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Dear Dr. Archfield and Reviewers,  

Thank you very much for the helpful feedback on the manuscript and for the opportunity to 
submit a revised version. All changes are indicated in blue in the marked up manuscript and 
supplementary materials below. 

In revising the manuscript, we have closely followed the changes proposed in the point-by-point 
responses to the reviewers’ comments that were made during the open discussion. We have 
therefore not duplicated these responses here, but simply summarize the main changes made: 

1.! We clarified the two key conceptual points brought up by the reviewers, namely: 
a.! Errors on the process-based model are driven by parameter estimation 

uncertainties (l 445-459). However, we purposely chose to not disentangle them 
from errors on the modeled processes themselves because (i) process-related 
errors were already assessed in a previous paper (Muller 2014 WRR) and (ii) 
we’d like to assess operational modeling performances in ungauged basins, 
where these error sources are confounded (l 156-161). 

b.! While more complex (and presumably more accurate) statistical methods exist, 
Chalise 2003 is the most adapted (in terms of data requirements) recent 
statistical approach for the considered region. It is also the most likely statistical 
approach to be used for practical purposes in Nepal. (l. 190-198). 

2.! A descriptive flow chart (Figure 2) was added to clarify the numerical method used to 
assess prediction performances under change. 

3.! We added minimum and maximum values to the catchments characteristics presented in 
Table 1. 

4.! The discussion on the attribution of sources of uncertainty (Section 4.1.1) is considerably 
shortened. It now only presents the main results drawn from the additional cross-
validation analyses, now presented in supplementary materials.  

5.! The discussion relating catchment characteristics to the performance of the statistical 
method for prediction under change (Section 4.2) is considerably shortened as well. The 
discussion on the resilience of flow regimes and the related Monte Carlo analysis are 
now presented in supplementary materials. 

We hope that these changes address the reviewers’ concerns and improve the legibility of the 
manuscript. Thank you again for your consideration. 

Yours truly  , 

Marc Muller and Sally Thompson  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Abstract. The prediction of flow duration curves (FDCs) in ungauged basins remains an important

task for hydrologists given the practical relevance of FDCs for water management and infrastructure

design. Predicting FDCs in ungauged basins typically requires spatial interpolation of statistical or

model parameters. This task is complicated if climate becomes non-stationary, as the prediction

challenge now also requires extrapolation through time. In this context, process-based models for5

FDCs that mechanistically link the streamflow distribution to climate and landscape factors may

have an advantage over purely statistical methods to predict FDCs.

This study compares a stochastic (process-based) and statistical method for FDC prediction in

both stationary and non-stationary contexts, using Nepal as a case study. Under contemporary con-

ditions, both models perform well in predicting FDCs, with Nash-Sutcliffe coefficients above 0.8010

in 75% of the tested catchments. The main drivers of uncertainty differ between the models: pa-

rameter interpolation was the main source of error for the statistical model, while violations of the

assumptions of the process-based model represented the main source of its error. The process-based

approach performed better than the statistical approach in numerical simulations with non-stationary

climate drivers. The predictions of the statistical method under non-stationary rainfall conditions15

were poor if (i) local runoff coefficients were not accurately determined from the gauge network,

or (ii) streamflow variability was strongly affected by changes in rainfall. A Monte Carlo analy-

sis shows that the streamflow regimes in catchments characterized by frequent wet-season runoff

and a rapid, strongly non-linear hydrologic response are particularly sensitive to changes in rainfall

statistics. In these cases, process-based prediction approaches are favored over statistical models.20
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1 Introduction

The flow duration curve (FDC) provides a compact summary of the variability of daily streamflow

by indicating what proportion of the flow regime exceeds a given flow rate. FDCs have consider-

able practical relevance, particularly in supporting decisions that are affected by the availability and

reliability of surface water. Common applications of FDCs include the design and management of25

hydropower infrastructure (e.g., Basso and Botter, 2012; Müller , 2015), the determination of envi-

ronmental flow standards for ecosystem protection (e.g., Lazzaro et al., 2013), the allocation of water

resources for consumptive uses (e.g., Alaouze, 1989) or the prediction of streamflow time series in

ungauged or poorly gauged catchments (e.g., Hughes and Smakhtin, 1996; Westerberg et al., 2014).

30

Despite their utility, empirical FDCs are unavailable for many basins, primarily because they

require extensive on-site observations of daily streamflow (Vogel and Fennessey, 1994). Globally,

the majority of catchments remain ungauged (or the gauge data that exist are subject to signifi-

cant quality assurance and data availability constraints). Furthermore, the global number of stream

gauges continues to decline because of ongoing budgetary constraints faced by water monitoring35

agencies (Stokstad, 1999; United States Geological Survey, 2015). Therefore FDCs must typically

be estimated in data-scarce areas. The most widely used techniques for FDC estimation are simple,

graphical methods. Such empirical methods are easy to implement but often rely on overly simplis-

tic assumptions that lead to substantial prediction errors. For instance in Nepal, the regionalization

method prescribed in official design manuals (e.g., Chitrakar, 2004; Alternative Energy Promotion40

Center, 2014) relies on one in-situ observation of streamflow during the dry season to scale stan-

dardized regional indices for monthly flows. The procedure neglects the inter-annual variability of

low-flows, which leads to important biases in the predicted flow distributions (see Section S1 of

Supplementary Materials ). Even in gauged catchments, FDCs constructed from historical observa-

tions may not represent current flow conditions well, because flow regimes are impacted by climate45

change and anthropogenic alterations of the catchments (e.g. Botter et al., 2013; Mu et al., 2007).

Predicting streamflow in ungauged basins, particularly in the context of environmental change, re-

mains both a fundamental necessity for water managers and a major research challenge (Blöschl

et al., 2013; Montanari et al., 2013).

Recent efforts to predict FDCs in ungauged catchments focus on statistical approaches that predict50

the flow distribution based on the catchment’s similarity to nearby, gauged watersheds (Castellarin

et al., 2013). Index flow approaches, which regionalize specific index flows (typically the mean

flow), and use those indices to rescale empirical FDCs from similar catchments, are particularly

popular (e.g., Chalise et al., 2003; Castellarin et al., 2004b; Sauquet and Catalogne, 2011; Arora

et al., 2005). While differing in methodological details, all index flow approaches assume that FDCs55

do not vary within homogeneous regions, except by a scaling factor. Because they do not assume

any specific runoff-generating process, statistical methods are versatile. They have been successfully
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been applied globally to predict FDCs in a variety of climates and catchment types (Blöschl et al.,

2013). However, methods are also insensitive to the diversity of controls on the shape of the FDC

exerted by climate processes and catchment characteristics. This may affect their reliability under60

non-stationary conditions (Milly et al., 2008). Finally, the calibration of statistical methods relies

on extensive streamflow observations from a large number of representative and well characterized

catchments (e.g., Cheng et al., 2012; Coopersmith et al., 2012). Their performance is therefore sen-

sitive to the spatial density of available gauges Blöschl et al. (2013), and their reliability in regions

where streamflow data is truly scarce is uncertain.65

Stochastic, process-based models that mechanistically link the drivers, state and response of the

system are a promising avenue to address these issues. In these models, basic assumptions about

the stochastic structure of rainfall and the (deterministic) response of catchments allow the analytic

derivation of streamflow probability density functions (PDFs). (Note that because the FDC can be

obtained directly by transforming the PDF, a predictive technique that yields the streamflow PDF70

will also allow the FDC to be estimated). Botter et al. (2007b) show that runoff follows a gamma

distribution if catchments behave as a linear reservoir, forced by stochastic rainfall that follows a

marked Poisson process. The resulting gamma distribution depends on two parameters that are de-

termined by the recession characteristics of the catchment, and by the frequency and intensity of

effective rain. This process-based approach to the streamflow PDF has been extended to include75

the fast flow component of streamflow (Muneepeerakul et al., 2010), non-linearities in subsurface

storage-runoff relationships (Botter et al., 2009), the effects of short-term snowmelt (Schaefli et al.,

2013) and the carryover of subsurface storage between seasons in seasonally dry climates (Müller

et al., 2014). Although the stochastic framework allows the effects of changes in climate or land-

scape to be independently modeled, it relies on strong simplifying assumptions about the spatial ho-80

mogeneity of catchments. These assumptions makes the existing process models less versatile than

statistical methods. Nonetheless, the approach has low calibration requirements because it relies on a

small number of parameters, which can be determined using rainfall, climate and geomorphological

characteristics of the catchments (Doulatyari et al., 2015). This information is increasingly available

in ungauged basins, thanks to remote-sensing technologies, even when ground-based measurements85

are sparse.

