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Abstract 19 

This study investigates the effectiveness of a sensitivity-informed method for 20 

multi-objective operation of reservoir systems, which uses global sensitivity analysis 21 

as a screening tool to reduce the computational demands. Sobol′’s method is used to 22 

screen insensitive decision variables and guide the formulation of the optimization 23 

problems with a significantly reduced number of decision variables. This 24 

sensitivity-informed problem decomposition dramatically reduces the computational 25 

demands required for attaining high quality approximations of optimal tradeoff 26 

relationships between conflicting design objectives. The search results obtained from 27 

the reduced complexity multi-objective reservoir operation problems are then used to 28 

pre-condition the full search of the original optimization problem. In two case studies, 29 

the Dahuofang reservoir and the inter-basin multi-reservoir system in Liaoning 30 

province, China, sensitivity analysis results show that reservoir performance is 31 

strongly controlled by a small proportion of decision variables. Sensitivity-informed 32 

problem decomposition and pre-conditioning are evaluated in their ability to improve 33 

the efficiency and effectiveness of multi-objective evolutionary optimization. Overall, 34 

this study illustrates the efficiency and effectiveness of the sensitivity-informed 35 

method and the use of global sensitivity analysis to inform problem decomposition 36 

when solving the complex multi-objective reservoir operation problems. 37 

Keywords water supply; complexity reduction; multi-objective optimization; 38 

preconditioning; sensitivity analysis; reservoir operation 39 

 40 
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1 Introduction 41 

Reservoirs are often operated considering a number of conflicting objectives (such 42 

as different water uses) related to environmental, economic and public services. The 43 

optimization of Reservoir Operation Systems (ROS) has attracted substantial attention 44 

over the past several decades. In China and many other countries, reservoirs are 45 

operated according to reservoir operation rule curves which are established at the 46 

planning/design stage to provide long-term operation guidelines for reservoir 47 

management to meet expected water demands. Reservoir operation rule curves 48 

usually consist of a series of storage volumes or levels at different periods (Liu et al., 49 

2011a and 2011b). For the optimal ROS problem, the values of storage volumes or 50 

levels are optimized to achieve one or more objectives. Quite often, there are multiple 51 

curves, related to different purposes of reservoir operation. The dimension of a ROS 52 

problem depends on the number of the curves and the number of time periods. For a 53 

cascaded reservoir system, the dimension can be very large, which increases the 54 

complexity and problem difficulty and poses a significant challenge for most search 55 

tools currently available (Labadie, 2004; Draper and Lund, 2004; Sadegh et al., 2010; 56 

Zhao et al., 2014). 57 

In the context of multi-objective optimal operation of ROS, there is not one single 58 

operating policy that improves simultaneously all the objectives and a set of 59 

non-dominating Pareto optimal solutions are normally obtained. The traditional 60 

approach to multi-objective optimal reservoir operation is to reformulate the 61 

multi-objective problem as a single objective problem through the use of some 62 
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scalarization methods, such as the weighted sum method (Tu et al., 2003 and 2008; 63 

Shiau, 2011). This method has been developed to repeatedly solve the single objective 64 

problem using different sets of weights so that a set of Pareto-optimal solutions to the 65 

original multi-objective problem could be obtained (Srinivasan and Philipose, 1998; 66 

Shiau and Lee, 2005). Another well-known method is the ε-constraint method (Ko et 67 

al., 1997; Mousavi and Ramamurthy, 2000; Shirangi et al., 2008): all the objectives 68 

but one are converted into constraints and the level of satisfaction of the constraints is 69 

optimized to obtain a set of Pareto-optimal solutions. However, with the increase in 70 

problem complexity (i.e., the number of objectives or decision variables), both 71 

approaches become inefficient and ineffective in deriving the Pareto-optimal 72 

solutions. 73 

In the last several decades, bio-inspired algorithms and tools have been developed 74 

to directly solve multi-objective optimization problems by simultaneously handling 75 

all the objectives (Nicklow et al., 2010). In particular, multi-objective evolutionary 76 

algorithms (MOEA) have been increasingly applied to the optimal reservoir operation 77 

problems, with intent of revealing tradeoff relationships between conflicting 78 

objectives. Suen and Eheart (2006) used the non-dominated sorting genetic algorithm 79 

(NSGAII) to find the Pareto set of operating rules that provides decision makers with 80 

the optimal trade-off between human demands and ecological flow requirements. 81 

Zhang et al. (2013b) used a multi-objective adaptive differential evolution combined 82 

with chaotic neuron networks to provide optimal trade-offs for multi-objective 83 

long-term reservoir operation problems, balancing hydropower operation and the 84 
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requirement of reservoir ecological environment. Chang et al. (2013) used an 85 

adjustable particle swarm optimization – genetic algorithm (PSO-GA) hybrid 86 

algorithm to minimize water shortages and maximize hydro-power production in 87 

management of Tao River water resources. 88 

However, significant challenges remain for using MOEAs in large, real-world 89 

ROS applications. The high dimensionality of ROS problems makes it very difficult 90 

for MOEAs to identify ‘optimal or near optimal’ solutions with the computing 91 

resources that are typically available in practice. Thus the primary aim of this study is 92 

to investigate the effectiveness of a sensitivity-informed optimization methodology 93 

for multi-objective reservoir operation, which uses sensitivity analysis results to 94 

