012). However, we do not know 80 

the effect of random boundary conditions on temporal scaling of groundwater levels.  81 

In this study we extended above-mentioned work by considering the 82 

groundwater flow in a bounded aquifer described by a linearized Boussinesq 83 

equation with a random source/sink as well as random initial and boundary 84 
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conditions since the latter processes are known with uncertainties. The objectives of 85 

this study are 1) to derive analytical solutions for the covariance, variance and 86 

spectrum of groundwater level, and 2) to investigate the individual and combined 87 

effects of these random processes on uncertainties and scaling of h(x, t). In the 88 

following we will first present the formulation and analytical solutions, then discuss 89 

the results, and finally draw some conclusions.   90 

  91 

2. Formulation and Solutions 92 

Under the Dupuit assumption, the one-dimensional transient groundwater flow in 93 

an unconfined aquifer near a river (Fig. 1) can be approximated with the linearized 94 

Boussinesq equation (Bear, 1972) with the initial and boundary conditions, i.e., 95 
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where T [L/T] is the transmissivity, h [L] is the hydraulic head or groundwater level 98 

above the bottom of the aquifer which is assumed to be horizontal, W(t) [L/T] is the 99 

time-dependent source/sink term representing areal recharge or evapotranspiration, SY  100 

is the specific yield,  xH0  [L] is the initial condition, Q(t) [L2/T] is the 101 

time-dependent flux at the left boundary, H(t) [L] is the time-dependent water level at 102 

the right boundary, L [L] is distance from the left to the right boundary, x [L] is the 103 

coordinate, and t [T] is time. In this study the initial head H0(x) is taken to be a 104 

spatially random variable, and the source/sink, W(t), the flux to the left boundary, Q(t), 105 

and the head at the right boundary, H(t), are all taken to be temporally random 106 
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processes and spatially deterministic. The parameters T and SY are taken to be 107 

constant.  108 

 The groundwater level, h(x, t), the three random processes, W(t), Q(t), and H(t), 109 

and the random variable, H0(x), are expressed in terms of their respective ensemble 110 

means plus small perturbations, 111 

      txhtxhtxh ,',,   (2a) 112 
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where < > stands for ensemble average and ’ for perturbation. The initial condition 115 

)(xH0  in (1) can be any function. For the conceptualization of the groundwater flow 116 

presented in Fig. 1, the steady-state condition can be reached in this aquifer after a 117 

rainfall or during a wet season. Thus the steady-state solution to this model were often 118 

adopted as initial condition in previous research (Liang and Zhang, 2012, 2013a, b). 119 

Thus, in this study, we set initial condition )(xH0  to be the steady-state solution to 120 

the one-dimensional groundwater flow equation, i.e.,   TxLWhxH /5.0)( 22

00 0
 , 121 

where h0 [L] is the constant groundwater level at the right boundary and W0 [L/T] is 122 

the spatially constant recharge rate (Liang and Zhang, 2012). Since h0 is taken to be 123 

constant, the source of the uncertainty in the initial head  xH0  is due to random W0 124 

only. Thus, the mean and perturbation of  xH0  can be written as, 125 

    TxLWhxH /5.0 22

000   and     TxLWxH /5.0' 22'

00  , respectively. 126 

By substituting Eq. (2),  xH 0 , and  xH '0  into Eq. (1) and taking expectation, one 127 

obtains the mean flow equation with the mean initial and boundary conditions as 128 
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Subtracting Eq. (3) from (1) leads to the following perturbation equation with the 131 

initial and boundary conditions 132 
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The analytical solution to Eq. (4) can be derived with integral-transform methods 135 

(Ozisik, 1968) given by 136 
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where YSTβ / ,    Lnbn 2/12  . Using Eq. (5), the temporal covariance of the 138 

groundwater level fluctuations can be derived as  139 
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in which 2

0Wσ is the variance of W0, and  ρξCWW , ,   ,QQC and   ,HHC are the 141 

temporal auto-covariance of W(t), of Q(t), and H(t), respectively. We assume that 142 

W(t), Q(t), and H(t) are uncorrelated in order to simplify our analyses. It is shown in 143 

Eq. (6) that the head covariance depends on the variance of W0 and the covariances 144 

of W(t), Q(t), and H(t) and this equation can be evaluated for any random W(t), Q(t), 145 

and H(t). We assume that these processes are white noises as employed in previous 146 
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studies (Gelhar, 1993;Hantush and Marino, 1994;Liang and Zhang, 2013a). More 147 

realistic randomness of these processes will be considered in future studies.  148 

 Following Gelhar (1993, p.34), we express the spectra of W(t), Q(t), and H(t) as  149 

 /2
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intervals of these three processes, respectively.  The corresponding covariance of 152 
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and      HHHHC 22, . Substituting these covariance into (6) and taking 154 

integration, one obtain analytical solution of head covariance 155 
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where 12 ''' ttτ   and   2/''' 12 ttt  . The analytical solution for the head variance can 157 

be obtain by setting 0'τ  158 
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in which ))/(( 2 KMLSt Yc  [1/T] is a characteristic timescale (Gelhar, 1993) where 162 

the transmissivity (T) is replaced by the product of the hydraulic conductivity (K) and 163 

the average saturated thickness (M) of the aquifer. The characteristic timescale (tc) is 164 
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an important parameter and its value for most shallow aquifers is usually larger than 165 

100 day since the horizontal extent of a shallow aquifer is usually much larger than its 166 

thickness. For instance, the value of tc is 250 days for a sandy aquifer with L=100m, 167 

M =10m, K=1m/day, and SY=0.25. 168 

    The spectral density of h(x, t) can't be derived by ordinary Fourier transform 169 

since the head covariance and variance depend on time t’ and thus h(x, t) are 170 

temporally non-stationary as shown in Eqs. (7) and (8).  Priestley (1981) defined the 171 

spectral density of non-stationary processes (Wigner spectrum) as the Fourier 172 

transform of time-dependent auto-covariance with fixed reference time t and derived 173 

time-dependent spectral density. In order to obtain the spectrum of h(x, t), we applied 174 

Priestley's method and obtained the time-dependent spectral density (Priestley, 1981; 175 

Zhang and Li, 2005;Liang and Zhang, 2013a), i.e.,  176 
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where  is angular frequency and  = 2f, f is frequency, and 1i . It is seen in 178 

Eq. (9) that the spectrum hhS  is dependent on not only frequency and locations but 179 

also time t. The time-dependent term (i.e., first term) in Eq. (9) is caused by the 180 

random initial condition and is proportional to 
 tbbβ nme

22 
 which decays quickly with 181 

t. We evaluated the first term in the Eq. (9) by setting t=0 and found that it is much 182 

smaller than the second term in Eq. (9). We thus ignored the first term and evaluated 183 

the spectrum using the approximation, 184 
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 186 

3. Results and Discussion  187 

3.1 Variance of groundwater levels 188 

The general expression of the head variance in Eq. (8) depends on the variances 189 

of the four random processes,
2

0W , 
2

W , 
2

Q , and 
2

H . In the following we will study 190 

their individual and combined effects on the head variation and focus our attention 191 

only on the variance of h(x, t). The dimensionless standard deviation of h(x, t), h' , 192 

or the square root of the dimensionless variance (
2'h ) as a function of the 193 

dimensionless time (t’) were evaluated and presented in the left column of Fig. 2 at 194 

fixed dimensionless locations (x’). The h'  as a function of x’ was evaluated
 and 

195 

presented in the right column of Fig. 2 at fixed t’.
 196 

We first evaluate the effect of the random initial condition due to the random 197 

term, W0, by setting 0222  HQW  . In this case the dimensionless variance in Eq. 198 