Process-based models successfully reproduce streamflow PDFs in numerous gauged catchments

worldwide (Botter et al., 2007a; Ceola et al., 2010), including Nepal (Müller et al., 2014). Yet their

predictive performance in ungauged basins remains largely unassessed, particularly in regions where

the local gauge density is globally representative (as opposed to densely monitored catchments in90

developed countries such as, e.g., France and Austria in Castellarin et al. (2013) . For lower gauge

densities, it is unclear whether the advantages of the process-based approaches, which are derived

from an explicit representation of flow-generating processes, are outweighted by the limitations im-
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posed by the restrictive assumptions underlying these methods - and whether this trade-off is altered

by non-stationarity in climate drivers.95

Using Nepal as a test case, this study compares the process-based and statistical approaches on

the basis of (i) their ability to predict FDCs in ungauged basins, (ii) their sensitivity to data-scarcity,

represented both by the spatial density of the stream gauge network and by the temporal extent

(length) of the available streamflow records, and (iii) their ability to accommodate changes in the

rainfall regime.100

Nepal provides an ideal setting to compare the two approaches, for four reasons. First, the country

is representative of global availability of streamflow data, as measured by the density of its stream

gauge network (Figure 1(a)). Second, methods drawn from both statistical and process-based ap-

proaches have been developed and validated in Nepal. Here we compare the stochastic-dynamic

framework developed in Müller et al. (2014), with the index flow model described in Chalise et al.105

(2003). Third, flow generation processes in Nepalese Himalayan catchments are complex, particu-

larly with respect to the spatial and temporal properties of precipitation. Rainfall derives from the

Indian Summer Monsoon and is strongly affected by topography. As a result, local rainfall is tempo-

rally autocorrelated, spatially heterogeneous and highly seasonal. There is also significant carryover

of groundwater storage between the wet and dry seasons, so that dry season discharge reflects the110

features of the antecedent wet season. These characteristics violate many of the assumptions that

underlie the process-based method. The analysis in Nepal is therefore likely to provide a conserva-

tive estimate of the potential performance of the process-based method in ungauged basins. Finally,

developing reliable methods for FDC prediction in Nepal represents an opportunity for ‘use-inspired

science’ (Thompson et al., 2013b). Nepal has an enormous untapped hydropower potential and is115

in dire need of electrical power, particularly in rural areas. A reliable method to estimate FDCs in

ungauged catchments would be a valuable tool to support the development of micro hydropower, a

sustainable technology for rural electrification (Müller , 2015).

Section 2 describes the two models and the procedures used to estimate their parameters from

streamflow and rainfall observations. Section 3 presents the results of the comparative analysis in120

Nepal. Section 4 examines the key sources of errors for both models and discusses implications

for both Prediction in Ungauged Catchments (PUB) and Predictions Under Change (PUC) beyond

Nepal.
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2 Methods

2.1 Compared Approaches125

2.1.1 Process-based model

The process-based approach models daily streamflow as a random variable. Subject to strong sim-

plifying assumptions about rainfall stochasticity and runoff generation, the streamflow PDF can be

analytically derived. During the wet season, daily rainfall is represented as a stationary marked Pois-

son process with exponentially distributed depths. Assuming linear evapotranspiration losses, Botter130

et al. (2007b) showed that effective rain, that is the portion of the total rainfall that contributes to

streamflow generation, also follows a stationary marked Poisson process. For a spatially homoge-

nous catchments with an exponentially distributed response time (i.e. a catchment that behaves as a

linear reservoir), this effective rainfall will produce gamma-distributed streamflow. The parameters

of the gamma distribution are derived from the frequency (�
P

) and mean depth (↵
P

) of rainfall, and135

from the recession constant (k) of the catchment. If rainfall in the dry season is sufficiently minimal

that effective rainfall does not contribute to runoff generation, then dry season streamflow represents

only the discharge of groundwater stored during the previous wet season. This discharge is modeled

as a single seasonal recession with stochastic initial conditions that depend on the wet season prop-

erties. Because groundwater is not replenished during the dry season, the water table is subject to a140

large transient drawdown, resulting in a nonlinear discharge behavior and a power law relation be-

tween recession rate and discharge (Brutsaert and Nieber, 1977). We showed in Müller et al. (2014)

that the distribution of streamflow, and therefore the FDC, in seasonally dry climates that meet the

assumptions above can be expressed analytically as a function of seven independent parameters: the

frequency (�
P

) and mean intensity (↵
P

) of wet season rainfall, maximum daily evapotranspiration145

during the wet season (ET ), the water storage capacity of the soil in the root zone (SSC), the (lin-

ear) wet-season recession constant (k), the duration of the dry season (T
d

) and the exponent of the

power law recession during the dry season (b). The model admits an additional input parameters, the

scale a of the of the power-law seasonal recession, which we showed in Müller et al. (2014) can be

expressed as a function of k, b, �
P

and ↵
P

. The formal derivation of the model is summarized in150

Appendix A.

The model was successfully validated in a variety of regions with seasonally dry climates world-

wide, including Nepal, where observed FDCs were predicted in 24 gauged catchments with a median

Nash Sutcliffe Coefficient of 0.90 on log-transformed flow quantiles (Müller et al., 2014). The ap-

proach successfully reproduced both the rain-driven distribution of flows during the wet season and155

the release of stored monsoon water during the dry season recession. In this study, we assess the

operational performance of the process-based approach as a tool to predict streamflow in ungauged

catchments. Therefore, we do not further attempt to attribute model errors to parameters versus the

5



model structure in the results presented in Section 3, since in practice these errors are confounded in

any real application. The relative significance of these two error sources is nonetheless discussed in160

Section 4.1.1.

In ungauged catchments, the process-based model is implemented as follows. Three of the seven

parameters of the model (T
d

, �
P

, ↵
P

) are rainfall characteristics that can be estimated in ungauged

basins using meteorological observations. Recession parameters (k and b) describe aquifer proper-

ties that are challenging to observe at the catchment scale. They can be estimated using observed165

streamflow time series in nearby gauged basins, and subsequently interpolated from nearby gauges,

using the geostatistical approach described in Müller and Thompson (2015), which accounts for

the topology of the stream network. The last two parameters (ET ) and (SSC) describe catchment-

scale soil moisture dynamics that are arduous to determine empirically. Previous applications of the

model relied on reasonable values of ET and SSC, based on land use, soil and climate characteris-170

tics of the catchment (e.g., Botter et al., 2007a; Ceola et al., 2010). Alternatively, runoff coefficients

can be used to directly relate rainfall statistics to streamflow increments (Doulatyari et al., 2015).

Runoff coefficients describe the ratio of mean discharge to mean precipitation, and can be predicted

in ungauged basins using water balance models and meteorological observations. This approach cir-

cumvents the need to estimate ET and SSC, but the accuracy of predicted runoff coefficients in175

ungauged catchment is critically dependent on the type of water balance model used and on the

availability of appropriate calibration data (Doulatyari et al., 2015). Instead, this study follows the

former procedure and uses reasonable estimates of ET and SSC for Nepal.

2.1.2 Statistical model

The statistical approach is entirely driven by observation data and does not assume any specific180

runoff generation process. Instead, it identifies and exploits statistical correlations that may occur

between streamflow observed at existing gauges and the geology, topography and climate of the

corresponding catchments. The index flow model used in this study was developed by Chalise et al.

(2003) to regionalize FDCs in Nepal to assess the potential for small hydropower development. The

model is based on local flow indices for mean (Qm= E [Q]) and low flows (q95 =Q95/Qm

, where185

Q95 is the 95th streamflow percentile) and uses a non-parametric approach to represent the shape

of the FDC. Empirical FDCs from available gauges are normalized by Q
m

and pooled into equally-

sized groups based on the q95 index of the gauge. A standardized curve is determined for each group

by taking the average of the normalized flows corresponding to each duration, in order to represent

the average catchment response in the group. The chosen statistical approach is considerably less190

complex than many alternative state-of-the-art methods using multiple (often non-linear) equations

to relate multiple flow quantiles to a variety of observed covariates (see Castellarin et al. (2013) for

a review). However, Chalise et al. (2003) is, to our knowledge, the most recent statistical method

specifically developed and validated in the study region. The approach is parsimonious and adapted
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to situations, where in-situ observations of catchment characteristics are scarce. The method is there-195

fore representative of the level of complexity of statistical approaches likely to be implemented in

developing countries practical hydrological engineering purposes.

