
Response to reviewers’ comments 

"Flood and drought hydrologic monitoring: the role of model parameter 
uncertainty" by N. W. Chaney, J. D. Herman, P. M. Reed, and E. F. Wood. 
 
We thank the reviewers for their time and helpful comments. We have addressed 
each point below. Reviewer comments are shown in blue italics, while author 
responses are shown in unformatted text. 
 
Reviewer #1: This is an interesting study looking at parameter uncertainty and its 
impact on extreme hydrologic event modeling by applying annual, monthly, and daily 
scale constraints to ensemble simulations corresponding to 10,000 Latin hypercube 
sample sets. 

Page 1698, line 19: To me “accurate” means unbiased. I think the priors are better to 
be accurate (unbiased), precise (reduced uncertainty, narrow distribution), but also 
appropriately represented (e.g., derived with minimum-relative-entropy or maximum- 
entropy concepts). The shapes of the prior pdfs might significantly affect the sensitivity 
analysis results, especially for a problem with a high-dimensional parameter space.  

Here we refer to improvement in general rather than a precise statistical meaning. 
The reviewer raises a good point and we have revised this sentence accordingly. 
This sentence aims to reflect discussion section 5.2. Here it is recognized that using 
the same prior distribution at every grid cell throughout the globe without 
accounting for local characteristics is a missed opportunity. Ongoing research by the 
the authors is looking into using available high resolution data and available 
observation networks to provide improved prior distributions at each grid cell. 

Page 1699, line 27: Yes I agree that it is possible that an optimization get the right 
answer (e.g., good fits) for wrong reasons, for example, when model structural uncer- 
tainty or data uncertainty is large. The ensemble framework would make it possible to 
separate the parameter uncertainty from the data/model structural uncertainty.  

Yes, the ensemble approach allows an exploration of both parameter uncertainty 
and model structural uncertainty. This study focuses on the issue of parameter 
identifiability, which proves a difficult task even for a single model structure given 
observations of global runoff. Although not the primary focus of this work, the 
impact of model structural uncertainty is apparent in Figure 1 for the regions in 
which no parameter sets meet the error criteria, primarily in arid regions. 

Page 1701, line 1: the use of 10000 sample sets is arbitrary. Please justify. It is unclear 
whether this is adequate without a convergence test (e.g., evaluating the SA results vs 
the number of LH samples). The required numbers of samples depends on choices of 
response variables/metrics. BTW, one advantage of LHS is that you can add 
augmented samples to the existing ones if necessary.  



The ensemble size for this study was chosen to balance the need for a suitably sized 
behavioral ensemble with computational requirements. As Figure 1 shows, many 
grid cells contain a very small percentage of the original 10,000 parameter sets in 
the behavioral set; those containing zero could be considered an indication of 
structural error. The ensemble size of 10,000 represents the limits of current 
computational power, and to the authors’ knowledge is the largest Monte Carlo 
study of parameter uncertainty in the field to date. 

The variable for which convergence should be monitored is the number of 
behavioral parameter sets—for example, the ratio of the standard error of this 
estimate to its mean. We suggest the following convergence indicator: 

𝐶 =  
𝜎𝑁�𝑏
𝑁�𝑏

 

Where 𝑁�𝑏 is the number of behavioral parameter sets at a particular sample size. 
Using a bootstrapping scheme with 100 resamples, we observe the convergence of 
this indicator to approximately zero as a function of increasing sample size:  

 

At an ensemble size of 10,000, the standard error of the number of behavioral 
parameter sets is approximately 1-2% of the estimates themselves, suggesting that 
this is an appropriate size. The convergence of the CDF distance metric follows from 
the convergence of the number of behavioral parameter sets. 

Page 1702, line 21: that is, assume that model structural uncertainty and data 
uncertainty are negligible.  

To build the observation dataset, we assume that the model structure is adequate to 
capture the spatial heterogeneity of runoff at a 1.0 degree spatial resolution. 



Understanding that model structural uncertainty will exist and the observations are 
uncertain leads us to use a parameter screening criteria (relative error < 10% and 
linear correlation > 0.75) that is able to account for existing uncertainties in the 
derived observation runoff fields. 

Page 1703, line 9: what is “temperature” climate group? It should be “temperate” or 
“mesothermal”. Why not spell out the 5 veg groups and the 5 precipitation groups as 
well?  

Thank you for this observation. The typo has been corrected. It is now defined as the 
temperate climate group.  

Page 1704, line 5: the range for the parameter Ksat seems is too narrow. And is it 
sampled in log10 space?  