(8) reduces to 199 
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tx  (11) 200 

where )4/(' 24222

0Whh LT   . The changes of the h'  with x’ and t’ were 201 

presented in Fig 2a and 2b, respectively. It is shown in Fig. 2a that for a fixed 202 

location the h' is at its maximum at t’=0 and decreases with time gradually to a 203 

negligible number at t’=1.0. This means that the error in h(x, t) predicted by an 204 

analytical or numerical solution due to the uncertain initial condition is significant at 205 
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early time, especially near a flux boundary. The time duration during which the 206 

effect of the uncertain initial condition is significant depends on the value of the 207 

characteristic timescale (tc) since t’=t/tc. In the most aquifers this duration may last 208 

many days.  In the typical aquifer studied the effect of the uncertainty in initial 209 

condition on h(x, t) is significant during first 250 days (t’=1.0). This duration should 210 

be relatively short, however, in a more permeable aquifer whose horizontal extent (L) 211 

is relatively smaller than its thickness (M). It is seen in Fig. 2b that for a fixed time，212 

the h' is the largest at the left flux boundary (x’=0.0) and becomes zero at the right 213 

constant head boundary (x’=1.0) since the right boundary is deterministic. This 214 

means that the error in h(x, t) predicted by an analytical or numerical solution due to 215 

the uncertain initial condition is significant almost everywhere in the aquifer: the 216 

further away from a constant head boundary, the larger the error.  217 

We then consider the uncertainty in the areal source/sink term (W) by setting 218 

0222

0
 HQW  . In this case the dimensionless variance in Eq. (8) reduces to 219 
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e
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       (12) 220 

where )4/(' 2222

WWYhh LTS   . The changes of the h'  with x’ and t’ were 221 

presented in Fig 2c and 2d, respectively. It is noticed in Fig. 2c that at a fixed location, 222 

the h
' is zero initially, gradually increases as time goes, and approaches a constant 223 

limit at later time. This means that the error in h(x, t) due to an source/sink is at its 224 

minimum at early time and increases with time to approach a constant limit at later 225 

time: the closer to the left flux boundary, the larger the limit.  For a fixed time the 226 

h
' decreases smoothly from the left to the right boundary (Fig. 2d). The error in h(x, 227 
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t) due to the uncertainty in the source/sink is significant almost everywhere in the 228 

aquifer: the further away from the constant head boundary, the larger the error, similar 229 

to the previous case with the random initial condition (Fig. 2b).  230 

Thirdly, we investigate the effect of the left random flux boundary by setting 231 

0222

0
 HWW   in Eq. (8). In this case the dimensionless head variance is given 232 

by  233 

                
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       (13) 234 

where )4/(' 222

QQYhh TS   . The changes of the h'  with x’ and t’ were 235 

presented in Fig 2e and 2f, respectively. At any location the 
h' in Fig. 2e or the 236 

error in h(x, t) due to an uncertain flux boundary is at its minimum at early time and 237 

increases quickly with time to approach a constant limit: the closer to the left flux 238 

boundary, the larger the limit. At any time the 
h' in Fig. 2f or the error in the head 239 

due to the uncertain flux boundary is at its maximum at the left boundary but 240 

decreases quickly away from the boundary to become insignificant for x’>0.8.     241 

Fourthly, we investigated the effect of the random head boundary by setting 242 

0222

0
 QWW   in Eq. (8). The dimensionless head variance in this case is given 243 

by  244 
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where )4/(' 2222

HHYhh TSL   . The changes of this h'  with x’ and t’ were 246 

presented in Fig 2g and 2h, respectively.  It seen in Fig. 2g that at any location the 247 

h'  or the error in h(x, t) due to the random head boundary increases with time 248 
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quickly to approach a constant limit: the closer to the uncertain head boundary, the 249 

larger the error. The spatial variation of 
h'  can be clearly observed in Fig. 2h for 250 

fixed t’. At any time 
h'  is at its maximum at the right boundary (x’=1) where the 251 

head is uncertain, decreases quickly away from the boundary. The error in h(x, t) due 252 

to the uncertain head boundary is limited in a narrow zone near the boundary (x’>0.8) 253 

(Fig. 2h).  254 

Finally, we consider the combined effects of the uncertainties from all four 255 

sources, i.e., the initial condition, sources, and flux and head boundaries. The head 256 

variance in Eq. (8) is written in the dimensionless form as 257 
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where  259 
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22
2'   260 

The dimensionless variances, 
2

0
'W , 

2'Q  and
2'H , need to be specified in order to 261 

evaluate the dimensionless  ',''2 txh  in Eq. (15). For the typical aquifer mentioned 262 

above with L=100m, T=10 m2/day (or K=1m/day and M=10m) and SY=0.25, we 263 

set
122 10)/(

0

WWW  , 
322 10)/( WWQQ  , 422 10)/( WWHH   and obtain 264 

25'2
0
W , 1.0'2 Q  and 01.0'2 H . 265 

The changes of this h'  with x’ and t’ were presented in Fig 2i and 2j, 266 

respectively. It is observed in Fig. 2i that at any location the 
h'
 
is at its maximum 267 
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due to the uncertainty in the initial condition, gradually decreases as time goes, and 268 

approaches a constant limit at later time (t’>0.6) which is due to the combined 269 

effects of the uncertain source/sink and flux and head boundaries. This means that 270 

the error in the head in early time is significant if the initial condition is uncertain 271 

and reduces as time goes to reach a constant limit. The error in head in later time is 272 

determined by the uncertainties in the source/sink, flux and head boundaries. It can 273 

be observed in Fig. 2j that 
h'
 
is relatively larger near both boundaries. The values 274 

of 
h'  at the two boundaries are equivalent (1.3) at early time, say t’=0.01 (the top 275 

curve in Fig. 2j) and it reduces slowly away from the flux boundary but quickly 276 

away from the head boundary. As time progresses, the 
h' near the head boundary 277 

stays more or less the same but reduces significantly in most part of the aquifer. This 278 

means that in early time the error in h(x, t) in most part of the aquifer is mainly 279 

caused by the initial condition and at later time it is due to the combined effects of 280 

the uncertain areal source/sink and flux boundary. The effect of the uncertain head 281 

boundary on h(x, t) doesn’t change with time significantly but is limited in a narrow 282 

zone near the boundary.  283 

3.2 Spectrum of groundwater levels  284 

We first evaluated Shh in Eq. (10) due to the effect of the white noise flux 285 

boundary only by setting 0QQS , 0WWS , and 0HHS . The dimensionless 286 

spectrum 
QQhh SS /  as a function of the frequency (f) was evaluated and presented in 287 

the log-log plot (Fig. 3a-3c) for three values of tc (40, 400, and 4,000 days) since the 288 

value of tc is 250 days for a sandy aquifer as we mentioned above and at the six 289 
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locations (x’ = 0.0, 0.2, 0.4, 0.6, 0.8, and 0.9). The spectrum
QQhh SS /

 
in Fig. 3a is 290 

more or less horizontal (i.e., white noise) at low frequencies and decrease gradually 291 

as f increases, indicating that an aquifer acts as a low-bass filter that filter signals at 292 

high frequencies and keep signals at low frequencies. The aquifer has significantly 293 

dampened the fluctuations of the groundwater level. The spectrum varies with the 294 

location x’: the smaller the value of x’ or the closer to the left flux boundary (x’=0), 295 

the larger the spectrum (Fig. 3a-3c). All spectra in Fig. 3a are not a straight line in 296 

the log-log plot, meaning that the temporal scaling of h(x, t) doesn’t exist in the 297 

range of f =10-3100 when tc=40 days.  As tc increases to 400 and 4000 days, 298 

however, the spectrum at x’=0 become a straight line (the top curve in Fig. 3b and 3c) 299 

or has a power-law relation with f, i.e., 
QQhh SS / 1/f , since its slope is approximately 300 

one. The fluctuations of h(0, t) is a pink noise due to the white noise fluctuations flux 301 

boundary when the characteristic timescale (tc) is large which means that the aquifer 302 

is relatively less permeable and/or has a much larger horizontal length than its 303 

thickness. 304 

Secondly, the spectrum HHhh SS / due to the sole effect of the random head 305 

boundary was evaluated by setting 0HHS , 0WWS , and 0QQS  in Eq. (10) for 306 

the same three values of tc and six locations and presented in Fig. 3d-3f as a function 307 

of f.  It is shown that similar to Fig. 3a-3c, the spectrum decreases as f increases but 308 

different from Fig. 3a-3c, the spectrum is larger at x’=0.9 near the right boundary 309 