Predictions in ungauged catchments are obtained by first using linear regressions to predict Q
m

and q95. Although the original method calls for a stepwise multiple regressions approach to de-

termine regression covariates inductively, we used the regression models obtained in Chalise et al.200

(2003): Q
m

is regressed against annual rainfall (R
y

) and gauge elevation (z
min

) as a proxy for evap-

otranspiration; and q95 is regressed against the ratios of catchment area occupied by each of the

considered geological units. The two regressions loosely represent the long term water balance and

short-term response of the catchment. The predicted low-flow index is then used to determine the

standardized FDC shape, which is finally multiplied by the predicted mean flow to obtain the FDC.205

An important assumption, inherent to the linear regression models, is that the dependent variable

(here Q
m

and q95) is not spatially correlated , when controlling for the considered covariates. This

assumption is reasonable in Nepal, where the typical distance between stream gauges is much larger

than the correlation scale of runoff (Müller and Thompson, 2015). In more densely gauged areas

(or if runoff is correlated over larger distances), streamflow observations at neighboring or flow-210

connected gauges are likely to be correlated. In these regions, accounting for the effect of distance

and stream network topology when interpolating flow indices (e.g., using TopREML (Müller and

Thompson, 2015)) will improve predictions.

2.2 Study region and data

The two methods were evaluated using observed streamflow data from 25 Nepalese catchments215

mapped in Figure 1 (b). The gauges in this dataset (HKH-FRIEND, 2004; Department of Hydrol-

ogy and Meteorology, 2011) have at least 10 years of daily streamflow records. They were checked

for consistency, using double mass plots (Searcy and Hardison, 1960), and bias: we discarded non-

glaciated catchments that had a precipitation deficit on their long term water balance. Watersheds

were delineated using the ASTER GDEM v2 digital elevation model (NASA Land Processes Dis-220

tributed Active Archive Center (LP DAAC), 2011). The study watersheds are located in central

Nepal but cover a wide variety of catchment sizes, elevation ranges, precipitation characteristics and

geological units (Table 1).

We focused on the Chepe Kohla catchment in central Nepal (Figure 1 (b, insert)) as a case study

for analyses requiring resampling (Section 2.3.1) or simulation (Section 2.3.2) of streamflow time225

series. The Chepe Kohla watershed has a long (by Nepalese standards) record of daily streamflow

observations (31 years) and is representative of the full sample of gauges in terms of topography

and recession behavior (Table 1). The catchment is also small (i.e. close to spatially homogenous)

and local rainfall is well approximated by a marked Poisson process (First order autocorrelation
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coefficient of rainfall occurence (AR): 0.09, Coefficient of variation of rainfall depths (CV): 1.09),230

echoing the underlying assumptions of the process-based model.

Rainfall characteristics over the sampled catchments were obtained from 178 precipitation gauges

(HKH-FRIEND, 2004; Department of Hydrology and Meteorology, 2011), also mapped on Figure

1 (b). The average duration of the dry season (T
d

) was estimated at each precipitation gauge by

fitting a step function to the corresponding rainfall time series (Müller and Thompson, 2013), and

wet-season precipitation records were used to compute the frequency and mean intensity of rainfall

(�
P

and ↵
P

). Rainfall characteristics were then aggregated at the catchment level by assuming that

the rain process aggregates linearly within the basins. For rainfall occurence, we assumed that the

duration between rain events caused by two consecutive storms can be estimated as the average of

the inter-arrival times measured at the rain gauges within the catchment. This allows us to compute

catchment level rainfall frequency as:

�
P

=

0

@ 1

N
g

N

gX

i

1

�
(i)
P

1

A
�1

where �
(i)
P

designates rainfall frequency observed at gauge i and N
g

the number of rain gauges

within the catchment. Similarly, the catchment-level duration between rainy seasons is assumed to

be the average of the durations observed within the catchment:

T
d

=
1

N
g

N

gX

i

T
(i)
d

Finally, the precipitation depth received on any given day by a catchment is assumed to be the

average of the precipitation depths observed by individual rain gauges. It follows that the aggregated

mean rainfall intensity can be expressed as:

↵
P

= ��1
P

1

N
g

N

gX

i

�
(i)
P

↵
(i)
P

If no precipitation station is located within the catchment, rainfall characteristics observed at the

rain station closest to the catchment centroid were considered. Although aggregating rainfall time

series before computing their statistics would better account for spatial correlation in rainfall, aggre-

gating rainfall statistics instead allows for non-overlapping observation periods (assuming rainfall235

is stationary). This is important in the context of Nepal, where rain gauges are scarce with sporadic

observations. Unfortunately, the low density of rain gauges within the considered basins prevents a

formal treatment of spatial correlation when aggregating frequencies. However, in a previous study

(Müller and Thompson, 2013) we observed large spatial correlation ranges on rainfall occurrence in

Nepal (125km during the monsoon). Under these conditions the selected method stands out as the240

most parsimonious approach to utilize multiple, yet sparse, rainfall observations.

Recession characteristics were estimated using streamflow observations as described in Müller

et al. (2014). We computed wet season recession constants (k) by regressing the logarithm of stream-
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flow against time for each period of consecutively decreasing streamflow during the wet season. The

recession constant was then obtained by taking the median value of the regression coefficients of245

recessions lasting more than four days. The power law exponent of dry season recessions (b) was

obtained by fitting a non-linear recession curve

Q(t) = (Q1�b

0 � a(1� b)t)
1

1�b (1)

to base flow, which was computed from observed streamflow time series using the Lyne Hollick

algorithm (Nathan and McMahon, 1990). The last streamflow peak of the wet season was taken as250

initial flow condition Q0, and we used a stochastic optimization algorithm (Simulated Annealing,

Bélisle (1992)) to minimize least square fitting errors. In ungauged catchments, the scale exponent

of the seasonal recession was approximated as (Müller et al., 2014):

a⇡ �

�r

⇣
e

�r

m � 1
⌘
(↵

Q

· (m+1)) , (2)

where r = 1� b; m is the ratio between the frequency � of effective rain events and the linear255

recession constant k, and ↵
Q

is the average depth of effective rain events (see Appendix A).

Potential evapotranspiration was approximated by applying the empirical relation estimated by

Lambert and Chitrakar (1989) for Nepal during the rainy season (July-September):

ET ⇡ 4.0� 0.0008 · z
mean

where ET is given in [mm/d] and z
mean

is the average elevation of the catchment in meters. The

formula provides daily average evapotranspiration estimates for each month. It accounts for elevation

but assumes a spatially homogenous elevation gradient. A uniform soil moisture capacity of 50

mm was assumed throughout the country, based on empirical observations reported in Shrestha260

(1997). By neglecting local variation in soil characteristics, this produces conservative estimates

of the performance of the process-based model in ungauged basins.

2.3 Comparative Analyses

2.3.1 Predictions in Ungauged Basins

We used three cross-validation techniques to evaluate the predictive ability of both methods in un-265

gauged basins. Firstly, a leave-one-out analysis was carried out to assess predictive performances

in a realistic situation, where FDCs are predicted in Nepal using all streamflow gauges available in

the region. Secondly, we examined the sensitivity of the methods to decreasing data-availability by

reducing the number of gauges available to calibrate the models. Finally, we performed a similar

data-degradation procedure, but in this case we reduced the number of daily streamflow observa-270

tions, while holding the number of gauges constant. This final analysis accounts for the challenges

posed by recent or temporary installation of stream gauges, which introduce uncertainties into the
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estimation of model parameters due to the short streamflow records used. These errors can propagate

through the model and affect the prediction of FDCs.

In a leave-one-out analysis, one gauge is ‘left out’ of the dataset, and streamflow is predicted at275

the ‘missing’ location using observations from the remaining gauges. The predicted FDC is then

compared to observations from the omitted gauge. The resulting error between observation and pre-

diction yields the prediction performance of the method at that catchment if it were not gauged.

Repeating the procedure for all gauges offers an approximation to the overall prediction error of the

method. To measure this error we constructed error duration curves (Müller et al., 2014), where the280

relative prediction error at each flow quantile is plotted against the corresponding duration. Error

duration curves allow the partitioning of prediction errors across flow quantiles to be visualized.