 Yes, the parameter Ksat is sampled in log10 space. As noted in the caption of Table 1, 
all parameters spanning two or more orders of magnitude are sampled in log10 
space. The chosen minimum and maximum values of Ksat are selected based on the 
look-up table used for the VIC land surface model. This table which can be seen at 
http://www.hydro.washington.edu/Lettenmaier/Models/VIC/Documentation/Info
/soiltext.shtml has a Ksat minimum value of 297.5 and a maximum value of 9602.5. 
The range selected in this study (100-10,000) encompasses these values.  

Page 1704, line 11-25: I am fine with the parameter set screening criteria (e.g., relative 
error > 10%, and correlation < 0.75), but I am not sure it is the best we can do by 
assuming the behavioral parameter values to have the same weights in the posterior 
distributions. The procedure is similar to rejection sampling, but without replacement 
and is not dependent on previously accepted sample values. Two simple practices 
might yield better estimate of the posterior distributions: 1) the samples are accepted 
with a probability as a function of the corresponding misfits; 2) the samples are 
assigned weights as a function of misfits (which assumed to be normally distributed). 
Again, the point is that the behavioral sample values are not equally probable.  

We treat the behavioral samples with equal probability when developing the 
posterior CDF due to the potential for errors in the observed data and model 
structure. Although we do not explicitly estimate these errors, they may significantly 
alter the goodness-of-fit measures (annual relative error and monthly correlation). 
Therefore, we use the behavioral criteria as a filter and do not attempt to distinguish 
the likelihood of individual samples beyond that.  

Page 1705, line 21: an alternative metric to CDF distance could be relative entropy (or 
Kullback-Leibler distance), which measures the relative change in 
information/uncertainty.  

The two metrics share some similarities. The CDF distance used in this study 
between two cumulative distributions F(x) and G(x) can be written as: 

http://www.hydro.washington.edu/Lettenmaier/Models/VIC/Documentation/Info/soiltext.shtml
http://www.hydro.washington.edu/Lettenmaier/Models/VIC/Documentation/Info/soiltext.shtml


𝐷𝐶𝐶𝐶 = � |𝐹(𝑥) − 𝐺(𝑥)| 𝑑𝑑
𝑥𝑢

𝑥𝑙
 

Where xl and xu are the lower and upper bounds of the parameter in question, which 
we have normalized to [0,1] to improve interpretability of the result. This equation 
has been added Section 3.2.1.  

By contrast, the Kullback-Leibler divergence (or expected log-likelihood ratio) 
between two probability distributions f(x) and g(x) is given by: 

𝐷𝐾𝐾 = � 𝑓(𝑥) ln
𝑓(𝑥)
𝑔(𝑥)

 𝑑𝑑
𝑥𝑢
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For the parameter in each grid cell with the maximum CDF distance value, the two 
measures are strongly related: 

 

It should be noted that the computation of DKL requires an additional step to 
estimate the PDFs – in this case, simple histogram binning was used, but this could 
be improved with kernel density estimation. 

Page 1707, line 10: how many cores/cpus are involved? Did you run the simulations or 
part of them in parallel?  

The model was parallelized to run one grid cell on each processor, for a total of 
15,836 processors. Each processor evaluated 10,000 parameter sets for its specified 
grid cell. The scale of the experiment was made possible by the Blue Waters 
supercomputer at the University of Illinois. 



Page 1708, line 22: “a limited number of behavioral. . .” I would view the issue as exis- 
tence of significant model structural errors. The screening criteria for “being 
behavioral” might need to be relaxed for these regions.  

Figure 1 shows the global distribution of behavioral parameter sets for 
progressively more difficult error criteria. Even with annual error below 20% as the 
sole criterion, several regions contain zero behavioral sets. It is reasonable to 
attribute these cases to model structural uncertainty. This issue has been clarified in 
the manuscript.  We wish to also note that for operational flood and drought 
monitoring we would relax the screening criteria since we wish to have a simulation 
in all areas. However, the purpose of this study is to show the skill of the model 
using a set of predefined acceptance criteria.   

Page 1711, line 1-4: the statement is not clear to me.  

The sentence has been revised: “While predictions in tropical climates are not well 
constrained with this approach, the results are encouraging for monitoring the 
hydrologic cycle with properly-constrained land surface models in continental and 
polar climates”. 

Page 1713, line 18: do you meant “local” temporally, or spatially, or both? Regarding 
the prior distributions, the shape should be considered carefully in addition to refining 
its range.  