(the top curves in Fig. 3d-3f) than that x’=0.0 (the bottom curves). Furthermore, 310 

none of the spectra are a straight line in the log-log plot, indicating that the temporal 311 
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scaling of groundwater level fluctuations doesn’t exist in the case of the white noise 312 

head boundary. 313 

 Thirdly, the spectrum WWhh SS / due the effect of the white noise recharge only 314 

was evaluated by setting 0WWS , 0QQS , and 0HHS  in Eq. (10) for the same 315 

values of tc and x’ and presented in Fig. 3g-3i as a function of f.  It is shown that 316 

when tc=40 day the spectrum in Fig. 3g is horizontal at low frequencies and become 317 

a straight line at high frequencies: the closer to the right head boundary, the later it 318 

approaches a straight line (Fig. 3h). As tc increases to 400 and 4000 days, the slope 319 

of the spectrum at all locations except at x’=0.9 approaches to a straight line with a 320 

slope of 2 (Fig. 3h and 3i), indicating a temporal scaling of h(x, t). The fluctuations 321 

of groundwater level is a Brownian motion, i.e., 2/1 fS  , when tc4000 day or in 322 

a relatively less permeable and/or has a much larger horizontal length than its 323 

thickness. 324 

Finally, the head spectrum due to the combined effect of all three random 325 

sources (the white noise recharge, and flux and head boundaries) was evaluated, i.e., 326 

0WWS , 0QQS , and 0HHS  in Eq. (10). The spectrum of WWhh SS /  as a 327 

function of f was presented in Fig. 3j-3l for the same values of tc and x’ where 328 

1000/ WWQQ SS  and 10000/ WWHH SS  which are same with the values using in 329 

previous section. It is noticed that the general patterns of  WWhh SS /  in the 330 

combined case is similar to the case under the random source/sink only (Fig. 3g-3i) 331 

except at x’=0.0 and 0.9 (the dashed and dotted curves in Fig. 3j, respectively) due 332 

to the strong effects of the boundary conditions at these two locations. At tc=4000 333 
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day, the spectra at all locations except x’=0.0 (Fig. 3l) are similar to those in Fig. 3i, 334 

indicating the dominating effect of the random areal source/sink.  The spectrum at 335 

x’=0 in this case is also a straight line (the dashed curve in Fig. 3l) but with a 336 

different slope due to the effect of the random flux boundary which is similar to the 337 

top straight line in Fig. 3c.  Above results provide a theoretical explanation as why 338 

temporal scaling exists in the observed groundwater level fluctuations (Zhang and 339 

Schilling, 2004;Bloomfield and Little, 2010;Zhu et al., 2012). We thus conclude that 340 

temporal scaling of h(x, t) may indeed exist in real aquifers due to the strong effect 341 

of the areal source/sink.   342 

4. Conclusions 343 

In this study the effects of random source/sink, and initial and boundary 344 

conditions on the uncertainty and temporal scaling of the groundwater level, h(x, t) 345 

were investigated. The analytical solutions for the variance, covariance and spectrum 346 

of h(x, t) in an unconfined aquifer described by a linearized Boussinesq equation 347 

with white noise source/sink, and initial and boundary conditions were derived. The 348 

standard deviations of h(x, t) for various cases were evaluated. Based on the results, 349 

the following conclusions can be drawn. 350 

1. The error in h(x, t) due to a random initial condition is significant at early 351 

time, especially near a flux boundary. The duration during which the effect is 352 

significant may last a few hundred days in most aquifers; 353 

2. The error in h(x, t) due to a random areal source/sink is significant in most 354 

part of an aquifer: the closer to a flux boundary, the larger the error; 355 
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3. The errors in h(x, t) due to random flux and head boundaries are significant 356 

near the boundaries: the closer to the boundaries, the larger the errors. The random 357 

flux boundary may affect the head over a larger region near the boundary than the 358 

random head boundary; 359 

4. In the typical sandy aquifer studied (with the length of aquifer at the 360 

direction of water flow L=100m, the average saturated thickness M =10m, hydraulic 361 

conductivity K=1m/day, and specific yield SY=0.25) the error in h(x, t) in early time 362 

is mainly caused by an uncertain initial condition and the error reduces as time goes 363 

to reach a constant error in later time. The constant error in h(x, t) is mainly due to 364 

the combined effects of uncertain source/sink and boundaries; 365 

5. The aquifer system behaves as a low-pass filter which filter the short-term 366 

(high frequencies) fluctuations and keep the long-term (low frequencies) 367 

fluctuations; 368 

6. Temporal scaling of groundwater level fluctuations may indeed exist in 369 

most part of a low permeable aquifer whose horizontal length is much larger than its 370 

thickness caused by the temporal fluctuations of areal source/sink. 371 

  Finally, it is pointed out that the analyses carried out in this study is under the 372 

assumptions that the processes, W(t), Q(t), and H(t) are uncorrelated white noises. In 373 

reality, they may be correlated and spatially varied. We plan to relax those constrains 374 

and study more realistic cases in the near future. It is also noted that the analytical 375 

solutions for head variances derived in this study provide a way to identify and 376 

quantify the uncertainty. The spectrum relationship obtained among the head, 377 
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recharge and boundary conditions can help one to improve spectrum analysis for a 378 

groundwater level time series and removed the effects of the boundary conditions. 379 
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Figure captions 452 

Figure 1 A schematic of the unconfined aquifer studied where W(t) is the random 453 

time-dependent source/sink, H0(x) is the random initial condition, Q(t) is the 454 

random time-dependent flux at the left boundary, H(t) is the random 455 

time-dependent water level at the right boundary, L is distance from the left to the 456 

right boundary, and h(x, t) is the random groundwater level in the aquifer.  457 

 458 

Figure 2 The graphs on the left column are the standard deviation (
h' ) of 459 

groundwater level (h(x, t)) versus the dimensionless time ( 't ) at the dimensionless 460 

locations x’=0.0, 0.2, 0.4, 0.6, and 0.8. The graphs on the right column are 
h'  461 

versus 'x for the different t’: b) and d) are for t’= 0.0, 0.2, 0.4, 0.6 and 0.8, f) and h) 462 

are for t’=0.01, 0.1, and 1.0, and j) is for t’=0.01, 0.2, 0.4, 0.6 and 0.8. Also, a) and b) 463 

are based on Eq.(11) where 0222  HQW  ; c) and d) are based on Eq. (12) where 464 

0222

0
 HQW  ; e) and f) are based on Eq. (13) where 0222

0
 HWW  ; g) and h) 465 

are based on Eq. (14) where 0222

0
 QWW  ; i) and j) are based on Eq.(15) where 466 

02222

0
 HQWW σσσσ . 467 

 468 

Figure 3 The dimensionless power spectrum versus frequency (f) at the dimensionless 469 

locations x’=0.0, 0.2, 0.4, 0.6, 0.8, and 0.9. The graphs on the left column are for tc = 470 