General prediction performances (across all durations) at individual gauges were also determined

using the Nash Sutcliffe coefficient (NSC) on log streamflow quantiles (Müller et al., 2014):

NSC = 1

P364
t=1

⇣
lnQ(emp)

t

� lnQ(mod)
t

⌘2

P364
t=1

⇣
lnQ(emp)

t

�E
h
lnQ(emp)

t

i⌘2 (3)285

where Q
(emp)
t

and Q
(mod)
t

are the empirical and modeled streamflow quantile of duration t.

The effect of the number of calibration gauges was assessed using a Jack-Knife cross-validation

analysis (Shao and Tu, 2012; Müller and Thompson, 2013). At each of 10,000 iterations, a selected

fraction of the available gauges was randomly sampled (without replacement) and used to predict

the FDC at one (randomly selected) remaining gauge. Prediction accuracies for flow duration curves290

(given by the NSC) and uncertainties on the spatial interpolation of model parameters were reported

for each iteration. The procedure was repeated for decreasing numbers of selected ‘training’ gauges.

The available streamflow data did not allow a direct evaluation of the effects of timeseries length

through cross-validation, because such an analysis requires substantial overlaps in the monitoring

periods of all gauges. Therefore we focused the final analysis on the Chepe Kohla catchment which295

has the longest observation record in our dataset. We evaluated the effect of the length of the available

observation records on parameter estimation, and propagated the ensuing uncertainty in the param-

eters to the FDCs predicted by each model. To do this, we selected a fixed number of full years of

streamflow observations, estimated the parameters, predicted the FDC using these parameters, and

compared the results to the empirical FDC obtained from the full observation record. The procedure300

was repeated 10,000 times. The estimation errors in the model parameters and the resulting FDC

prediction performances (NSC) were recorded as a function of the number of sampled years. This

analysis is not intended to describe the models’ ability to predict FDCs at catchments with short

observation records: in this case, constructing an empirical FDC using the available (however short)

observation record is likely to be the best course of action (Castellarin et al., 2004a). Instead, the305

analysis is intended to simulate the effect of short observation records on FDC prediction at nearby,

ungauged catchments. The underlying assumptions behind this analysis are that (i) the error associ-
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ated with interpolation is independent of the flow record length, and (ii) the Chepe Kohla catchment

is representative of Nepalese basins .

2.3.2 Predictions Under Change310

We used numerical simulations to assess the ability of both models to predict streamflow when

subject to changing rainfall regimes, as described in Figure 2.

Synthetic streamflow time series were generated by coupling the stochastic rainfall generator de-

scribed in Müller and Thompson (2013) to a rainfall-runoff model. The generated wet-season rainfall

is a first order Markov process (i.e. rainfall occurrence on a given day is correlated to rainfall oc-315

currence on the previous day) with gamma-distributed rainfall intensities, and as such produces a

rainfall record that explicitly violates the assumptions under-pinning the process-based model. The

duration of the rainy season was assumed constant, and no rainfall was generated during the dry sea-

son. Wet-season streamflow was simulated by feeding synthetic rainfall into a linear reservoir (with a

recession constant k) with linear evapotranspiration losses, as in Müller et al. (2014). Dry season dis-320

charge was obtained by simulating non-linear seasonal recessions of duration T
d

starting at randomly

selected runoff peaks in the (previously generated) wet-season streamflow. These assumptions are

close to the observed reality in Nepal, as seen in Figure 5 (a), where the FDC constructed from the

simulated streamflow is a close approximation to the empirical FDC in the Chepe Kohla watershed.

We translated the effect of shifts in precipitation regimes into changed streamflow for the Chepe325

Kohla catchment by considering a range of future combinations for rainfall frequencies and intensi-

ties. In line with what is expected in Nepal (Turner and Slingo, 2009; Turner and Annamalai, 2012),

we considered negative changes in the frequency and positive changes in the mean daily rainfall

depth. We neglected changes in soil moisture capacity, evapotranspiration, rainfall autocorrelation

and the duration of the rainy season. These parameters are explicit in the process-based model, so330

we expect differences in the sensitivity of the process-based and statistical models to climate change

to be underestimated by this procedure. For each rainfall scenario, we evaluated the performance of

the models in a changing climate by generating 1000 years of daily streamflow using future rainfall

frequencies and intensities.

We compared the synthetic FDCs to model predictions that were made with future rainfall statis-335

tics, but contemporary recession and low flow parameters (Figure 2). The statistical method in

Chalise et al. (2003) uses a linear regression over a cross-sectional sample of observations to pre-

dict mean flow based on mean rainfall and altitude. The regression may fail to capture a variety of

unobserved characteristics affecting both rainfall and streamflow (e.g., local topographic features),

and hence may not capture the causal relation between the two variables. The extent of this bias can-340

not be quantified a priori, so we considered two extreme cases: infinite and zero bias. The infinite

bias case (Case 1 on Figure 2) represents the case where no effective relationship can be determined

between rainfall and mean flow. The best estimator of future mean flow is then the current flow
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condition. Conversely, if regression coefficients perfectly describe the effect of annual rainfall on

average flow (Case 2 on Figure 2), then the future flow conditions can be perfectly estimated using345

the (known) future annual rainfall. We modeled this situation by estimating Q
m

directly from the

(simulated) future flow conditions. While the two cases differed in the determination of mean flow

(Q
m

), the low-flow parameter (q95) was determined from current flow conditions in both cases. In

Chalise et al. (2003), q95 is normalized by Q
m

and represents recession behavior, which is assumed

independant from rainfall. The process-based predictions were obtained by inserting future rainfall350

statistics and contemporary recession constants into the analytical FDC equation described in Ap-

pendix A. The two models were compared by plotting prediction performances (NSC) against the

relative change in the frequency and intensity of synthetic rainfall.

Although the recession assumptions of the process-based model are taken to generate the synthetic

streamflow used as control, we believe that the analysis is not biased against the statistical approach355

for three reasons. Firstly, the only parameter of the statistical approach that is influenced by rainfall

(Q
m

) is also computed from synthetic streamflow (Case 2 on Figure 2). Secondly, although based

on identical recession assumptions, the process-based model and the synthetic streamflow generator

are driven by different stochastic rainfall processes (i.e. Poisson and Markov respectively). Lastly

and most importantly, empirical observations reveal that synthetic streamflow distributions generated360

under contemporaneous rainfall conditions reproduce closely FDCs constructed from gauge records

(Figure 5 (a)), showing that the underlying recession assumptions are, in fact, representative with

runoff processes actually occuring in Nepal.

3 Results

3.1 Prediction in Ungauged Basins365

Results from the leave-one-out cross-validation analysis are presented in Figure 3 and show that

both methods perform similarly in the prediction of FDCs in ungauged basins. Error duration curves

(Figure 3 (a) and (b)) show comparable streamflow prediction uncertainties: 75% of the predicted

flow quantiles are between half and double the observed streamflow for both models, although the

low flows in the process-based model display an increasing upwards bias (Figure 3 (b)). Considering370

the Nash-Sutcliffe coefficients computed at the individual basin level, the mean and median perfor-

mances are again comparable for both models, but the accuracy of the statistical model predictions

are more variable across sites than the process model predictions, as indicated by the larger spread

of the Nash Sutcliffe coefficients (Figure 3(c)).

Figure 4 (a, top) shows prediction performances of both models as the number of streamflow375

gauges available for predictions decreases, and indicates that the performance of both models is rel-

atively insensitive to the gauge density, until it declines to less than approximately 0.6 gauges per

10,000 km2. For such situations, which represent discarding more than half the available gauges
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in Nepal, the statistical model performance declines rapidly compared to the process-based model.

Prediction performances are strongly affected by uncertainties on the interpolation of model param-380

eters, as seen in Figure 4 (a, bottom). Interpolation uncertainties are generally larger for the flow

indices of the statistical model (Q
m

and q95) than for the recession parameters of the process-based

model (k and b). This explains the larger spread in prediction performances of the former (Figure

3 (c) and error bars in Figure 4 (a, top)). The parameter uncertainties are also relatively insensitive

to the total gauge density until about 60% of the originally available gauges are discarded. At this385

point, the uncertainties associated with estimation of the flow indices increase significantly, while

the process-based model parameters remain more reasonably estimated.