reduce the dimension of the optimization problems, and thus improves the search 95 

efficiency in solving these problems. This framework is based on the previous study 96 

by Fu et al. (2012), which developed a problem decomposition framework that can 97 

dramatically reduce the computational demands required to obtain high quality 98 

solutions for optimal design of water distribution systems. The ROS case studies used 99 

to demonstrate this framework consider the optimal design of reservoir water supply 100 

operation policies. Storage volumes at different time periods on the operation rule 101 

curves are used as decision variables. It has been widely recognized that the 102 

determination of these decision variables requires a balance among different ROS 103 

objectives. Sobol'’s sensitivity analysis results are used to form simplified 104 

optimization problems considering a small number of sensitive decision variables, 105 

which can be solved with a dramatically reduced number of model evaluations to 106 
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obtain Pareto approximate solutions. These Pareto approximate solutions are then 107 

used to pre-condition a full search by serving as starting points for the multi-objective 108 

evolutionary algorithm. The results from the Dahuofang reservoir and inter-basin 109 

multi-reservoir system case studies in Liaoning province, China, whose conflicting 110 

objectives are minimization of industry water shortage and minimization of 111 

agriculture water shortage, illustrate that sensitivity-informed problem decomposition 112 

and pre-conditioning provide clear advantages to solve large-scale multi-objective 113 

ROS problems effectively. 114 

 115 

2 Problem formulation 116 

Most reservoirs in China are operated according to rule curves, i.e., reservoir 117 

water supply operation rule curves. Because they are based on actual water storage 118 

volumes, they are simple to use. Fig. 1 shows typical water supply operation rule 119 

curves from Dahuofang reservoir based on 36 10-day periods. 120 

As we know that water demand could be fully satisfied only when there is 121 

sufficient water in reservoir. Water supply operation rule curve, which is used to 122 

operate most reservoirs in China, represents the limited storage volume for water 123 

supply in each period of a year. In detail, water demand will be fully satisfied when 124 

the reservoir storage volume is higher than water supply operation rule curve, whereas 125 

water demand need to be rationed when the reservoir storage volume is lower than 126 

water supply operation rule curve. In general, a reservoir has more than one water 127 

supply target, and there is one to one correspondence between water supply rule curve 128 
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and water supply target. The water supply with lower priority will be limited prior to 129 

the water supply with higher priority when the reservoir storage volume is lower. To 130 

reflect the phenomenon that different water demands can have different reliability 131 

requirements and different levels of priority in practice, the operation rule curve for 132 

the water supply with the lower priority is located above the operation rule curve for 133 

the water supply with the higher priority. 134 

Fig. 1 shows water supply operation rule curves for agriculture and industry where 135 

the maximum storage is smaller in the middle due to the flood control requirements in 136 

wet seasons. In Fig. 1, the red line with circle represent water supply rule curve for 137 

agriculture, the green line with triangle represent water supply rule curve for industry, 138 

and the water supply rule curve for agriculture with lower priority is located above the 139 

water supply rule curve for industry with higher priority. The water storage available 140 

between the minimum and maximum storages is divided into three parts: zone 1, zone 141 

2 and zone 3 by the water supply rule curves for agriculture and industry.  142 

Specifically, both the agricultural demand 𝐷1  and the industrial demand 𝐷2 143 

could be fully supplied when the actual water storage is in zone 1, which is above the 144 

water supply rule curve for agriculture; when the actual water storage is in zone 2, 145 

which is above the water supply rule curve for industry and below the water supply 146 

rule curve for agriculture, the industrial demand 𝐷2 could be fully supplied, and the 147 

agricultural demand 𝐷1 has to be rationed; both the agricultural demand 𝐷1 and the 148 

industrial demand 𝐷2 have to be rationed when the actual water storage is in zone 3, 149 

which is below the water supply rule curve for industry. The water supply rule for a 150 
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specific water user consists of one water supply rule curve and rationing factors that 151 

indicate the reliability and priority of the water user. Assuming that the specified 152 

water rationing factor 𝛼1 is applied to the water supply rule curve for agriculture in 153 

Fig. 1, the agricultural demand 𝐷1 could be fully supplied without rationing when 154 

the actual water storage is in zone 1, however, when the water storage is in zone 2 or 155 

zone 3, the agricultural demand has to be rationed, i.e., 𝛼1 ∗ 𝐷1. Similarly, assuming 156 

that the specified water rationing factor 𝛼2 is applied to the water supply rule curve 157 

for industry in Fig. 1, the industrial demand 𝐷2 could be fully supplied without 158 

rationing when the actual water storage is in zone 1 or zone 2, however, when the 159 

water storage is in zone 3, the industrial demand has to be rationed, i.e., 𝛼2 ∗ 𝐷2. 160 

Because it could be assumed that the historical inflow into the reservoir would be 161 

repeated in the future, to provide long-term operation guidelines for reservoir 162 

management to meet expected water demands in a future planning year, the water 163 

demands in the future planning year and long-term historical inflow are used. The 164 

optimization objectives for water supply operation rule curves are to minimize water 165 

shortages during the long-term historical period. The ROS design problem is 166 

formulated as a multi-objective optimization problem, i.e., minimizing multiple 167 

objectives simultaneously. In this paper, the objectives are to minimize industry and 168 

agriculture water shortages: 169 

min𝑓𝑖(𝒙) = 𝑆𝑆𝑖 = 100
𝑁
∑ �𝐷𝑖,𝑗−𝑊𝑖,𝑗(𝒙)