40 day, the graphs on the middle column are for tc = 400 day, and the graphs on the 471 

right column are for tc = 4000 day. The graphs on the first row are the dimensionless 472 

spectrum QQhh SS /  when 0WWS , 0HHS , and 0QQS  in Eq. (10), the graphs on the 473 

second row is HHhh SS /  when 0WWS , 0QQS , and 0HHS , the graphs on the third 474 

row are WWhh SS /  when 0QQS , 0HHS , and 0WWS , and the graphs on the bottom 475 

row is WWhh SS /  when 0QQS , 0HHS , and 0WWS . 476 

 477 

478 
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Abstract   23 

Analytical solutions for the variance, covariance, and spectrum of groundwater level, 24 

h(x, t), in an unconfined aquifer described by a linearized Boussinesq equation with 25 

random source/sink and initial and boundary conditions were derived. It was found 26 

that in a typical aquifer the error in h(x, t) in early time is mainly caused by the 27 

random initial condition and the error reduces as time progresses to reach a constant 28 

error in later time. The duration during which the effect of the random initial 29 

condition is significant may last a few hundred days in most aquifers. The constant 30 

error in h(x, t) in later time is due to the combined effects of the uncertainties in the 31 

source/sink and flux boundary: the closer to the flux boundary, the larger the error. 32 

The error caused by the uncertain head boundary is limited in a narrow zone near the 33 

boundary and remains more or less constant over time. The aquifer system behaves 34 

as a low-pass filter which filters out high-frequency noises and keeps low-frequency 35 

variations. Temporal scaling of groundwater level fluctuations exists in most part of 36 

a low permeable aquifer whose horizontal length is much larger than its thickness 37 

caused by the temporal fluctuations of areal source/sink.  38 

Key words: Uncertainty of groundwater levels; Temporal scaling; Random source/sink; 39 

Random initial and boundary conditions.Uncertainty and scaling of groundwater levels, 40 

Random source/sin and initial and boundary conditions.41 



 

 2 

1. Introduction 42 

Groundwater level or hydraulic head (h) is the main driving force for water flow 43 

and advective contaminant transport in aquifers and thus the most important variable 44 

studied in groundwater hydrology and its applications. Knowledge about h is critical 45 

in dealing with groundwater-related environmental problems, such as over-pumping, 46 

subsidence, sea water intrusion, and contamination. One often found that the data 47 

about groundwater level is limited or unavailable in a hydrogeological investigation. 48 

In such cases the groundwater level distribution and its temporal variation are 49 

usually obtained with an analytical or numerical solution to a groundwater flow 50 

model.   51 

It is obvious that errors always exit in the groundwater levels calculated or 52 

simulated with analytical or numerical solutionsis obvious that there are some errors 53 

exit in Sspatiotemporal variations of groundwater levels calculated or simulated with 54 

the analytical or numerical solutions in the realistic case are inherently erroneous. 55 

The main sources of errors include the simplification or approximation in a 56 

conceptual model and the uncertainties in the model parameters. Problems in 57 

conceptualization or model structure were dealt with by many researchers (Neuman, 58 

2003;Rojas et al., 2010;Ye et al., 2008;Rojas et al., 2008;Refsgaard et al., 2007;Zeng 59 

et al., 2013). The uncertainties in the model parameters (e.g., hydraulic conductivity, 60 

recharge rate, evapotranspiration, and river conductance) were investigated based on 61 

generalized likelihood uncertainty estimation and Bayesian methods (Beven and 62 

Binley, 1992;Vrugt et al., 2003;Neuman et al., 2012) (Nowak et al., 2010;Neuman et 63 
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al., 2012;Rojas et al., 2008;Rojas et al., 2010). The uncertainty in groundwater level 64 

has been one of the main research topics in stochastic subsurface hydrology for more 65 

than three decades. Most of these studies were focused on the spatial variability of 66 

groundwater level due to aquifers’ heterogeneity (Dagan, 1989;Gelhar, 1993;Zhang, 67 

2002). Little attention has been given to the uncertainties in groundwater level due to 68 

temporal variations of hydrological processes, e.g., recharge, evapotranspiration, 69 

discharge to a river, and river stage (Bloomfield and Little, 2010;Zhang and 70 

Schilling, 2004;Schilling and Zhang, 2012;Liang and Zhang, 2013a;Zhu et al., 2012). 71 

(Bloomfield and Little, 2010;Zhang and Schilling, 2004;Schilling and Zhang, 72 

2012;Liang and Zhang, 2013a;Zhu et al., 2012). 73 

Uncertainties of groundwater level fluctuations have been studied by Zhang and 74 

Li (2005, 2006) and most recently by Liang and Zhang (2013a). Based on a linear 75 

reservoir model with a white noise or temporally-correlated recharge process, Zhang 76 

and Li (2005, 2006) derived the variance and covariance of h(t) by considering only 77 

a random source or sink process assuming deterministic initial and boundary 78 

conditions. Liang and Zhang (2013a) extended the studies of Zhang and Li (2005, 79 

2006) and carried out non-stationary spectral analysis and Monte Carlo simulations 80 

using a linearized Boussinesq equation, and investigated the temporospatial 81 

variations of groundwater level. However, the only random process considered by 82 

Liang and Zhang (2013a) is the source/sink. Temporal scaling of groundwater levels 83 

discovered first by Zhang and Schilling Zhang and Schilling (2004) was verified in 84 

several studies (Zhang and Li, 2005, 2006; Bloomfield and Little, 2010; Zhang and 85 
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Yang, 2010; Zhu et al., 2012; Schilling and Zhang, 2012). However, we do not know 86 

the effect of random boundary conditions on temporal scaling of groundwater levels.  87 

In this study we extended above-mentioned work by considering the 88 

groundwater flow in a bounded aquifer described by a linearized Boussinesq 89 

equation with a random source/sink as well as random initial and boundary 90 

conditions since the latter processes are known with uncertainties. The objectives of 91 

this study are 1) to derive analytical solutions for the covariance, variance and 92 

spectrum of groundwater level, and 2) to investigate the individual and combined 93 

effects of these random processes on uncertainties and scaling of h(x, t). In the 94 

following we will first present the formulation and analytical solutions, then discuss 95 

the results, and finally draw some conclusions.   96 

  97 

2. Formulation and Solutions 98 

Under the Dupuit assumption, the one-dimensional transient groundwater flow in 99 

an unconfined aquifer near a river (Fig. 1) can be approximated with the linearized 100 

Boussinesq equation (Bear, 1972) with the initial and boundary conditions, i.e., 101 

  
t

h
StW

x

h
T Y









2

2

 （1a） 102 

   xHtxh t 00, 
;     )(

0

tQ
x

h
T

x








;     )(),( tHtxh
Lx



      （1b） 103 

where T [L/T] is the transmissivity, h [L] is the hydraulic head or groundwater level 104 

above the bottom of the aquifer which is assumed to be horizontal, W(t) [L/T] is the 105 

time-dependent source/sink term representing areal recharge or evapotranspiration, SY  106 
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is the specific yield,  xH0  [L] is the initial condition, Q(t) [L2/T] is the 107 

time-dependent flux at the left boundary, H(t) [L] is the time-dependent water level at 108 

the right boundary, L [L] is distance from the left to the right boundary, x [L] is the 109 

coordinate, and t [T] is time. In this study the initial head H0(x) is taken to be a 110 

spatially random variable, and the source/sink, W(t), the flux to the left boundary, Q(t), 111 

and the head at the right boundary, H(t), are all taken to be temporally random 112 

processes and spatially deterministic. The parameters T and SY are taken to be 113 

constant.  114 

 The groundwater level, h(x, t), the three random processes, W(t), Q(t), and H(t), 115 

and the random variable, H0(x), are expressed in terms of their respective ensemble 116 

means plus small perturbations, 117 

      txhtxhtxh ,',,   (2a) 118 

      tWtWtW ' ;
      

)()()( ' tQtQtQ   (2b) 119 

   )()()( ' tHtHtH  ;          xHxHxH '000   (2c) 120 

where < > stands for ensemble average and ’ for perturbation. Although theThe initial 121 

condition )(xH0  in (1) can be any function. For the conceptualization of the 122 

groundwater flow presented in Fig. 1, the steady-state condition can be reached in 123 

anthis aquifer after a rainfall or during a wet season. Thus the steady-state solution to 124 

initial head this model were often adopted as initial condition in previous research 125 