When considering short observation windows, parameter uncertainties also drive the performance

of the models. Figure 4 (b, top) shows the prediction performance of both models at the Chepe Khola

watershed, as the number of observation years used to estimate the model parameters is reduced. In390

this case, the statistical model outperforms the process-based model when less than 10 years of

streamflow observations are available. The parameter uncertainties associated with the short time-

series estimates (Figure 4 (b, bottom)) suggest that a longer time series of streamflow observations

is needed to accurately estimate the wet-season recession parameter (k), resulting in the lower per-

formance of the process-based model for short streamflow records.395

3.2 Prediction Under Change

Simulation results presented in Figure 5 (b) show both models’ ability to predict a simulated future

flow duration curve of the Chepe Kohla River, under a range of different possible changes in rain-

fall regimes. In all simulations, parameters describing the hydrological response of the basin (k, b,

and q95) are determined using current flow conditions, and evapotranspiration is assumed constant.400

The results show that explicitly modeling rainfall-runoff processes allows the process-based model

to accommodate the effects of the changing precipitation regime. In contrast, the performance of

the statistical model is affected at various degrees by shifts in rainfall regimes, depending on how

the model translates changes in annual precipitation to changes in average flows. If these shifts are

perfectly represented by the model, then prediction errors arise solely from changes in the shape405

of the FDC, and the process and statistical models perform similarly in the Chepe Kohla watershed

across the full range of considered rainfall scenarios (Figure 5 (b), dashed curve). If, however, aver-

age (future) streamflows cannot be reliably predicted from the predicted changes in annual rainfall,

the statistical model does not accommodate flow regime changes at all. In this case, future FDCs are

modeled using current streamflow observations, and the ensuing prediction errors can be substantial410

(Figure 5 (b), dotted curve). The simulated cases provide upper and lower bounds for the actual

performance of the statistical model in future rainfall regimes. We evaluated the model’s ability to

predict Q
m

by using cross sectional data (i.e. average streamflow and annual rainfall from the 25

catchments) to estimate the linear relation between Q
m

and annual rainfall R
y

. Applied to the Chepe
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Kohla watershed, the estimated regression coefficients allowed the annual streamflow to be estimated415

from annual precipitation with a bias of �13% and a coefficient of determination of R2 = 0.57 (Fig-

ure 5 (c)). Regardless, prediction errors remained negligible for both bounds (NSC>0.95) for the

range of changes actually anticipated in Nepal (e.g., ��
P

/�
P

⇡ 0.98 and �↵
P

/↵
P

⇡ 1.20 for the

2 ·CO2 scenario (Turner and Slingo, 2009)) .

4 Discussion420

4.1 Predictions in Ungauged Basins

The analysis suggests that both statistical and process-based methods to estimate FDCs in ungauged

basins perform comparably in Nepal, over a wide range of gauge densities and observation dura-

tions. Yet prediction performances varied significantly between the models as data became increas-

ingly sparse. The statistical method is more sensitive to spatially sparse data, which degrades the425

interpolation accuracy of Q
m

. In contrast, the estimation method for recession parameters makes

the process-based approach more sensitive to temporally restricted observations, which reduce the

accuracy with which recession parameters can be estimated. This suggests that the performance of

the two models in ungauged basins is affected by different sources of uncertainty. In this section,

we investigate the source of prediction error in each methods and discuss the implications for their430

application in ungauged basins beyond Nepal.

4.1.1 Sources of Uncertainty

The statistical model relies on two assumptions about the correlations of observed data. The first

assumption is that catchments with similar low-flow indices (q95) have identical hydrological re-

sponses, and therefore identical FDC shapes. Second, the model assumes that the flow indices (Q
m

435

and q95) at ungauged catchments can be best predicted using linear regressions against observable

covariates (annual rainfall, elevation and geology). The latter assumption does not hold if the flow

indices are spatially auto-correlated, or if the posited linear relations are spatially heterogeneous

or, in fact, non-linear. Further, ‘omitted variable’ biases (Greene, 2003) will arise if an unobserved

variable is correlated to both a covariate and a flow index. For instance, local topographic features440

may affect both the annual rainfall and the average streamflow in mountainous regions. Violation

of the second assumption leads to substantial uncertainty in the interpolation of the flow indices

in Nepal and drives the prediction errors of the statistical approach, as shown in Section S2 of the

supplementary materials.

While the performance of the process-based model is also driven by parameter estimation uncer-445

tainties, these errors arise from simplifying assumptions about local hydrological processes (rather

than uncertainties from their statistical interpolation from neighboring gauges). Additional cross-

validation analyses (shown in Section S2 of the supplementary material) suggest that uncertainties
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caused by the aggregation of observed point-rainfall statistics at the catchment level drive prediction

errors of high flow quantiles. While increasingly accurate remote sensing rainfall data will progres-450

sively allow such spatial heterogeneities to be resolved, current precipitation products (e.g., TRMM

3B42) remain substantially biased in mountainous regions like Nepal, where they do not outper-

form available rain gauges in predicting the frequency and intensity of areal rainfall (Müller and

Thompson, 2013). A second source of error arises from the simplifying assumptions made about

streamflow recession that do not hold perfectly in the observed catchments. Because they describe455

the same watershed, the wet and dry recession parameters are assumed to be physically related. In

Müller et al. (2014), the scale parameter of the non-linear seasonal recession (a) is expressed as

an explicit function of the two recession parameters (k and b) for sufficiently short recession times,

where power-law recessions can be approximated by exponential functions. We show in Supplemen-

tary Materials (Section S2) that, although this approach provides more accurate estimates of a than460

would be obtained through spatial interpolation, estimation uncertainties remain, propagate through

the model and result in prediction errors during the dry season.

4.1.2 Applicability beyond Nepal

This study compares two specific methods on their ability to predict FDCs in the particular context

of ungauged Nepalese basins. Results are thus not necessarily representative of the relative perfor-465

mance of process-based and statistical methods in general, particularly in regions where abundant

field data allow more advanced statistical approaches to be implemented. Yet fundamentally, the

statistical model relies on observed correlations, rather than assumptions about hydrologic mecha-

nisms. Because FDC shapes are modeled non-parametrically, the approach is applicable to regions

with highly variable catchment responses. However, prediction performance in ungauged basins is470

constrained by interpolation errors in the mean flow. This makes the method unsuitable for regions

where the local determinants of mean flow (i.e. rainfall, evapotranspiration, glacial melt) cannot be

accurately monitored at the catchment level. In contrast, a key advantage of the process-based model

is its ability to exploit characteristics of the stochastic structure of rainfall that can be estimated from

daily rainfall observations. The model is appropriate for regions where the spatial heterogeneity of475

runoff is driven by rainfall, and where the frequency and intensity of rainfall depths at the catchment

level can be readily estimated (i.e. small catchments with numerous rain gauges, or places where

satellite observations provide a good representation of rainfall statistics). Unlike rainfall, recession

behavior arises from lumped and complex interactions between climate, vegetation and groundwa-

ter processes that typically cannot be monitored in a spatially explicit manner. The process-based480

model is therefore inappropriate for regions where the hydrologic response of the catchment is the

main source of runoff heterogeneity, or where the assumed recession behavior (in particular the

relation between a, k and b) does not occur.
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Conveniently, the appropriate implementation contexts for both methods appear to be comple-

mentary, and the optimal method in a given region is determined by the driving source of runoff485

heterogeneity in the catchments. Ultimately, the performance of both methods is constrained by their

ability to estimate their parameters in ungauged basins. This relation is apparent in Figure 4, where

drops in prediction performances correspond to increases in the estimation uncertainty of model

parameters. Under these conditions, the performance of each method is driven by the ability of the

available observations to capture the variability of the model parameters. When interpolated from490

neighboring gauges, uncertainties are governed by the interplay between the layout of the gauges

and the spatial correlation range of the considered model parameter. When estimated from short ob-

servation records, accuracy is determined by the extent to which the available record is representative

of the temporal variability of the parameter. These interactions between data availability and runoff

variability are inherently local and will affect the determination of the most appropriate method for495

any given region.

4.2 Prediction under Change

Expected shifts in the frequency and intensity of Monsoon rainfall over Nepal only have a marginal

impact on the streamflow distributions in the Chepe Kohla catchment, as shown by the numerical

simulation presented in (Figure 5 (a, dashed curve). Consequently, changes in rainfall regime do not500

appear to affect the performance of either model (Figure 5 (b)), unless they are significantly larger

then expected. Climate change may nonetheless affect flow predictions elsewhere. It is therefore

helpful to consider the conditions under which FDCs can be reliably predicted in a changing climate.