𝐷𝑖,𝑗
�
2

𝑁
𝑗=1                   (1) 170 

where 𝒙 is the vector of decision variables, i.e., the water storages at different 171 

periods on a water-supply rule curve; 𝑆𝑆𝑖 is the shortage index for water demand 𝑖 172 
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(industrial water demand when 𝑖 = 1, agricultural water demand when 𝑖 = 2), which 173 

measures the frequency and magnitude of annual shortages occurred during 𝑁 years, 174 

and is used as an indicator to reflect water supply efficiency; 𝑁 is the total number of 175 

years simulated; 𝐷𝑖,𝑗 is the sum of target demands for water demand 𝑖 during the 176 

𝑗th year; 𝑊𝑖,𝑗(𝑥) is the sum of delivered water for water demand 𝑖 during the 𝑗th 177 

year. 178 

For the ROS optimization problem, the mass balance equations are: 179 

𝑆𝑡+1 − 𝑆𝑡 =  𝑆𝑡 − 𝑅𝑡 − 𝑆𝑆𝑡 − 𝐸𝑡                       (2) 180 

𝑅𝑡 = 𝑔(𝒙),  𝑆𝑆𝑡 = 𝑘(𝒙),𝐸𝑡 = 𝑒(𝒙)                     (3) 181 

𝑆𝑆𝑡min ≤ 𝑆𝑡 ≤ 𝑆𝑆𝑡max, 𝑆𝑆𝑡min ≤ 𝒙 ≤ 𝑆𝑆𝑡max                  (4) 182 

where 𝑆𝑡 is the initial water storage at the beginning of period 𝑡; 𝑆𝑡+1 is the ending 183 

water storage at the end of period 𝑡; 𝑆𝑡,𝑅𝑡 , 𝑆𝑆𝑡 and 𝐸𝑡 are inflow, delivery for water 184 

use, spill and evapotranspiration loss, respectively; and 𝑆𝑆𝑡max and 𝑆𝑆𝑡min are the 185 

maximum and minimum storage, respectively. Additionally, because 𝑊𝑖,𝑗(𝑥)  in 186 

Equation (1) is the sum of delivered water for water demand 𝑖 during the 𝑗th year, 187 

the sum value of 𝑅 during the 𝑗th year equals to 𝑊1,𝑗(𝑥) + 𝑊2,𝑗(𝑥). 188 

 189 

3 Methodology 190 

Pre-conditioning is a technique that uses a set of known good solutions as starting 191 

points to improve the search process of optimization problems (Nicklow et al., 2010). 192 

It is very challenging in determining good initial solutions, and different techniques 193 

including the domain knowledge can be used. This study utilizes a 194 
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sensitivity-informed problem decomposition to develop simpler search problems that 195 

consider only a small number of highly sensitive decisions. The results from these 196 

simplified search problems can be used to successively pre-condition search for larger, 197 

more complex formulations of ROS design problems. The ε-NSGAII, a popular 198 

multi-objective evolutionary algorithm, is chosen as it has been shown effective for 199 

many engineering optimization problems (Kollat and Reed, 2006; Tang et al., 2006; 200 

Kollat and Reed, 2007). For the two-objectives (𝜀𝑆𝑆1 and 𝜀𝑆𝑆2) considered in this 201 

paper, their epsilon values in ε-NSGAII were chosen based on reasonable and 202 

practical requirements and were both set to 0.01. According to the study by Fu et al. 203 

(2012), the sensitivity-informed methodology, as shown in Fig. 2, has the following 204 

steps: 205 

1. Perform a sensitivity analysis using Sobol'’s method to calculate the sensitivity 206 

indices of all decision variables regarding the ROS performance measure; 207 

2. Define a simplified problem that considers only the most sensitive decision 208 

variables by imposing a user specified threshold (or classification) of sensitivity; 209 

3. Solve the simplified problem using ε-NSGAII with a small number of model 210 

simulations; 211 

4. Solve the original problem using ε-NSGAII with the Pareto optimal solutions 212 

from the simplified problem fed into the initial population. 213 

3.1 Sobol'’s sensitivity analysis 214 

Sobol'’s method was chosen for sensitivity analysis because it can provide a 215 

detailed description of how individual variables and their interactions impact model 216 
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performance (Tang et al., 2007b; Zhang et al., 2013a). A model could be represented 217 

in the following functional form: 218 

𝑦 = 𝑓(𝒙) = 𝑓�𝑥1,⋯ , 𝑥𝑝�                     (5) 219 

where 𝑦 is the goodness-of-fit metric of model output, and 𝒙 = �𝑥1,⋯ , 𝑥𝑝� is the 220 

parameter set. Sobol'’s method is a variance based method, in which the total variance 221 

of model output, 𝐷(𝑦), is decomposed into component variances from individual 222 

variables and their interactions: 223 

𝐷(𝑦) = ∑ 𝐷𝑖𝑖 + ∑ 𝐷𝑖𝑗𝑖<𝑗 + ∑ 𝐷𝑖𝑗𝑖𝑖<𝑗<𝑖 + ⋯+ 𝐷12⋯𝑚         (6) 224 

where 𝐷𝑖  is the amount of variance due to the 𝑖th variable 𝑥𝑖 , and 𝐷𝑖𝑗  is the 225 