(Liang and Zhang, 2012, 2013a, b). Thus, in this study, , it is appropriate to we set it 126 

initial condition )(xH0  to be the steady-state solution to the one-dimensional 127 

transient groundwater flow equation, i.e.,   TxLWhxH /5.0)( 22

00 0
 , where h0 [L] 128 

is the constant groundwater level at the right boundary and W0 [L/T] is the spatially 129 

constant recharge rate (Liang and Zhang, 2012). Since h0 is taken to be constant, the 130 
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source of the uncertainty in the initial head  xH0  is due to random W0 only. Thus, 131 

the mean and perturbation of  xH0  can be written as, 132 

    TxLWhxH /5.0 22

000   and     TxLWxH /5.0' 22'

00  , respectively. 133 

By substituting Eq. (2),  xH 0 , and  xH '0  into Eq. (1) and taking expectation, one 134 

obtains the mean flow equation with the mean initial and boundary conditions as 135 

 
t

h
SW

x

h
T Y









2

2

 (3a) 136 

    220

0
2

0, xL
T

W
hxh  ; Q

x

h
T x 




0

;    tHtLh ,  (3b) 137 

Subtracting Eq. (3) from (1) leads to the following perturbation equation with the 138 

initial and boundary conditions 139 

 
t

h
SW

x

h
T Y








 '
'

'
2

2

 (4a)  140 
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0 Q
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T x 

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;    tHtLh ','   (4b) 141 

The analytical solution to Eq. (4) can be derived with integral-transform methods 142 

(Ozisik, 1968) given by 143 
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where YSTβ / ,    Lnbn 2/12  . Using Eq. (5), the temporal covariance of the 145 

groundwater level fluctuations can be derived as  146 
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in which 2

0Wσ is the variance of W0, and  ρξCWW , ,   ,QQC and   ,HHC are the 148 

temporal auto-covariance of W(t), of Q(t), and H(t), respectively. We assume that 149 

W(t), Q(t), and H(t) are uncorrelated in order to simplify our analyses. It is shown in 150 

Eq. (6) that the head covariance depends on the variance of W0 and the covariances 151 

of W(t), Q(t), and H(t) and this equation can be evaluated for any random W(t), Q(t), 152 

and H(t). We assume that these processes are white noises as employed in previous 153 

studies (Gelhar, 1993;Hantush and Marino, 1994;Liang and Zhang, 2013a). More 154 

realistic randomness of these processes will be considered in future studies.  155 

 Following Gelhar (1993, p.34), we express the spectra of W(t), Q(t), and H(t) as  156 

 /2

WWWWS  ,  /2

QQQQS  , and  /2

HHHHS  , respectively, where 
2

W , 157 

2

Q , and
2

H  are the variances and 
W ,

 Q , and H  are the correlation time 158 

intervals of these three processes, respectively.  The corresponding covariance of 159 

W(t), Q(t) and H(t) are      WWWWC 22, ,      QQQQC 22, , 160 

and      HHHHC 22, . Substituting these covariance into (6) and taking 161 

integration, one obtain analytical solution of head covariance 162 
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where 12 ''' ttτ   and   2/''' 12 ttt  . The analytical solution for the head variance can 164 

be obtain by setting 0'τ  165 
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where 167 

ct

t
t ' ; 

L

x
x ' ; 



2L
tc  ; 

 
2

12
'

πn
b n


  168 

in which ))/(( 2 KMLSt Yc  [1/T] is a characteristic timescale (Gelhar, 1993) where 169 

the transmissivity (T) is replaced by the product of the hydraulic conductivity (K) and 170 

the average saturated thickness (M) of the aquifer. The characteristic timescale (tc) is 171 

an important parameter and its value for most shallow aquifers is usually larger than 172 

100 day since the horizontal extent of a shallow aquifer is usually much larger than its 173 

thickness. For instance, the value of tc is 250 days for a sandy aquifer with L=100m, 174 

M =10m, K=1m/day, and SY=0.25. 175 

    The spectral density of h(x, t) can't be derived by ordinary Fourier transform 176 

since the head covariance and variance depend on time t’ and thus h(x, t) are 177 

temporally non-stationary as shown in Eqs. (7) and (8).  Priestley (1981) defined the 178 

spectral density of non-stationary processes (Wigner spectrum) as the Fourier 179 

transform of time-dependent auto-covariance with fixed reference time t and derived 180 

time-dependent spectral density. In order to obtain the spectrum of h(x, t), we applied 181 

Priestley's method and obtained the time-dependent spectral density (Priestley, 1981; 182 

Zhang and Li, 2005;Liang and Zhang, 2013a), i.e.,  183 
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where  is angular frequency and  = 2f, f is frequency, and 1i . It is seen in 185 

Eq. (9) that the spectrum hhS  is dependent on not only frequency and locations but 186 

also time t. The time-dependent term (i.e., first term) in Eq. (9) is caused by the 187 

random initial condition and is proportional to 
 tbbβ nme

22 
 which decays quickly with 188 

t. We evaluated the first term in the Eq. (9) by setting t=0 and found that it is much 189 

smaller than the second term in Eq. (9). We thus ignored the first term and evaluated 190 

the spectrum using the approximation, 191 
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 193 

3. Results and Discussion  194 

3.1 Variance of groundwater levels 195 

The general expression of the head variance in Eq. (8) depends on the variances 196 

of the four random processes,
2

0W , 
2

W , 
2

Q , and 
2

H . In the following we will study 197 

their individual and combined effects on the head variation and focus our attention 198 

only on the variance of h(x, t). The dimensionless standard deviation of h(x, t), h' , 199 

or the square root of the dimensionless variance (
2'h ) as a function of the 200 

dimensionless time (t’) were evaluated and presented in the left column of Fig. 2 at 201 

fixed dimensionless locations (x’). The h'  as a function of x’ was evaluated
 and 

202 

presented in the right column of Fig. 2 at fixed t’.
 203 

We first evaluate the effect of the random initial condition due to the random 204 

term, W0, by setting  the variances of W(t), Q(t) and H(t) to be zero, i.e., 205 

0222  HQW  . In this case the dimensionless variance in Eq. (8) reduces to 206 
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where )4/(' 24222

0Whh LT   . The The changes of the dimensionless standard 208 

deviation of h(x, t), h' , with x’ and t’ were presented in Fig 2a and 2b, 209 

respectively.or the square root of the dimensionless variance (
2'h ) in Eq. (11) as a 210 

function of the dimensionless time (t’) was evaluated and presented in Fig. 2a. 1a  211 

at five dimensionless locations, x’ = 0, 0.2, 0.4, 0.6, and 0.8. It is shown in Fig. 1a 2a 212 

that for a fixed location the standard deviation h' is at its maximum at t’=0 and 213 

decreases with time gradually to a negligible number at t’=1.0. This means that the 214 

error in h(x, t) predicted by an analytical or numerical solution due to the uncertain 215 

initial condition is significant at early time, especially near a flux boundary. The time 216 

duration during which the effect of the uncertain initial condition is significant 217 

depends on the value of the characteristic timescale (tc) since t’=t/tc. In the most 218 

aquifers this duration may last many days.  In the typical aquifer studied with 219 

L=100m, M =10m, K=1m/day, and SY=0.25 the effect of the uncertainty in initial 220 

condition on h(x, t) is significant during first 250 days (t’=1.0). This duration should 221 

be relatively short, however, in a more permeable aquifer whose horizontal extent (L) 222 

is relatively smaller than its thickness (M). The dimensionless standard deviation 223 

( h' ) based on Eq. (11) as a function of the dimensionless location (x’) was 224 

presented in Fig. 1b 2b for five dimensionless times, t’ = 0.0, 0.2, 0.4, 0.6, and 0.8. It 225 

is seen in Fig. 1b 2b that for a fixed time，the h' is the largest at the left flux 226 

boundary (x’= 0.0) and becomes zero at the right constant head boundary (x’=1.0) 227 
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since the right boundary is knowndeterministic. This means that the error in h(x, t) 228 

predicted by an analytical or numerical solution due to the uncertain initial condition 229 

is significant almost everywhere in the aquifer: the further away from a constant 230 

head boundary or the closer to a flux boundary, the larger the error.  231 

We then consider the uncertainty in the areal source/sink term (W) by setting 232 