This refers to the use of spatial information to inform prior distributions. Ideally, in 
the absence of structural error, the optimal parameter values would not change in 
time, though this is not guaranteed in practice. 

This section has been revised:  

Given the need to rely on monthly and annual observations to constrain the 
model parameter uncertainty, local prior distributions should be informed by 
spatial land surface characteristics to constrain the initial ensemble spread and 
the flow duration curves. Spatially distributed information could also be used to 
refine the distribution family and shape of the priors in addition to their ranges. 

Page 1714, line 9: add refs for “random forests”.  

The reference to Liaw and Wiener (2002) has been added. 

Page 1715, line 12: I agree that adding process models lead to higher parameter 
dimensionality and more parameter uncertainty. Such additions have the potential to 
reduce model structural uncertainty; meanwhile the increased parametric uncertainty 
can be reduced through inversion, hopefully in a physically more plausible way.  



We agree with the reviewer’s comment, and would add that a reliable approach to 
inversion for more highly parameterized models will depend on accurate 
observations of fluxes at higher spatial and temporal resolutions. 

 

Reviewer #2: The authors setup a quite impressing experiment for global scale 
simulation of hydrological extremes. The paper is nice, the approach is sound and the 
results allow learning very much about uncertainty of model parameters  

The use of the CDF-distance is interesting. A figure on the concepts would be useful to 
present it. 

Fenwick et al. (2014) provide an illustration of the CDF distance concept: 

 

The area between the prior and posterior CDFs is used as a simple distance 
measure. The method proposed by Fenwick et al. (2014) can be generalized to any 
number of classes conditioned on a performance metric, but in this study we use 
only two classes (behavioral and non-behavioral). In the manuscript, we have added 
the equation to compute the CDF distance in Section 3.2.1 to clarify this. 

I do not catch why the authors used the whole 1948-2010 period to select their 
parameter ensemble and do not include any validation of their ensemble estimations 
of discharge. I argue that if they would have split their period into two or three slices, 
they could have isolated an even more narrow parameter ensemble.  

We agree that dividing the 1948 to 2010 period into different slices and then using 
some slices to constrain the ensemble and others for validation is preferable.  
However, the observations used in this study make this approach infeasible. As 
discussed in section 2.3, the observations used are the GRDC monthly climatology 
(12 data points per grid cell) of runoff at a 1.0 degree spatial resolution. To define 



the climatology, we use the longest extent possible with the available meteorological 
forcings (i.e., 1948-2010).  

1700 – 12-14: Please provide some references here.  

Thank for pointing this out. After revisiting the literature on the subject, we have 
decided that “Many” is not an appropriate term for the current state of accounting 
for meteorological uncertainty in these hydrologic monitoring systems. We have 
included a reference and have changed the sentence to  “A growing number of 
hydrologic monitoring systems already include the impact of uncertainty in 
meteorological forcing, which should be extended to include model parameter 
uncertainty”. 

1701 – 15-20: I understand that the Sheffield et al. (2006) is a well-cited source for 
having a description of the meteorological forcing. I wonder if it anyway possible to 
elaborate here on the impacts of using TRMM (available since 2002) on the 
homogeneity and accuracy of precipitation estimates. It can be here or in the 
discussion.  

The TRMM data is not used directly in the Princeton Global Forcing (PGF) dataset. 
Instead, it is used to spatially and temporally downscale coarse observation datasets 
that cover the entire period (e.g., CRU and the NCEP-NCAR reanalysis). For the 
temporal downscaling, the precipitation is downscaled from the daily NCEP-NCAR 
reanalysis product to a 3-hourly product by using a probabilistic approach based on 
sampling from TRMM. The TRMM data is also used to spatially downscale the 2.0 
arc-degree meteorological data down to a 1.0 spatial resolution. This is done via a 
probabilistic approach based on relationships between precipitation intensity and 
grid cell fractional precipitation coverage. In that sense, the TRMM data is mostly 
used to determine the temporal and spatial properties of rainfall; the data is not 
actually merged therefore it does not create artificial inhomogeneities. For further 
details, see [Sheffield et al., 2006].  