amount of variance from the interaction between 𝑥𝑖 and 𝑥𝑗. The model sensitivity 226 

resulting from each variable can be measured using the Sobol′’s sensitivity indices of 227 

different orders: 228 

First-order index: 𝑆𝑖 = 𝐷𝑖
𝐷

                     (7) 229 

Second-order index: 𝑆𝑖𝑗 = 𝐷𝑖𝑗
𝐷

                    (8) 230 

Total-order index: 𝑆𝑇𝑖 = 1 − 𝐷~𝑖
𝐷

                    (9) 231 

where 𝐷~𝑖  is the amount of variance from all the variables except for 𝑥𝑖 , the 232 

first-order index 𝑆𝑖  measures the sensitivity from the main effect of 𝑥𝑖 , the 233 

second-order index 𝑆𝑖𝑗  measures the sensitivity resulting from the interactions 234 

between 𝑥𝑖 and 𝑥𝑗, and the total-order index 𝑆𝑇𝑖 represents the main effect of 𝑥𝑖 235 

and its interactions with all the other variables. 236 

3.2 Performance metrics 237 

Since MOEA search is stochastic, performance metrics are used in this study to 238 
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compare the quality of the approximation sets derived from replicate multi-objective 239 

evolutionary algorithm runs. Three indicators were selected: the generational distance 240 

(Veldhuizen and Lamont, 1998), the additive ε-indicator (Zitzler et al., 2003), and the 241 

hypervolume indicator (Zitzler and Thiele, 1998). 242 

The generational distance measures the average Euclidean distance from solutions 243 

in an approximation set to the nearest solution in the reference set, and indicates 244 

perfect performance with zero. The additive ε-indicator measures the smallest 245 

distance that a solution set need to be translated to completely dominate the reference 246 

set. Again, smaller values of this indicator are desirable as this indicates a closer 247 

approximation to the reference set. 248 

The hypervolume indicator, also known as the S metric or the Lebesgue measure, 249 

measures the size of the region of objective space dominated by a set of solutions. The 250 

hypervolume not only indicates the closeness of the solutions to the optimal set, but 251 

also captures the spread of the solutions over the objective space. The indicator is 252 

normally calculated as the volume difference between a solution set derived from an 253 

optimization algorithm and a reference solution set. In this study, the worst case 254 

solution is chosen as reference. For example, the worst solution is (1, 1) for two 255 

minimization objectives in the normalized objective space. Thus larger hypervolume 256 

indicator values indicate improved solution quality and imply a larger distance from 257 

the worst solution. 258 

 259 

4 Case study 260 
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Two case studies of increasing complexity are used to demonstrate the advantages 261 

of the sensitivity-informed methodology: (1) the Dahuofang reservoir, and (2) the 262 

inter-basin multi-reservoir system in Liaoning province, China. The inter-basin 263 

multi-reservoir system test case is a more complex ROS problem with Dahuofang, 264 

Guanyinge and Shenwo reservoirs. In the two ROS problems, the reference sets were 265 

obtained from all the Pareto optimal solutions across a total of 10 random seed trials, 266 

each of which was run for a maximum number of function evaluations (NFE) of 267 

500,000. Additionally, the industrial and agricultural water demands in the future 268 

planning year, i.e., 2030, and the historical inflow from 1956 to 2006 were used to 269 

optimize reservoir operation and meet future expected water demands in the two case 270 

studies. 271 

4.1 Dahuofang reservoir 272 

The Dahuofang reservoir is located in the main stream of Hun River, in Liaoning 273 

province, Northeast China. The Dahuofang reservoir basin drains an area of 5437km2, 274 

and within the basin the total length of Hun River is approximately 169km. The main 275 

purposes of the Dahuofang reservoir are industrial water supply and agricultural water 276 

supply to central cities in Liaoning province. The reservoir characteristics and yearly 277 

average inflow are illustrated in Table 1. 278 

The Dahuofang ROS problem is formulated as follows: the objectives are 279 

minimization of industrial shortage index and minimization of agricultural shortage 280 

index as described in Equation (1); the decision variables include storage volumes on 281 

the industrial and agricultural curves. For the industrial curve, a year is divided into 282 
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24 time periods (with ten days as scheduling horizon from April to September, and a 283 

month as scheduling horizon in the remaining months). Thus there are twenty-four 284 

decision variables for industrial water supply. The agricultural water supply occurs 285 

only in the periods from the second ten-day of April to the first ten-day of September, 286 

thus there are fifteen decision variables for agricultural water supply. In total, there 287 

are thirty-nine decision variables. 288 

4.2 Inter-basin multi-reservoir system 289 

As shown in Fig. 3, Dahuofang, Guanyinge and Shenwo reservoirs compose the 290 

inter-basin multi-reservoir system in Liaoning province, China. 291 

Liaoning province in China covers an area of 1.46 × 105 km2 with an extremely 292 

uneven distribution of rainfall in space. The average amount of annual precipitation 293 

decreases from 1100 mm in east to 600 mm in west (WMR-PRC, 2008). However, the 294 

population, industries, and agricultural areas mainly concentrate in the western parts. 295 