0222

0
 HQW  . In this case the dimensionless variance in Eq. (8) reduces to 233 

         
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where )4/(' 2222

WWYhh LTS   . The changes of the h'  with x’ and t’ were 235 

presented in Fig 2c and 2d, respectively. The dimensionless standard deviation (
h' ) 236 

based 2'hσ  in Eq. (12) as a function of the dimensionless time (t’) for the same five 237 

locations, x’=0.0, 0.2, 0.4, 0.6, and 0.8, was presented in Fig. 1c2c. It is noticed in Fig. 238 

2c that at a fixed location, the h
' is zero initially, gradually increases as time goes, 239 

and approaches a constant limit at later time. This means that the error in h(x, t) due to 240 

an source/sink is at its minimum at early time and increases with time to approach a 241 

constant limit at later time: the closer to the left flux boundary, the larger the limit.  242 

The dimensionless standard deviation (
h
' ) versus the dimensionless location ( 'x ) 243 

for the dimensionless time, t’=0.0, 0.2, 0.4, 0.6, and 0.8, is presented in Fig. 1d2d. For 244 

a fixed time the 
h
' decreases smoothly from the left to the right boundary (Fig. 2d). 245 

The error in h(x, t) due to the uncertainty in the source/sink is significant almost 246 

everywhere in the aquifer: the further away from the constant head boundary or the 247 

closer to a flux boundary, the larger the error, similar to the previous case with the 248 

random initial condition (Fig. 1b2b).  249 



 

 12 

Thirdly, we investigate the effect of the left random flux boundary by setting 250 

0222

0
 HWW   in Eq. (8). In this case the dimensionless head variance is given 251 

by  252 
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where )4/(' 222

QQYhh TS   . The changes of the h'  with x’ and t’ were 254 

presented in Fig 2e and 2f, respectively.The dimensionless standard deviation (
h' ) 255 

based on Eq. (13) as a function of the dimensionless time ( 't ) is plotted in Fig. 1e 2e 256 

for x’=0.0, 0.2, 0.4, 0.6 and 0.8. Similar to the case of the random source/sink in Fig. 257 

1c2c, aAt any location the 
h' in Fig. 1e 2e or the error in h(x, t) due to an uncertain 258 

flux boundary is at its minimum at early time and increases quickly with time to 259 

approach a constant limit: the closer to the left flux boundary, the larger the limit. 260 

The dimensionless deviation (
h' ) as a function of the dimensionless location ( 'x ) 261 

is plotted in Fig. 1f 2f for t’=0.01, 0.1, and 1.0. At any time the 
h' in this case Fig. 262 

2f or the error in the head due to the uncertain flux boundary is at its maximum at the 263 

left boundary but decreases quickly away from the boundary to become insignificant 264 

for x’>0.8.     265 

Fourthly, we investigated the effect of the random head boundary by setting 266 

0222

0
 QWW   in Eq. (8). The dimensionless head variance in this case is given 267 

by  268 
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where )4/(' 2222

HHYhh TSL   . The changes of this h'  with x’ and t’ were 270 

presented in Fig 2g and 2h, respectively.The dimensionless standard deviation (
h' ) 271 

based on Eq. (14) as a function of the dimensionless time ( 't ) is provided in Fig. 1g 272 

2g for x’=0.0, 0.2, 0.4, 0.6, and 0.8.  It seen in Fig. 2g that Similar to the case of the 273 

random flux boundary (Fig. 1e2e), aat any location the 
h'  or the error in h(x, t) 274 

due to the random head boundary increases with time quickly to approach a constant 275 

limit: the closer to the uncertain head boundary, the larger the error. The spatial 276 

variation of 
h'  can be clearly observed in Fig. 1h 2h for t’=0.01, 0.1, and 1.0fixed 277 

t’. At any time 
h'  is at its maximum at the right boundary (x’=1) where the head 278 

is uncertain, decreases quickly away from the boundary. The error in h(x, t) due to 279 

the uncertain head boundary is limited in a narrow zone near the boundary (x’>0.8) 280 

(Fig. 1h2h).  281 

Finally, we consider the combined effects of the uncertainties from all four 282 

sources, i.e., the initial condition, sources, and flux and head boundaries. The head 283 

variance in Eq. (8) is written in the dimensionless form as 284 
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The dimensionless variances, 
2

0
'W , 

2'Q  and 2'H , need to be specified in order to 288 

evaluate the dimensionless  ',''2 txh  in Eq. (15). For the typical aquifer mentioned 289 

above with L=100m, T=10 m2/day (or K=1m/day and M=10m) and SY=0.25, we 290 

set
122 10)/(

0

WWW  , 
322 10)/( WWQQ  , 422 10)/( WWHH   and obtain 291 

25'2
0
W , 1.0'2 Q  and 01.0'2 H . 292 

The changes of this h'  with x’ and t’ were presented in Fig 2i and 2j, 293 

respectively.The dimensionless standard deviation (
h' ) based on Eq. (15) as a 294 

function of the dimensionless time ( t’) is presented in Fig. 2a 2i for x’=0.0, 0.2, 0.4, 295 

0.6, and 0.8. It is observed in Fig. 2a 2i that at any location the 
h'
 

is at its 296 

maximum due to the uncertainty in the initial condition, gradually decreases as time 297 

goes, and approaches a constant limit at later time (t’>0.6) which is due to the 298 

combined effects of the uncertain source/sink and flux and head boundaries. This 299 

means that the error in the head in early time is significant if the initial condition is 300 

uncertain and reduces as time goes to reach a constant limit or error in later time. 301 

The error in head in later time is determined by the uncertainties in the source/sink, 302 

flux and head boundaries. The spatial variation of the dimensionless standard 303 

deviation (
h' ) for this case is provided in Fig. 2b 2j for t’=0.01, 0.2, 0.4, 0.6, and 304 

0.8. It can be observed in Fig. 2j that 
h'
 

is relatively larger near both boundaries. 305 

The values of 
h'  at the two boundaries are equivalent (1.3) at early time, say 306 

t’=0.01 (the top curve in Fig. 2b2j) and it reduces slowly away from the flux 307 

boundary but quickly away from the head boundary. As time progresses, the 308 

h' near the head boundary stays more or less the same but reduces significantly in 309 
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most part of the aquifer. This means that in early time the error in h(x, t) in most part 310 

of the aquifer is mainly caused by the initial condition and at later time it is due to 311 

the combined effects of the uncertain areal source/sink and flux boundary. The effect 312 

of the uncertain head boundary on h(x, t) doesn’t change with time significantly but 313 

is limited in a narrow zone near the boundary.  314 

3.2 Spectrum of groundwater levels  315 

We first evaluated Shh in Eq. (10) due to the effect of the white noise flux 316 

boundary only by setting 0QQS , 0WWS , and 0HHS . The dimensionless 317 

spectrum 
QQhh SS /  as a function of the frequency (f) was evaluated and presented in 318 

the log-log plot (Fig. 3a-3c) for three values of tc (40, 400, and 4,000 days) since the 319 

value of tc is 250 days for a sandy aquifer with L=100m, M =10m, K=1m/day, and 320 

SY=0.25 as we mentioned above and at the six locations (x’ = 0.0, 0.2, 0.4, 0.6, 0.8, 321 

and 0.9). The spectrum
QQhh SS /

 
in Fig. 3a is more or less horizontal (i.e., white noise) 322 

at low frequencies and decrease gradually as f increases, indicating that an aquifer 323 

acts as a low-bass filter that filter signals at high frequencies and keep signals at low 324 

frequencies. The aquifer has significantly dampened the fluctuations of the 325 

groundwater level. The spectrum varies with the location x’: the smaller the value of 326 

x’ or the closer to the left flux boundary (x’=0), the larger the spectrum (Fig. 3a-3c). 327 