- You sample your parameter space from table 1 10’000 times (this is well declared) 
- You apply each set to all 1

 

grid cells of your domain. Eg. 10’000 simulations with no 
spatial distribution of the parameters (this is hinted at lines 1704:7-8, but I’m not sure 
this is what you mean there.  
- You evaluate separately for each cell the behavioural parameters (well declared) - 
You make the analysis  

This is correct. The text has been updated to clarify the spatial distribution issue: 

Each parameter is drawn from a uniform distribution; parameters that cover 2 
or more orders of magnitude are sampled in log10 space. For each LHS 
parameter set, the model is run at a 3 h time step between January 1948 and 
December 2010 with a 10 year spin up period. Parameter values are assumed 
to be uncorrelated in space. The 10 000 ensembles are run for all 1.0 degree 



land grid cells over the globe excluding Greenland and Antarctica (15 836 grid 
cells in total). 

Another question here: Why using the whole period 1948-2010 to discriminate the 
parameters and not dividing into let’s say 20 to 30 years slices and have for instance a 
periods for training and evaluation? 

(See response to duplicate comment above) 

1708 – 4-9: I think that when the number of “behavioral parameter sets” rapidly 
declines when introducing additional constraints, then many of the realization 
fulfilling the first constraints were right for the wrong reason. Nice way to show this 
here!  

We thank the reviewer for highlighting this contribution. It is possible that the 
inclusion of more observed data (daily runoff, for example) would invalidate an 
additional subset of the ensemble members. 

1708 – 20-26: True statements. Does this in any way deviate from your expectations?  

Over the past years, the authors have been involved in the development and 
implementation of the African Flood and Drought Monitor [Sheffield et al., 2014]. 
This experience brought to light the strengths and weaknesses of these types of 
systems due to model uncertainty. The primary goal behind this study was to 
quantify and characterize this uncertainty.  Although the result is not surprising, it 
has reinforced the fact that structural uncertainties play a significant role in these 
types of monitoring systems.  

1709: Section 4.2.1 reads well, but I ask myself what can a non-VIC user learn from this 
model specific sensitivity analysis. Some general recommendations for readers willing 
to explore such approaches would be welcome.  

Even though each land surface model (LSM) has its own characteristic model 
structure, many times they share parameterizations; this leads to, at times, strong 
similarities between LSMs. For example, the Jarvis model of canopy resistance is 
widely used in many LSMs. This scheme relies on the minimum stomatal resistance 
parameter. Given the substantial role that this parameter has in this study, it is 
straightforward to hypothesize that minimum stomatal resistance will also play an 
important role in other LSMs. Indeed, this appears to be the case as noted by a 
sensitivity analysis of the Noah land surface model [Rosero et al., 2010]. 
Furthermore, although other models do not use VIC’s characteristic variable 
infiltration curve or its baseflow parameterization, they do tend to use similar 
simple parameterizations. They share the weakness with VIC in that they rarely 
account for local characteristics to either define the parameter prior distribution or 
to define the model structure of runoff generating processes. This is discussed in 



sections 5.2 and 5.3. In the revised manuscript we will ensure that the connection 
between the results in section 4.2.1 and these discussion sections is more apparent.  

1711: Again, here you elaborate on parameters and hydrological extremes in a very 
VIC-focussed perspective. Does this somewhat deviate from the perceptual model 
implemented in the VIC algorithms? Do you learn something here that you could later 
implement to reduce uncertainty? In this respect: Currently a paper by Pechlivanidis 
and Arheimer (2015, HESSD) is being also discussed for publication in HESS. They also 
look at large scale hydrological modelling and try to implement the PUB 
recommendations. Could your approach also being adapted to implement the PUB 
recommendations?  

This section aims to provide insight into the drivers of remaining uncertainty after 
applying the monthly and annual runoff constraints. The Spearman correlation 
helps us understand the parameters that are driving the spread in the flow duration 
curves in Figure 5. The spatial differences in these parameters are driven by the 
unique characteristics of each region. For example, when there is a distinct seasonal 
cycle to precipitation, the partitioning between baseflow and surface runoff plays an 
important role – this does not seem to be the case in areas without a distinct 
seasonal cycle. These results coincide with our understanding of the model 
structure of the VIC model. The challenge here is that not using local environmental 
characteristics to provide improved local prior parameter distributions and a lack of 
daily observations leads to a large spread in the daily flow duration curves. As 
discussed in section 5.2 and 5.3, providing improved prior distributions and 
defining a model structure that can use the available data provides a path to begin to 
resolve these challenges. In the revised manuscript we will ensure that the 
connection between the discussion section and these results is more apparent. 