Therefore, it is critical to develop the best water supply rules for the inter-basin 296 

multi-reservoir system to decrease the risk of water shortages caused by the mismatch 297 

of water supplies and water demands in both water deficit regions and water surplus 298 

regions. Developing inter-basin multi-reservoir water supply operation rules has been 299 

promoted as a long-term strategy for Liaoning province to meet the increasing water 300 

demands in water shortage areas. In the inter-basin multi-reservoir system of Liaoning 301 

province, the abundant water in Dahuofang, Guanyinge and Shenwo reservoirs is 302 

diverted downstream to meet the water demands in water shortage areas, especially 303 

the region between Daliaohekou and Sanhekou hydrological stations. 304 
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The main purposes of the inter-basin multi-reservoir system are industrial water 305 

supply and agricultural water supply to eight cities (Shenyang, Fushun, Anshan, 306 

Liaoyang, Panjin, Yingkou, Benxi and Dalian) of Liaoning province, and 307 

environmental water demands need to be satisfied fully. The characteristics of each 308 

reservoir in the inter-basin multi-reservoir system are illustrated in Table 2. 309 

The flood season runs from July to September, during which the inflow takes up a 310 

large part of the annual inflow. The active storage capacities of Dahuofang and 311 

Shenwo reservoirs reduce significantly during flood season for the flood control. 312 

The inter-basin multi-reservoir operation system problem is formulated as follows: 313 

the objectives are minimization of industrial shortage index and minimization of 314 

agricultural shortage index as described in Equation (1). Regarding Shenwo reservoir, 315 

which has the same water supply operation rule curve features as Dahuofang reservoir, 316 

the decision variables include storage volumes on the industrial and agricultural 317 

curves and there are thirty-nine decision variables. Regarding Guanyinge reservoir, 318 

the decision variables include storage volumes on the industrial curve and water 319 

transferring curve due to the requirement of exporting water from Guanyinge 320 

reservoir to Shenwo reservoir in the inter-basin multi-reservoir system, which is 321 

similar to the water supply operation rule curve for industrial water demand, and there 322 

are forty-eight decision variables. Therefore, the inter-basin multi-reservoir system 323 

has six rule curves and 39 × 2 + 48 = 126 decision variables in total. 324 

 325 

5 Results and discussions 326 
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5.1 Dahuofang reservoir 327 

In the Dahuofang reservoir case study, a set of 2000 Latin Hypercube samples 328 

were used per decision variable yielding a total number of 2000 × (39 + 2) =329 

82000  model simulations used to compute Sobol'’s indices. Following the 330 

recommendations of Tang et al. (2007a, b) boot-strapping the Sobol'’ indices showed 331 

that 2000 samples per decision variable were sufficient to attain stable rankings of 332 

global sensitivity. 333 

The first-order indices representing the individual contributions of each variable to 334 

the variance of the objectives are shown in blue in Fig. 4. The total-order indices 335 

representing individual and interactive impacts on the variance of the objectives are 336 

represented by the total height of bars. Agr4_2 represents decision variable 337 

responding to water storage volume on the agricultural curve at the second ten days of 338 

April and ind3_3 represents decision variable responding to water storage volume on 339 

the industrial curve at the last ten days of March, and so on. Considering the shortage 340 

index for the industrial water demand, the water storages at time periods ind1, ind2, 341 

ind3, ind10, ind11, and ind12, i.e., the water storages at time periods 1, 2, 3, 10, 11, 342 

and 12 of water supply operation rule curves for industrial water demand are the most 343 

sensitive variables, accounting for almost 100% of the total variance. However, the 344 

interactive effects from variables are not noticeable due to the characteristics of 345 

industrial water supply and the influences of rules for industrial water demand. 346 

Considering the agricultural shortage index, the water storages at time periods from 347 

agr4-2 to agr5-3, i.e., the water storages at the first five time periods of water supply 348 
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operation rule curves for agricultural water demand are the most sensitive variables. 349 

This is explained by the characteristics of agricultural water supply and the influences 350 

of water supply operation rule curves for agricultural water demand, implying that the 351 

interactive effects from variables are noticeable because the agricultural water supply 352 

is limited in the whole year if the agricultural water supply in one time period is 353 

limited and the largest agricultural water demand occurs in the second and last ten 354 

days of May. 355 

5.1.1 Simplified problems 356 

Building on the sensitivity results shown in Fig. 4, one simplified version of the 357 

Dahuofang ROS problem is formulated: only 11-periods are considered for 358 

optimization, i.e., time periods ind1, ind2, ind3, ind10, ind11, and ind12 for industrial 359 

curve and agr4-2, agr4-3, agr5-1, agr5-2, and agr5-3 for agricultural curve based on a 360 

total-order Sobol'’s index threshold of greater than 10%. The threshold is subjective 361 

and its ease-of-satisfaction decreases with increasing numbers of parameters or 362 

parameter interactions. In all of the results for the Sobol'’s method, parameters 363 

classified as the most sensitive contribute, on average, at least 10 percent of the 364 

overall model variance (Tang et al., 2007a, b). The full search 39-period problem 365 

serves as the performance baseline relative to the reduced complexity problem. 366 

5.1.2 Pre-conditioned optimization 367 

In this section, the pre-conditioning methodology is demonstrated using the 368 

11-period simplification of the Dahuofang ROS test case from the prior section, while 369 

the insensitive decision variables are set randomly first and kept constant during the 370 
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solution of the simplified problem. 371 