All spectra in Fig. 3a are not a straight line in the log-log plot, meaning that the 328 

temporal scaling of h(x, t) doesn’t exist in the range of f =10-3100 when tc=40 days.  329 

As tc increases to 400 and 4000 days, however, the spectrum at x’=0 become a 330 

straight line (the top curve in Fig. 3b and 3c) or has a power-law relation with f, i.e., 331 
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QQhh SS / 1/f , since its slope is approximately one. The fluctuations of h(0, t) is a 332 

pink noise due to the white noise fluctuations flux boundary when the characteristic 333 

timescale (tc) is large which means that the aquifer is relatively less permeable 334 

and/or has a much larger horizontal length than its thickness. 335 

Secondly, the spectrum HHhh SS / due to the sole effect of the random head 336 

boundary was evaluated by setting 0HHS , 0WWS , and 0QQS  in Eq. (10) for 337 

the same three values of tc and six locations and presented in Fig. 3d-3f as a function 338 

of f.  It is shown that similar to Fig. 3a-3c, the spectrum decreases as f increases but 339 

different from Fig. 3a-3c, the spectrum is larger at x’=0.9 near the right boundary 340 

(the top curves in Fig. 3d-3f) than that x’=0.0 (the bottom curves). Furthermore, 341 

none of the spectra are a straight line in the log-log plot, indicating that the temporal 342 

scaling of groundwater level fluctuations doesn’t exist in the case of the white noise 343 

head boundary. 344 

 Thirdly, the spectrum WWhh SS / due the effect of the white noise recharge only 345 

was evaluated by setting 0WWS , 0QQS , and 0HHS  in Eq. (10) for the same 346 

values of tc and x’ and presented in Fig. 3g-3i as a function of f.  It is shown that 347 

when tc=40 day the spectrum in Fig. 3g is horizontal at low frequencies and become 348 

a straight line at high frequencies: the closer to the right head boundary, the later it 349 

approaches a straight line (Fig. 3h). As tc increases to 400 and 4000 days, the slope 350 

of the spectrum at all locations except at x’=0.9 approaches to a straight line with a 351 

slope of 2 (Fig. 3h and 3i), indicating a temporal scaling of h(x, t). The fluctuations 352 

of groundwater level is a Brownian motion, i.e., 2/1 fS  , when tc4000 day or in 353 
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a relatively less permeable and/or has a much larger horizontal length than its 354 

thickness. 355 

Finally, the head spectrum due to the combined effect of all three random 356 

sources (the white noise recharge, and flux and head boundaries) was evaluated, i.e., 357 

0WWS , 0QQS , and 0HHS  in Eq. (10). The spectrum of WWhh SS /  as a 358 

function of f was presented in Fig. . 43j-3l for the same values of tc and x’ where 359 

1000/ WWQQ SS  and 10000/ WWHH SS  which are same with the values using in 360 

previous section. It is noticed that the general patterns of  WWhh SS /  in the 361 

combined case (Fig. 4) is similar to the case under the random source/sink only (Fig. 362 

3g-3i) except at x’=0.0 and 0.9 (the dashed and dotted curves in Fig. 4a3j, 363 

respectively) due to the strong effects of the boundary conditions at these two 364 

locations. At tc=4000 day, the spectra at all locations except x’=0.0 (Fig. 4c3l) are 365 

similar to those in Fig. 3i, indicating the dominating effect of the random areal 366 

source/sink.  The spectrum at x’=0 in this case is also a straight line (the dashed 367 

curve in Fig. 4c3l) but with a different slope due to the effect of the random flux 368 

boundary which is similar to the top straight line in Fig. 3c.  Above results provide 369 

a theoretical explanation as why temporal scaling exists in the observed groundwater 370 

level fluctuations (Zhang and Schilling, 2004;Bloomfield and Little, 2010;Zhu et al., 371 

2012). We thus conclude that temporal scaling of h(x, t) may indeed exist in real 372 

aquifers due to the strong effect of the areal source/sink.   373 

It is noted that the  374 

4. Conclusions 375 
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In this study the effects of random source/sink, and initial and boundary 376 

conditions on the uncertainty and temporal scaling of the groundwater level, h(x, t) 377 

were investigated. The analytical solutions for the variance, covariance and spectrum 378 

of h(x, t) in an unconfined aquifer described by a linearized Boussinesq equation 379 

with white noise source/sink, and initial and boundary conditions were derived. The 380 

standard deviations of h(x, t) for various cases were evaluated. Based on the results, 381 

the following conclusions can be drawn. 382 

1. The error in h(x, t) due to a random initial condition is significant at early 383 

time, especially near a flux boundary. The duration during which the effect is 384 

significant may last a few hundred days in most aquifers; 385 

2. The error in h(x, t) due to a random areal source/sink is significant in most 386 

part of an aquifer: the closer to a flux boundary, the larger the error; 387 

3. The errors in h(x, t) due to random flux and head boundaries are significant 388 

near the boundaries: the closer to the boundaries, the larger the errors. The random 389 

flux boundary may affect the head over a larger region near the boundary than the 390 

random head boundary; 391 

4. In the typical sandy aquifer studied (with the length of aquifer at the 392 

direction of water flow L=100m, the average saturated thickness M =10m, hydraulic 393 

conductivity K=1m/day, and specific yield SY=0.25) the error in h(x, t) in early time 394 

is mainly caused by an uncertain initial condition and the error reduces as time goes 395 

to reach a constant error in later time. The constant error in h(x, t) is mainly due to 396 

the combined effects of uncertain source/sink and boundaries; 397 
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5. The aquifer system behaves as a low-pass filter which filter the short-term 398 

(low high frequencies) fluctuations and keep the long-term (low frequencies) 399 

fluctuations; 400 

6. Temporal scaling of groundwater level fluctuations may indeed exist in 401 

most part of a low permeable aquifer whose horizontal length is much larger than its 402 

thickness caused by the temporal fluctuations of areal source/sink. 403 

  Finally, it is pointed out that the analyses carried out in this study is under the 404 

assumptions that the processes, W(t), Q(t), and H(t) are uncorrelated white noises. In 405 

reality, they may be correlated and spatially varied. We plan to relax those constrains 406 

and study more realistic cases in the near future. It is also noted that the analytical 407 

solutions for head variances derived in this study provide a way to identify and 408 

quantify the uncertainty. The spectrum relationship obtained among the head, 409 

recharge and boundary conditions can help one to improve spectrum analysis for a 410 

groundwater level time series and removed the effects of the boundary conditions. 411 
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Figure captions 489 

Figure 1 A schematic of the unconfined aquifer studied where W(t) is the random 490 

time-dependent source/sink, H0(x) is the random initial condition, Q(t) is the 491 

random time-dependent flux at the left boundary, H(t) is the random 492 

time-dependent water level at the right boundary, L is distance from the left to the 493 

right boundary, and h(x, t) is the random groundwater level in the aquifer.  494 

 495 

Figure 2 The graphs on the left column are the standard deviation (
h' ) of 496 

groundwater level (h(x, t)) versus the dimensionless time ( 't ) at the dimensionless 497 

locations x’=0.0, 0.2, 0.4, 0.6, and 0.8. The graphs on the right column are 
h'  498 

versus 'x for the different t’: b) and d) are for t’= 0.0, 0.2, 0.4, 0.6 and 0.8, f) and h) 499 

are for t’=0.01, 0.1, and 1.0, and j) is for t’=0.01, 0.2, 0.4, 0.6 and 0.8. Also, a) and b) 500 

are based on Eq.(11) where 0222  HQW  ; c) and d) are based on Eq. (12) where 501 