Although rainfall stationarity is an inherent assumption of the process-based approach, climate

change can be incorporated by updating the relevant parameters to their future value to predict the505

(pseudo-) stationary future state of the system. The method accounts for otherwise confounding

changes in the frequency and intensity of rainfall, which are expected in Nepal. By explicitly ac-

counting for soil moisture dynamics and recession behavior, the model emulates the (causal) effect

of rainfall on streamflow. As a result, the method reliably predicts the distribution of future stream-

flow, provided that governing flow generation processes are in line with the basic assumptions listed510

in Section 2.1.1.

In contrast, the statistical model is solely based on observed correlations, leading to two important

sources of errors for predictions under change. First, the model only accommodates rainfall changes

to the extent that the estimated statistical relation between rainfall and runoff is representative of local

runoff coefficients. The model will not reliably predict future streamflows if runoff coefficients are515

strongly spatially heterogeneous, or if the cross sectional sample of gauges fails to capture important

processes governing mean flow. This source of uncertainty appears to be significant in Nepal, as

illustrated by the substantial bias in annual flow predictions on Figure 5(c). Secondly, the statistical

model only considers the effect of average rainfall on average flow: the effect of rainfall distribution
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in streamflow distribution is ignored. As a result, the model cannot predict changes in the shape520

of FDC that are brought about by changing rainfall. The prediction performance of the statistical

approach is therefore determined by the resilience of the flow regime, that is the extent to which

streamflow distribution is affected by shifting rain signals (Botter et al., 2013): the method will

perform poorly in catchments with non-resilient flow regimes. The Monte Carlo analysis presented

in Supplementary Materials (Sections S3 and S4) shows that streamflow resilience in seasonally dry525

catchments depends on two distinct seasonal effects: a ’direct’ effect driven by the ratio between

�
P

and k during the wet season, and an ’indirect’ effect during the dry season, when resilience is

determined by the interplay between Q0 (i.e. wet-season rainfall) and b. In seasonally dry climates,

we expect the statistical method to be most reliable in regions where wet seasons are short with

limited total rainfall but persistent flow regimes, and where the recession behavior during the dry-530

season is close to linear.

Lastly, a key assumption in this study is that catchment response (in terms of low-flow or reces-

sion characteristics) is independant of climate. It is possible that shifts in climate have an effect on

catchment response by affecting the partitionning of effective rainfall between storage and runoff.

Although not quantitatively assessed in this study, we expect that this effect would negatively affect535

the performance of both approaches.

5 Conclusions

Stochastic, process-based models predicted the FDCs for ungauged catchments in Nepal well, with

a performance that was comparable to that of statistical models. It suggests that in regions with

globally representative gauge-densities, and under seasonally dry climates, the advantages of the540

statistical approaches relative to stochastic models noted in previous analyses (Blöschl et al., 2013)

may not apply. Fundamentally, the performances of both approaches are strongly affected by the

method chosen to estimate model parameters in ungauged basins, so this conclusion comes with the

caveat that this study cannot be interpreted as a general benchmark to compare these approaches at a

global level. Although we believe that the selected models are appropriate to compare process-based545

and statistical approaches for practical PUB application in Nepal, their relative performance may be

different in other regions, where more abundant information on catchment characteristics allow more

complex (and presumably more accurate) regionalization approaches to be applied. Thus, substantial

research remains to be done to compare these approaches in other parts of the world, where locally

appropriate methods should be carefully considered.550

Nonetheless, this study finds a complementarity between the different sources of uncertainty in

the stochastic and statistical methods. This suggests that model selection should be driven by a

consideration of the main drivers of heterogeneity in any study catchment: Process-based models

are advisable if climate is likely to be the main source of runoff heterogeneity. Conversely, statistical
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methods are more appropriate for regions with substantially different recession behaviors across555

catchments. These distinctions provide a potentially robust basis for model selection in any given

application.

The results also suggest that the sensitivity of statistical approaches to changes in rainfall statistics

is dependent on the ‘resilience’ of the flow regime as defined by Botter et al. (2013). Overall, the

process-based models are more reliable in projecting FDCs into new rainfall regimes. This is particu-560

larly true for catchments characterized by a strong wet-season runoff and a rapid, strongly non-linear

hydrologic response, because their flow regime is particularly vulnerable to rainfall changes, making

the assumptions of the statistical model inappropriate.

The excellent performance of both process-based and statistical models for the FDC and PDF in

ungauged basins suggests that extending probabilistic analyses in such basins to also include flow-565

derived variables such as hydropower capacity (Basso and Botter, 2012) or ecological responses

(Thompson et al., 2013a) may be feasible. While these prospects are enticing, we note that a model’s

ability to predict an FDC with high fidelity is not necessarily indicative of prediction performances

on all derived stochastic properties. For instance, Dralle et al. (2015) demonstrate that the crossing

properties of streamflow can be very poorly estimated by stochastic process-based models, even570

in applications where the same models predict the PDF of flow well. Further exploration of the

potential opportunities and limitations afforded by use of probabilistic models in ungauged basins

offers a promising avenue for future study.

Appendix A: Process-based streamflow distribution model for seasonally dry climates

This appendix presents the analytical expression of FDC in seasonal climates derived in Müller

et al. (2014). The approach assumes that rainfall can be represented as a marked Poisson process

with with exponentially distributed depths. Catchments are modeled as spatially homogenous linear

reservoirs with linear evapotranspiration losses. Under these conditions, wet season streamflow can

be represented as a gamma-distributed random variable (Botter et al., 2007b):

Q
w

⇠Gamma(m,↵�1
Q

)

with m= �/k and ↵
Q

= ↵
P

kA, and where k is the linear recession constant, A the area of the575

contributing catchment and ↵
P

the mean intensity of wet season rainfall. The frequency � of runoff

events can be expressed as a function of the frequency (�
P

) and intensity of rainfall (Botter et al.,

2007b):

�= ⌘
exp(��)�

�

P

⌘

�
L

(�
P

/⌘,�)
(A1)

where �
L

(·, ·) is the lower incomplete gamma function, and where ⌘ = ET/SSC and � = SSC/↵
P

580

are respectively the ratio between maximum evapotranspiration and soil storage capacity, and the

ratio between soil storage capacity and mean rainfall intensity.
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Dry season streamflow is modeled as a seasonal recession starting at the last discharge peak of the

wet season. Because wet season streamflow is a gamma-distributed variable, streamflow at discharge

peaks, and therefore the initial condition of the seasonal recession, is itself a gamma distributed

variable (Müller et al., 2014):

Q
peak

⇠Gamma(m+1,↵�1
Q

).

Assuming a power law-relation between discharge and recession rate, the cumulative distribution

function of dry season streamflow can be expressed as (Müller et al., 2014):
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with
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U
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�(·) and �
U

(·, ·) denote the complete and upper incomplete gamma functions; T
d

is the duration of

the dry season; r = 1� b and a are the parameters of the non-linear recession, which are assumed

stationary. Because they describe the same watershed, recession parameters for the wet and dry

seasons are related. If power-law recessions can be approximated by an exponential function for

sufficiently short recession times, we can express a as a function of k and b (Müller et al., 2014):595

a⇡ �

�r

⇣
e

�r

m � 1
⌘
(↵

Q

· (m+1)) (A2)

The law of total probability can finally be used to combine seasonal streamflow distributions and

derive the cumulative distribution function of streamflow for the whole year:

P
Q

(Q) =

✓
1� T

d
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Q

w
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d

365
·P

Q

d

(Q) (A3)

The FDC for seasonally dry climates is finally obtained by plotting the streamflow quantiles Q600

against 1�P
Q

(Q), the complement of the the cumulative distribution function of streamflow.
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Figure 1. (a) Global histogram of the approximate spatial density of streamflow gauges by nation, represented

by the sample of 8540 gauges indexed by the Global Runoff Data Center for 146 countries (Global Runoff

Data Center, 2014). With a density of 1.6 gauges per 10,000 km2, Nepal falls close to the mode of the global

distribution. (b) Location of the rain gauges, streamflow gauges and corresponding Nepalese catchments used

in the analysis.

Table 1. Catchment characteristics. Median values and interquartile distances (IQD) are given for the whole

sample of 25 gauges. The table also presents characteristics of the Chepe Kohla watershed considered in the

analysis as a case study.