Using the sensitivity-informed methodology, the 11-period case was first solved 372 

using ε-NSGAII with a maximum NFE of 2000, and the Pareto optimal solutions 373 

combined with the constant insensitive decision variables were then used as starting 374 

points to start a complete new search with a maximum NFE of 498,000. The standard 375 

search using ε-NSGAII was set to a maximum NFE of 500,000 so that the two 376 

methods have the same NFE used for search. In this case, 10 random seed trials were 377 

used given the computing resources available. The search traces in Fig. 5 show for all 378 

three metrics (generational distance, additive epsilon indicator, and hypervolume) that 379 

the complexity-reduced case can reliably approximate their portions of the industrial 380 

and agricultural water shortage tradeoff given their dramatically reduced search 381 

periods. All three metrics show diminishing returns at the end of the reduced search 382 

periods. The pre-conditioning results are shown in Fig. 5 in red search traces 383 

continuing from the blue reduced complexity search results. 384 

Fig. 5 clearly highlight that the sensitivity-informed pre-condition problems 385 

dramatically enhance search efficiency in terms of the generational distance, additive 386 

epsilon indicator, and hypervolume metrics. Overall, sensitivity-informed problem 387 

decomposition and pre-conditioning yield strong efficiency gains and more reliable 388 

search (i.e., narrower band widths on search traces) for the Dahuofang ROS test case. 389 

Fig. 6(a) shows Pareto fronts from a NFE of 3000, 5000 and 8000 in the evolution 390 

process of one random seed trial. In the case of the pre-conditioned search, the 391 

solutions from 3000, 5000 and 8000 evaluations are much better than the 392 
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corresponding solutions in the case of standard baseline search. The results show that 393 

the Pareto approximate front of the pre-conditioned search is much wider than that of 394 

the standard search, and clearly dominates that of the standard search in all the 395 

regions across the entire objective space. 396 

Fig. 6(b) shows the best and worst Pareto fronts from a NFE of 500,000 and 8000 397 

in the evolution process of ten seed trials. In the case of the pre-conditioned search, 398 

the best solutions from 500,000 evaluations are better than the corresponding 399 

solutions in the case of standard baseline search. Although it is obvious that there are 400 

not many differences between solutions obtained from pre-conditioned search and 401 

solutions from standard baseline search due to the complexity of the problem, the best 402 

Pareto fronts from a NFE of 8000 in the case of the pre-condition search are 403 

approximate the same as the best Pareto fronts from a NFE of 500,000 in the case of 404 

the standard baseline search. 405 

Fig. 7 shows the computational savings for two thresholds of hypervolume values 406 

0.80 and 0.85 in the evolution process of each seed trial. In both cases of the 407 

thresholds of hypervolume values 0.80 and 0.85, NFE of the pre-conditioned search is 408 

less than standard baseline search for each seed. In the case of the threshold of 409 

hypervolume value 0.80, the average NFEs of full search and pre-conditioned full 410 

search are approximately 94,564 and 25,083 for one seed run respectively, and the 411 

computation is saved by 73.48%. Although the NFE of Sobol'’s analysis is 82,000, the 412 

average NFEs of pre-conditioned full search is approximately 25,083 + 82,000/413 

10 = 33,283 for each seed run, and the computational saving is 64.80%. 414 
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Similarly, in the case of the threshold of hypervolume value 0.85, which is 415 

extremely difficult to achieve, the average NFEs of full search and pre-conditioned 416 

full search are approximately 214,049 and 105,060 for each seed run respectively, and 417 

the computation is saved by 50.92%. When the computation demand by Sobol'’s 418 

analysis is considered, the computational saving is still 47.09%. 419 

5.2 Inter-basin multi-reservoir system 420 

5.2.1 Sensitivity analysis 421 

Similar to the Dahuofang case study, a set of 2000 Latin Hypercube samples were 422 

used per decision variable yielding a total number of 2000 × (126 + 2) = 256,000 423 

model simulations to compute Sobol'’s indices in this case study. 424 

The first-order and total-order indices for 126 decision variables are shown in Fig. 425 

8. Similar to the results obtained from the Dahuofang ROS Problem in Fig. 4, the 426 

variance in the two objectives, i.e., industrial and agricultural shortage indices, are 427 

largely controlled by the water storages at time periods from agr4-2 to agr5-3 of 428 

Shenwo reservoir water supply operation rule curves for agricultural water demand, 429 

the water storages at time periods from agr4-2 to agr5-3 of Dahuofang reservoir water 430 

supply operation rule curves for agricultural water demand, the water storages at time 431 

periods ind1, ind2, ind3, ind7-1, ind10, ind11, and ind12 of Dahuofang reservoir 432 

water supply operation rule curves for industrial water demand based on a total-order 433 