0222

0
 HQW  ; e) and f) are based on Eq. (13) where 0222

0
 HWW  ; g) and h) 502 

are based on Eq. (14) where 0222

0
 QWW  ; i) and j) are based on Eq.(15) where 503 

02222

0
 HQWW σσσσ . 504 

 505 

Figure 3 The dimensionless power spectrum versus frequency (f) at the dimensionless 506 

locations x’=0.0, 0.2, 0.4, 0.6, 0.8, and 0.9. The graphs on the left column are for tc = 507 

40 day, the graphs on the middle column are for tc = 400 day, and the graphs on the 508 

right column are for tc = 4000 day. The graphs on the first row are the dimensionless 509 

spectrum QQhh SS /  when 0WWS , 0HHS , and 0QQS  in Eq. (10), the graphs on the 510 

second row is HHhh SS /  when 0WWS , 0QQS , and 0HHS , the graphs on the third 511 

row are WWhh SS /  when 0QQS , 0HHS , and 0WWS , and the graphs on the bottom 512 

row is WWhh SS /  when 0QQS , 0HHS , and 0WWS . 513 
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 527 

Figure captions 528 

Figure 1 A schematic of the unconfined aquifer studied where W(t) is the 529 

time-dependent random source/sink, H0(x) is the random initial condition, Q(t) is 530 

the random time-dependent flux at the left boundary, H(t) is the random 531 

time-dependent water level at the right boundary, L [L] is distance from the left 532 

to the right boundary, and h(x, t) is the random groundwater level in the aquifer.  533 

 534 

Figure 2 The graphs on the left column (five graphs) are the standard deviation (
h' ) 535 

of groundwater level (h(x, t)) versus the dimensionless time ( 't ) at the 536 

dimensionless locations x’=0.0, 0.2, 0.4, 0.6, and 0.8. The graphs on the right 537 
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column (five graphs) are 
h'  versus 'x for the different t’: b) and d) are for t’= 538 

0.0, 0.2, 0.4, 0.6 and 0.8, f) and h) are for t’=0.01, 0.1, and 1.0, and j) is for 539 

t’=0.01, 0.2, 0.4, 0.6 and 0.8. Also, a) and b) are based on Eq.(11) 540 

where 0222  HQW  ; c) and d) are based on Eq. (12) where 0222

0
 HQW  ; 541 

e) and f) are based on Eq. (13) where 0222

0
 HWW  ; g) and h) are based on 542 

Eq. (14) where 0222

0
 QWW  ; i) and j) are based on Eq.(15) where 543 

02222

0
 HQWW σσσσ . 544 

 545 

Figure 3  The dimensionless power spectrum versus frequency (f) at the dimensionless 546 

locations x’=0.0, 0.2, 0.4, 0.6, 0.8, and 0.9. The graphs on the left column are for tc = 40 547 

day, the graphs on the middle column are for tc = 400 day, and the graphs on the right 548 

column are for tc = 4000 day. The graphs on the first row are the dimensionless spectrum 549 

QQhh SS /
 when 

0WWS
, 0HHS , and 

0QQS
 in Eq. (10), the graphs on the second 550 

row is HHhh SS /
 when 0WWS , 

0QQS
, and 0HHS , the graphs on the third row 551 

are WWhh SS /
 when 

0QQS
, 0HHS , and 0WWS , and the graphs on the bottom row is 552 

WWhh SS /
 when 

0QQS
, 0HHS , and 

0WWS
. 553 
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 556 

Figure 1 A schematic of the unconfined aquifer studied where W(t) is the 557 

time-dependent random source/sink, H0(x) is the random initial condition, Q(t) is 558 

the random time-dependent flux at the left boundary, H(t) is the random 559 

time-dependent water level at the right boundary, L [L] is distance from the left 560 

to the right boundary, and h(x, t) is the random groundwater level in the aquifer.  561 
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 564 

Figure 1 The standard deviation (
h' ) of h(x, t) versus the dimensionless time ( 't ) at 565 

the dimensionless locations x’=0.0, 0.2, 0.4, 0.6, and 0.8 (the four graphs in the 566 

left column) and the standard deviation (
h' ) of h(x, t) versus the dimensionless 567 

location ( 'x ) for the dimensionless time t’=0.01, 0.1, and 1.0 (the four graphs in 568 

the right column): a) and b) are based on Eq.(11) where 0222  HQW  ; c) and 569 

d) are based on Eq. (12) where 0222

0
 HQW  ; e) and f) are based on Eq. (13) 570 

where 0222

0
 HWW  ; g) and h) are based on Eq. (14) where 571 

0222

0
 QWW  . 572 

 573 

Figure 2 a) The standard deviation (
h' ) of h(x, t) versus the dimensionless time ( 't ) 574 

at the dimensionless locations x’=0.0, 0.2, 0.4, 0.6, and 0.8 and b) the standard 575 

deviation (
h' ) of h(x, t) versus the dimensionless location ( 'x ) for the 576 

dimensionless time t’=0.01, 0.1, and 1.0, evaluated based on Eq.(15) where 577 

02222

0
 HQWW σσσσ . 578 

 579 

Figure 3 The dimensionless power spectrum versus frequency (f) at the dimensionless 580 

locations x’=0.0, 0.2, 0.4, 0.6, 0.8, and 0.9. The left column is for tc = 40 day, the middle 581 

column is for tc = 400 day, and the right column is for tc = 4000 day. The first row is the 582 

dimensionless spectrum QQhh SS /
 when 

0WWS
, 0HHS , and 

0QQS
 in Eq. (10), the 583 

second row is HHhh SS /
 when 0WWS , 

0QQS
, and 0HHS , and the bottom row is 584 

WWhh SS /
 when 

0QQS
, 0HHS , and 0WWS . 585 

 586 

Figure 4 The dimensionless power spectrum versus frequency (f) at the dimensionless 587 

locations x’=0.0, 0.2, 0.4, 0.6, 0.8, and 0.9 when 0QQS , 0HHS , and 0WWS  for a) 588 
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tc = 40 day, b) tc = 400 day, and c) tc = 4000 589 

day.
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Figure 2 The graphs on the left column (five graphs) are the standard deviation (
h' ) 592 

of groundwater level (h(x, t)) versus the dimensionless time ( 't ) at the 593 

dimensionless locations x’=0.0, 0.2, 0.4, 0.6, and 0.8. The graphs on the right 594 

column (five graphs) are 
h'  versus 'x for the different t’: b) and d) are for t’= 595 

0.0, 0.2, 0.4, 0.6 and 0.8, f) and h) are for t’=0.01, 0.1, and 1.0, and j) is for 596 

t’=0.01, 0.2, 0.4, 0.6 and 0.8. Also, a) and b) are based on Eq.(11) 597 

where 0222  HQW  ; c) and d) are based on Eq. (12) where 0222

0
 HQW  ; 598 
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e) and f) are based on Eq. (13) where 0222

0
 HWW  ; g) and h) are based on 599 

Eq. (14) where 0222

0
 QWW  ; i) and j) are based on Eq.(15) where 600 

02222

0
 HQWW σσσσ . 601 
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Figure 3  The dimensionless power spectrum versus frequency (f) at the dimensionless 605 

locations x’=0.0, 0.2, 0.4, 0.6, 0.8, and 0.9. The graphs on the left column are for tc = 40 606 

day, the graphs on the middle column are for tc = 400 day, and the graphs on the right 607 

column are for tc = 4000 day. The graphs on the first row are the dimensionless spectrum 608 

QQhh SS /
 when 

0WWS
, 0HHS , and 

0QQS
 in Eq. (10), the graphs on the second 609 

row is HHhh SS /
 when 0WWS , 

0QQS
, and 0HHS , the graphs on the third row 610 
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are WWhh SS /
 when 

0QQS
, 0HHS , and 0WWS , and the graphs on the bottom row is 611 

WWhh SS /
 when 

0QQS
, 0HHS , and 

0WWS
. 612 
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