Streamflow: Topography: Climate: Recession:

Qm q95 Ny A zm zM Py Tmons �P ↵P AR CV ET k b

All gauges

Median 76.1 0.14 22 1355 481 5209 1952 99 0.71 18.8 0.29 0.92 2.5 0.17 2.38

Min 7.3 0.06 10 130 116 1913 1260 88 0.54 12.1 0.09 0.61 0.40 0.07 1.99

Max 1462.4 0.25 41 32817 1641 8369 4030 152 0.91 33.0 0.51 1.53 3.27 0.32 2.99

Chepe Kohla 23.0 0.14 31 277 475 4711 3050 100 0.84 26.5 0.09 1.03 2.1 0.20 2.41

Q

m

is mean annual flow in m

3
s

�1; q95 is the 95th flow percentile normalized by Q

m

; N
y

indicates the number of observation years; A is the catchment area in km

2; z
m

and z

M

are respectively the minimum and maximum elevation of the basins meters; P
y

is mean precipitation in mm/y; T
mons

is the estimated duration of the monsoon in

days; �
P

is rainfall frequency during the monsoon (in d

�1); ↵
P

is mean rainfall intensity in mm/d; AR is the first-order autocorrelation coefficient of rainfall occurrence

(AR = 0 if rainfall follows a Poissonian process), CV is the coefficient of variation of rainfall intensity on rainy days (CV=1 if depths are exponentially distributed); ET

[mm/d] is the reference evapotranspiration during the rainy season Lambert and Chitrakar (1989); k is the linear recession constant estimated during the monsoon (in d

�1) and b

is the non linear exponent of the seasonal recession. A soil moisture capacity of 16mm are assumed throughout the country (Müller et al., 2014).
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Figure 2. Numerical simulation analysis to assess predictions under change. Future rainfall characteristics (fre-

quency �P , mean intensity ↵P , auto-correlation coefficient AR and coefficient of variation CV ) are determined

according to expected changes in rain regimes in Nepal (see Section 2.3.2), and fed into a stochastic rainfall

generator. The resulting 1000 years of synthetic daily rainfall values (PSynth(t)) are fed into a rainfall-runoff

model that simulates the processes described in Section 2.1.1. The rainfall-runoff model uses current recession,

soil and evapotranspiration conditions observed at the Chepe Kohla catchment. The resulting 1000 years of

synthetic daily flow values (QSynth(t)) are then reordered to construct an empirical synthetic (future) FDC,

which was compared (in terms of the Nash Sutcliffe Coefficient) to modeled FDCs predicted by the statistical

and process-based models. The process-based model admits current recession conditions, but future estimates

for rainfall frequency (�P ) and mean intensity (↵P ). Note that unlike the numerically generated empirical FDC,

the process-based model assumes Poissonian rainfall with exponetially distributed depths, that is CV = 1 and

AR= 0. Current low flow characteristics (q95) are fed into the statistical model, as well as the current or fu-

ture (i.e. computed from synthetic streamflow time series) mean flow, depending on the extent to which mean

rainfall is an unbiased predictor of mean flow (Cases 1 and 2 described in Section 2.3.2).
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Figure 3. Flow duration curve prediction performance in ungauged basins. The error duration curves of the

leave-one-out cross-validation analysis using the process-based and statistical models are presented in panels

(a) and (b) respectively. Relative errors are plotted on a log scale in order to allow the graphs to be balanced

on the y-axis: a relative prediction error of 2 (the model predicts double the observed value) is at the same

distance from y=1 (perfect prediction) than a relative error of 1/2 (the model predicts half the observed value).

Durations are plotted on the x-axis, with x=0 and x=1 for the highest and lowest flow quantiles respectively.

Panel (c) shows box plots of Nash Sutcliffe coefficients computed from log-transformed flow quantiles.
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models to a decreasing number of calibration gauges. (b) Resampling analysis of streamflow observations in

the Chepe Kohla (N=10,000) catchment showing the effect of the number of observation years. In panels (a)

and (b), the effects on FDC prediction performances (top) are shown by plotting the ratio of calibration gauges

sampled (or the number of observation years) against the relative Nash Sutcliffe coefficient (with the NSC for

the full set of available data as reference). The plot shows the median value for all iterations, and the error bars

indicate the interquartile (25 - 75%) range. The prediction uncertainties of model parameters (bottom) are given

in absolute values of relative prediction errors.
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Figure 5. Sensitivity of models to changes in the precipitation regime. (a) Empirical and simulated flow dura-

tion curves at Chepe Kohla. The simulated FDC obtained from the stochastic rainfall generator and the bucket

watershed model (solid) reproduces the empirical FDC constructed from the observed streamflow well (grey

dots). Rainfall changes expected in Nepal (↵P /↵P,0 = 1.2, �P /�P,0 = 0.98) do not have a substantial influ-

ence on the simulated flow distribution (dashed). ↵P and �P designate the mean depth and frequency of wet

season rainfall, respectively. (b) Sensitivities to relative changes in rainfall frequency and intensity over the

Chepe Kohla catchment. The performance of the process-based model is not affected by rainfall changes (dot-

ted). The sensitivity of the statistical model depends on its ability to predict changes in mean flow from annual

rainfall. The model is highly sensitive to rain changes if average streamflow cannot be predicted (dashed), and

is robust to moderate changes if average flow is perfectly predicted (solid). (c) The linear regression of the sta-

tistical model underestimates annual flows at the Chepe Kohla when using a cross-sectional sample (25 gauges)

to estimate the local relation between average rainfall and average runoff.
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Supplementary Materials:

Comparing statistical and process-based flow

duration curve models in ungauged basins and

changing rain regimes

Marc F. Müller, Sally E. Thompson⇤

January 2016

This document contains the supplementary material to the research article Com-
paring statistical and process-based flow duration curve models in ungauged basins and
changing rain regimes by M.F. Müller and S.E. Thompson (2016), published in Hydrol-
ogy and Earth System Science. Section S1 describes the performance of the Medium
Irrigation Project method currently implemented in Nepal to predict Flow Duration
Curves (FDC) in ungauged basins for infrastructure design purposes. Section S2 de-
scribes supplementary cross-validation analyses conducted to attribute the uncertainty
sources of the assessed methods. Section S3 describes the theoretical arguments re-
lating catchment characteristics to the resilience of stream regimes (and therefore the
reliability of the statistical method for predictions under change) in seasonally dry cli-
mates. Lastly, Section S4 describes the Monte Carlo analysis conducted to test these
hypothesized relations.

S1 Performance of the Medium Irrigation Project

method in ungauged Nepalese basins

To benchmark the methods evaluated in this study, we assess the predictive perfor-
mance of the Medium Irrigation Project, an empirical method currently used to predict
streamflow distribution in small mountainous catchments in Nepal for infrastructure
design purposes. The method is prescribed by o�cial micro hydropower design guide-
lines in Nepal Alternative Energy Promotion Center [1]. The approach, described in [3],
divides Nepal into seven hydrologic regions characterized by di↵erent sets of monthly

⇤Department of Civil and Environmental Engineering, Davis Hall, University of California, Berkeley
CA, USA
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flow indices. Streamflow distribution in ungauged catchments is determined by per-
forming a site visit in mid-April to evaluate discharge under low-flow conditions. In our
validation analysis, we emulated this step by selecting the daily flow measured on April
15th of a randomly drawn observation year at each gauge. The measured flow is then
used to scale the regional monthly indices corresponding to the location of the catch-
ment. All regions have an index of 1 for the month of April (when low-flow conditions
are observed), and larger indices for the other months. FDCs can finally be computed
by reordering daily flow values interpolated from the obtained monthly flows.

A fundamental flaw of the method is that it assumes that discharge measured in
mid-April on a given year is representative of lowest flow conditions that can be observed
in the catchment. This assumption does not hold if e↵ective rain events have occurred
shortly before discharge was measured or, more to the point, if the current year is not a
particularly dry year. As a result, predicted FDCs substantially overestimate observed
flows, as shown in Figure S1 (a), and provide a clear motivation to seek improved, yet
tractable prediction options.