Sobol'’s index threshold of greater than 3%, which is subjective and its 434 

ease-of-satisfaction decreases with increasing numbers of parameters or parameter 435 

interactions. These 17 time periods are obvious candidates for decomposing the 436 
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original optimization problem and formulating a pre-conditioning problem. Therefore, 437 

the simplified problem is defined from the original design problem with the 109 438 

intensive time periods removed, i.e., the insensitive decision variables are set 439 

randomly first and kept constant during the solution of the simplified problem. It 440 

should be noted that the increased interactions across sensitive time periods in this test 441 

case. These interactions verify that this problem represents a far more challenging 442 

search problem. 443 

5.2.2 Pre-conditioned optimization 444 

Using the sensitivity-informed methodology, the simplified problem was first 445 

solved using ε-NSGAII with a maximum NFE of 5000, and the Pareto optimal 446 

solutions combined with the constant insensitive decision variables were then used as 447 

starting points to start a complete new search with a maximum NFE of 495,000. The 448 

standard search using ε-NSGAII was set to a maximum NFE of 500,000 so that the 449 

two methods have the same NFE used for search. In this case, 10 random seed trials 450 

are used given the computing resources available. Similar to the results obtained from 451 

the Dahuofang ROS problem in Fig. 5, the search traces in Fig. 9 show all three 452 

metrics (generational distance, additive epsilon indicator, and hypervolume) that 453 

represent performance metrics for the inter-basin multi-reservoir water supply 454 

operation system problem. Similarly, the pre-conditioning results are shown in Fig. 9 455 

in red search traces continuing from the blue reduced complexity search results. It is 456 

clear that the sensitivity-informed pre-condition problems enhance search efficiency 457 

in terms of the generational distance, additive epsilon indicator, and hypervolume 458 
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metrics. However, with the increase in problem complexity in comparison to the first 459 

case study (i.e., the number of decision variables from 39 to 126), the search of ROS 460 

optimization problem becomes more difficult, and so the metrics obtained from 461 

pre-conditioned search are not improved greatly compared with the standard baseline 462 

search and the pre-conditioning results shown in Fig. 9 are as good as the results 463 

shown in Fig. 5. 464 

Fig. 10(a) shows Pareto fronts from a NFE of 6000, 8000 and 10,000 in the 465 

evolution process of one random seed trial. In the case of the pre-conditioned search, 466 

the solutions from the three NFE snapshots are much better than those from standard 467 

baseline search. Similar to Fig. 6(a), the results show that the Pareto approximate 468 

front of the pre-conditioned search is much wider than that of the standard search, and 469 

clearly dominates that of the standard search in all the regions across the entire 470 

objective space. Additionally, in the case of the pre-conditioned search, the solutions 471 

from 6000 evaluations are as good as those from 8000 evaluations and 10,000 472 

evaluations. And they are much better than the solutions from the standard baseline 473 

search. It should be noted that the slow progress in the Pareto approximate fronts from 474 

6000 to 10,000 evaluations reveals the difficulty of the inter-basin multi-reservoir 475 

operation system problem. 476 

Fig. 10(b) shows the best and worst Pareto fronts from a NFE of 500,000 in the 477 

evolution process of ten seeds trials. Although it is obvious that the best Pareto 478 

approximate front of the pre-conditioned is as good as that of the standard search in 479 

all the regions across the entire objective space approximately, the Pareto solutions 480 
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from 10 trials of the pre-conditioned search have significantly reduced variation, 481 

indicating a more reliable performance of the pre-conditioned method. In other words, 482 

the results show that the Pareto solution from one random seed trial of the 483 

pre-conditioned search is as good as the best solution from ten random seed trials of 484 

the standard search. That is to say, in the case of the pre-conditioned search, one 485 

random seed trial with a NFE of 500,000 is sufficient to obtain the best set of Pareto 486 

solutions, however, in the case of the standard search, ten seed trials with a total of 487 

500,000 ∗ 10 = 5,000,000 NFE are required to obtain the Pareto solutions. Note that 488 

the NFE of Sobol'’s analysis is 256,000, which is about half of the NFE of one 489 

random seed trial. Thus, an improvement in search reliability can significantly reduce 490 

the computational demand for a complex search problem such as the multi-reservoir 491 

case study, even when the computation required by sensitivity analysis is included. 492 

5.3 Discussions 493 

For a very large and computationally intensive ROS problem, the full search 494 

problem is likely to be difficult so that it could not be optimized sufficiently in 495 

practice. The simplified problems can be used to generate high quality 496 

pre-conditioning solutions and thus dramatically improve the computational 497 

tractability of complex problems. This, however, requires using suitable optimization 498 

algorithms like ε-NSGAII which are capable of overcoming the risks for pre-mature 499 

convergence when pre-conditioning search (Fu et al., 2012). 500 

The methodology tested in this study aims to reduce the number of decision 501 

variables through sensitivity-guided decomposition to form simplified problems. The 502 
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optimization results from the two ROS problems show the reduction in decision space 503 

can make an impact on the reliability and efficiency of the search algorithm. For the 504 

Dahuofang ROS problem, recall that the original optimization problem has 39 505 

decision variables, and the simplified problem has 11 decision variables based on 506 

Sobol'’s analysis. In the case of the inter-basin multi-reservoir operation system, the 507 

original optimization problem has 126 decision variables, and the simplified problem 508 

has a significantly reduced number of decision variables, i.e., 17. Searching in such 509 

significantly reduced space formed by sensitive decision variables makes it much 510 

easier to reach good solutions. 511 

Although Sobol'’s global sensitivity analysis is computationally expensive, it 512 

captures the important sensitive information between a large number of variables for 513 

ROS models. This is critical for correctly screening insensitive decision variables and 514 

guiding the formulation of ROS optimization problems of reduced complexity (i.e., 515 

fewer decision variables). For example, in the Dahuofang ROS problem, accounting 516 

for the sensitive information, i.e., using total-order or first-order indices, result in a 517 

simplified problem for threshold of 10% as shown in Fig. 4. Compared with the 518 

standard search, this sensitivity-informed problem decomposition dramatically 519 

reduces the computational demands required for attaining high quality approximations 520 

of optimal ROS tradeoffs relationships between conflicting objectives, i.e., the best 521 