A key focus of the PUB initiative is parameter regionalization, which Pechlivanidis 
and Arheimer (2015) achieve by clustering sub-basins on the basis of land surface 
and climate characteristics. The present study suggests the difficulty of properly 
constraining model parameters even for locations in which runoff observations are 
available, so parameter regionalization will require some additional effort. However, 
the PUB recommendations for large scale modeling proposed by Pechlivanidis and 
Arheimer (2015)—in particular, the classification of sub-basins using spatial 
characteristics—are a focus of the first author’s ongoing work. 

1714-1715: How long do you think the FAO Map would be still the state of the art?  

Although the FAO Soil Map of the World is still widely used in global land surface 
modeling, there are upcoming alternatives. One especially exciting dataset is the 
GlobalSoilMap data product that will provide soil properties over the globe at a 100 
meter spatial resolution [Arrouays et al., 2014]. This data will provide a 
breakthrough in the representation of soil properties in global land surface and 
hydrologic modeling.  



 Artwork: I know that it is difficult to create adequate visualization of global data, but 
my eyes are really struggling when inspecting Figure 1,3 and 5. I would welcome a 
supplement with high-resolution versions of these Figures.  

Agreed, we will request for these to appear as full-page figures in vector format 
(zoomable) during proofing. 

1703 – 1-9: Concerning the Köppen-Geiger climate you might find some ideas in 
Teuling (2011). Just something that came to my mind reading the paragraph, no need 
to implement anything to reply here.  

We thank the reviewer for this recommendation. The shift from a discrete climate 
classification to a continuous one would be an interesting way to more properly 
understand how the change in behavioral parameter sets changes in a spatially 
continuous way. However, this work aims to allow the reader to quickly distinguish 
the differences in model parameter and structure uncertainty across discrete 
climate types. By using a simple discrete classification, we ensure that the abrupt 
changes are clearly identified. As one of the co-authors is exploring in another 
project, using these types of continuous data will be helpful as we attempt 
regionalize the behavioral parameter sets.   

1705: I find the described approach quite interesting. I wonder if I am the only person 
that would welcome here a graphic rendering of the steps involved here (flowchart 
with boxes, arrows and references).  

We thank the reviewer for this suggestion. The following graphic will be added in 
the updated manuscript to visualize the different steps involved in creating and 
constraining the ensemble. 

 



1707 – 22-23: “However, the most prominent feature is the lack of runoff observations 
(grey areas)”. Well, this finding could have been made also a priori and so further 
reduce the number of grid cells to be computed (or increase resolution to 0.5 degrees).  

We thank the reviewer for this important insight. For the purposes of this study, we 
agree that solely running the model on the grid cells that have observations would 
have been sufficient. However, another goal of this project was to make the 10,000 
member ensemble simulation available to the greater scientific community for 
future additional analysis with other observation datasets that might cover some of 
the regions without observations in the GRDC runoff climatology database. For this 
reason, we wished to run the model over all land grid cells.  

1708- 1-9: You describe Figure 2 (top panel) as follows: “Tropical and dry climates see 
the largest decrease in behavioral parameter sets while continental, polar, and 
temperate regions experience the least.” I understand what you mean, but I find the 
formulation could be improved. When the number of “behavioral parameter sets” 
decreases, than what is the maximum number of “behavioral parameter sets”? I think 
here you should use a more straight formulation and just say: “According to the 
evaluated criteria Tropical and dry climates see smallest portion of behavioral 
parameter sets while continental, polar, and temperate regions experience the highest 
number.” Please also consider to switch the two sentences “In this case, the number of 
acceptable parameter sets over arid regions is significantly smaller than other 
climates.” and “This is especially true over the North American mountain west, the 
Sahel, and most of Australia.”  

Thank you for the suggestion. We have revised this paragraph as follows: 

Figure 2 further summarizes these results as a function of climate classification. 
Although most of the regions with observations meet the annual constraints 
(10 and 20 percent relative error), there are distinct differences between 
climates. Tropical and dry climates see the smallest proportion of behavioral 
parameter sets while continental, polar, and temperate regions experience the 
largest. The number of behavioral parameter sets decreases even further for all 
climate types when applying the monthly constraint (Pearson correlation 
between the simulated and observed normalized monthly climatology). In the 
case of arid regions, the number of acceptable parameter sets is significantly 
smaller, especially for the North American mountain west, the Sahel, and most 
of Australia. 

This is sound, well written manuscript. Very compact and with the right balance of 
pictures and tables. I experienced all along the manuscript that the authors assume 
that all readers are perfectly familiar with VIC. I can recommend publication after 
minor revisions.  

We would again like to thank both reviewers for their time and helpful comments. 
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