Pareto fronts from a NFE of 8000 in the case of the pre-condition search are 522 

approximately the same as the best Pareto front from a NFE of 500,000 in the case of 523 

the standard baseline search. 524 
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It should be noted that the sensitivity-informed problem decomposition framework 525 

is completely independent of multi-objective optimization algorithms, that is, any 526 

multi-objective algorithms could be embedded in the framework, including 527 

AMALGAM (Vrugt and Robinson, 2007). When dealing with three or more 528 

objectives, the formulation of the optimization problems with a significantly reduced 529 

number of decision variables will dramatically reduce the computational demands 530 

required to attain Pareto approximate solutions in a similar way to the two-objective 531 

optimization case studies considered in this paper. 532 

 533 

6 Conclusions 534 

This study investigates the effectiveness of a sensitivity-informed optimization 535 

method for the ROS multi-objective optimization problems. The method uses a global 536 

sensitivity analysis method to screen out insensitive decision variables and thus forms 537 

simplified problems with a significantly reduced number of decision variables. The 538 

simplified problems dramatically reduce the computational demands required to attain 539 

Pareto approximate solutions, which themselves can then be used to pre-condition and 540 

solve the original (i.e., full) optimization problem. This methodology has been tested 541 

on two case studies with different levels of complexity- the Dahuofang reservoir and 542 

the inter-basin multi-reservoir system in Liaoning province, China. The results 543 

obtained demonstrate the following: 544 

1. The sensitivity-informed optimization problem decomposition dramatically 545 

increases both the computational efficiency and effectiveness of the optimization 546 
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process when compared to the conventional, full search approach. This is 547 

demonstrated in both case studies for both MOEA efficiency (i.e., the NFE required to 548 

attain high quality tradeoffs) and effectiveness (i.e., the quality approximations of 549 

optimal ROS tradeoffs relationships between conflicting design objectives). 550 

2. The Sobol'’s method can be used to successfully identify important sensitive 551 

information between different decision variables in the ROS optimization problem 552 

and it is important to account for interactions between variables when formulating 553 

simplified problems. 554 

Overall, this study illustrates the efficiency and effectiveness of the 555 

sensitivity-informed method and the use of global sensitivity analysis to inform 556 

problem decomposition. This method can be used for solving the complex 557 

multi-objective optimization problems with a large number of decision variables, such 558 

as optimal design of water distribution and urban drainage systems, distributed 559 

hydrological model calibration, multi-reservoir optimal operation and many other 560 

engineering optimization problems. 561 
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Table 1 Reservoir characteristics and yearly average inflow (108 m3) 662 

Reservoir 

name 

Minimum 

capacity 

Utilizable 

capacity 

Flood control 

capacity 

Yearly average 

inflow 

Dahuofang 1.34 14.30 10.00 15.70 

 663 

  664 
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Table 2 Characteristics of each reservoir in the inter-basin multi-reservoir system 665 

Reservoir 
Active storage (108 m3) Role in water supply 

project Flood season Non-flood season 

Dahuofang 10.00 14.30 Supplying water 

Guanyinge 14.20 14.20 
Supplying water and 
exporting water to 

Shenwo 

Shenwo 2.14 5.43 
Supplying water and 
importing water from 

Guanyinge 

 666 
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Fig. 1 Reservoir operational rule curves 669 

Fig. 2 Flowchart of the sensitivity-informed methodology 670 
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Fig. 4 First-order and total-order indices for the Dahuofang ROS problem regarding 672 

(a) industrial shortage index and (b) agricultural shortage index. The x-axis labels 673 

represent decision variables (water storage volumes on the industrial and agricultural 674 

curves) 675 

Fig. 5 Performance metrics for the Dahuofang ROS problem - (a) Generational 676 

Distance; (b) Additive Epsilon Indicator; (c) Hypervolume 677 

Fig. 6 Pareto fronts derived from pre-conditioned and standard full searches for the 678 

Dahuofang ROS problem. (a) Sample Pareto fronts with different numbers of function 679 

evaluations for one random seed trial. (b) The best and worst Pareto fronts of ten seed 680 

trials. 681 

Fig. 7 Computational savings for two hypervolume values - (a) ℎ𝑦𝑦𝑒𝑦𝑦𝑦𝑦𝑦𝑦𝑒 =682 

0.80; (b) ℎ𝑦𝑦𝑒𝑦𝑦𝑦𝑦𝑦𝑦𝑒 = 0.85 683 

Fig. 8 First-order and total-order indices for the inter-basin multi-reservoir operation 684 

problem regarding industrial shortage index and agricultural shortage index. The 685 

x-axis labels represent decision variables (water storage volumes on the industrial, 686 

agricultural and water transferring curves) 687 

Fig. 9 Performance metrics for the inter-basin multi-reservoir water supply operation 688 

problem - (a) Generation Distance; (b) Additive Epsilon Indicator; (c) Hypervolume 689 
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Fig. 10 Pareto fronts derived from pre-conditioned and standard full searches for the 690 

inter-basin multi-reservoir operation problem. (a) Sample Pareto fronts with different 691 

numbers of function evaluations for one random seed trial. (b) The best and worst 692 

Pareto fronts of ten seed trials. 693 
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