S2 Determination of Uncertainty Sources: Supple-

mentary Analyses

S2.1 Statistical Method

Figure S1 (b) shows that parameter interpolation errors are the main source of un-
certainty of the statistical method. Using observed (instead of predicted) flow indices
substantially reduces the width of the error-duration curve of the statistical method.
The relative sensitivity of the statistical method to interpolation errors in each flow
index was evaluated through a numerical simulation (Figure S2 (a)). The prediction
performance was more sensitive to errors in Qm than q95. This is consistent with the
fact that, while Qm has a direct e↵ect on all the quantiles of the FDC, q95 only de-
termines the type of FDC shape that is selected, and two di↵erent values of q95 may
generate identical FDC shapes. The statistical approach assumes that catchments with
similar low-flow indices (q95) have identical hydrological responses, and therefore iden-
tical FDC shapes. Errors caused by the violation of this assumption also appear in
the error duration curve on Figure S1 (b). The statistical method assigns gauges to a
finite number of bins, according to their low flow index, and determines a FDC shape
for each bin. The error duration curve shown on Figure S1 (b) represents di↵erences in
the FDC shapes of catchments within the bins (i.e. with similar low flow indices). A
tradeo↵ arises in determining the number of bins: a small number of large bins leads to
large averaging errors within the bins, while a large number of thin bins increases the
model’s sensitivity to interpolation errors in q95.
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S2.2 Process-based Method

In contrast, interpolation uncertainties on the model parameters (k and b) only marginally
a↵ect the prediction performance of the process-based approach (Figure S3 (a)). Two
other sources of error appear to drive prediction performance. Firstly, uncertainties
are caused by the aggregation of point-rainfall statistics to the catchment level. These
errors are caused by spatial heterogeneities in wet season rainfall and principally a↵ect
high flows, as seen when comparing Figures S3 (b) and (c). Secondly, the numerical
analysis presented in Figure S2 illustrates the crucial importance of dry-season recession
constants. While the model is remarkably robust to deviations from key assumptions
on rainfall distribution and recession relations [see 4], prediction errors at low flows
appear to be caused by errors in the determination of a, the scale parameter of the
non-linear seasonal recession (Figure S3 (b)). In Müller et al. [4], a is expressed as an
explicit function of k and b for su�ciently short recession times, where power-law reces-
sions can be approximated by exponential functions. Although this approach provides
more accurate estimates of a than would be obtained through spatial interpolation (Fig-
ure S3 (b)), estimation uncertainties remain, propagate through the model and drive
prediction errors during the dry season.

The numerical analysis presented in Figure S2 illustrates the crucial importance of
dry-season recession constants. Unlike the statistical model, the process-based model is
a↵ected by errors in both of its parameters (k and b). However, the model’s sensitivity
to k is at least partly due to its e↵ect on the estimation of a. The sensitivity of k drops
if the wet-season recession constant is not used to determine a, as seen in Figure S2 (c),
where the error introduced on k does not propagate to a. This e↵ect is also visible in
the resampling analysis on short time series (Figure 3(c) of the main article), where the
uncertainty on k only marginally a↵ects prediction performance, which declines when b

estimates become inaccurate. This shows that the performance of the model is strongly
driven by the estimation of dry-season recession constants in ungauged catchments.

S3 Catchment Characteristics and Streamflow Re-

silience in Seasonally Dry Climates

We examine the linkages between the resilience of flow regimes and the physical char-
acteristics of the catchments. This allows us to identify regions where the statistical
method may not provide reliable predictions under change because the flow distribution
is is vulnerable to changing rainfall. By explicitly representing runo↵ generation pro-
cesses, the stochastic dynamic framework used in the process-based model is an ideal
tool to explore the resilience of flow regimes in catchments that follow its basic un-
derlying assumptions on recession behavior. A similar model was used in non-seasonal
climates by Botter et al. [2] to relate the resilience of the probability density func-
tion of streamflow to observable catchment characteristics. Here we discuss the case

3



of seasonally-dry climates, where the characteristics of the seasonal recessions can sub-
stantially a↵ect streamflow resilience, here measured as the change in the flow duration
curve (in terms of di↵erences in Nash Sutcli↵e Coe�cient) resulting from a change in
rainfall 1.We use the relations derived in the stochastic dynamic framework [4] to infer
the e↵ect of rainfall and recession characteristics on the resilience of flow regimes. This
will allow the reliability of the statistical models to be assessed for predictions under
change.

During the wet season, flow regimes are determined by the ratio between �, the
frequency of e↵ective (i.e. runo↵-generating) rain events, and k the (linear) recession
constant that represents the time scale of the hydrological response of the catchment
[2]. If �/k > 1, frequent e↵ective rainfall and a slow catchment response guarantee
a persistent supply of runo↵ to the stream. If �/k < 1, e↵ective rain is not frequent
enough to compensate for rapid decreases in streamflow after runo↵ events, and the
stream may become intermittent. Streamflow in persistent regimes (�/k > 1) is driven
by rainfall, whereas streamflow in intermittent regimes (�/k < 1) is constrained by
the ability of the catchment to modulate the release of water stored in the subsurface.
Accordingly, rainfall changes a↵ect most flow quantiles in the persistent regime and shift
the entire flow distribution, but they preferentially a↵ect high flows in the intermittent
regime, which occur immediately after e↵ective rain events. As a result, intermittent
regimes are more resilient to climate change in terms of the mean e↵ect on the entire
streamflow distribution, as observed by Botter et al. [2] and illustrated in Figure S4
(a). However, when specifically considering climate e↵ects on the shape of the flow
distribution (i.e. by normalizing all flow quantiles by their mean), intermittent regimes
are more vulnerable to rainfall changes, which ‘tilt’ normalized FDCs by preferentially
a↵ecting high flows (Figure S4 (b)). Consequently, we expect the statistical method to
perform better in persistent flow regimes because the shape of streamflow distribution
is less sensitive to changing rainfall. This is confirmed in the Monte Carlo analysis
presented in below, where the ratio �/k is positively correlated to the performance of
the statistical model.

If no significant rainfall occurs outside of the wet season, climate change only a↵ects
dry-season flow through its e↵ect on the initial condition of the seasonal recession. It
follows the flow regime will be more sensitive to rainfall changes if the duration of the
wet season (when rainfall has a ‘direct’ e↵ect on streamflow) is long and thus a↵ects a
greater proportion of the annual flow duration curve. This e↵ect is also visible in the
Monte Carlo analysis, where the duration of the wet season (Tw) is negatively associated
with the performance of the statistical model.

The extent to which changes in the initial condition a↵ect the shape of the sea-
sonal recession during the dry season is determined by the non-linear character of the
catchment’s response. This can be seen by using the characteristic time-scale of the

1This contrasts with Botter et al. [2], who considers the e↵ect of rainfall regime changes on the
probability distribution function of streamflow. While the general idea is the same, the numerical
results can be di↵erent.
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recession (here we consider the time necessary to reduce peak flow by 1/e) to char-
acterize its shape. In linear catchments, the recession takes an exponential form, so
the characteristic timescale corresponds to the inverse of the recession constant and is
not a↵ected by initial conditions. For non-linear catchments, characteristic time can be
derived from Equation 1 in the main article:

t1/e =
(1� e

�r)Qr
0

ar

(1)

with r = 1�b. In these nonlinear regimes, the initial conditions Q0 clearly have an e↵ect
on the shape of the recession of non-linear catchment. Taking the derivative of Equation
1 with respect to Q0 shows that a change in initial flow has a stronger influence on the
shape of the recession for low values of Q0, as illustrated in Figure S4 (c). Consequently,
the sensitivity of the dry season flow regimes to climate change scenarios is expected to
be highest in strongly non-linear catchments with limited wet season runo↵. Predictions
of the FDC using the statistical model for non-stationary rainfall regimes are likely to
be poor. In the Monte Carlo analysis below, the performance of the statistical method is
significantly worse in strongly non-linear catchments. However, the negative correlation
between the linearity of the runo↵ behavior and the prediction performance is weaker
for catchments with high wet-season runo↵.

The streamflow resilience in seasonally dry catchments depends on two distinct sea-
sonal e↵ects: a ’direct’ e↵ect driven by the ratio between �P and k during the wet
season, and an ’indirect’ e↵ect during the dry season, when resilience is determined by
the interplay between Q0 (i.e. wet-season rainfall) and b. Streamflow resilience influ-
ences the ability of the statistical method to predict FDCs under change. In seasonally
dry climates, we expect the statistical method to be most reliable in regions where wet
seasons are short with limited total rainfall but persistent flow regimes, and where the
recession behavior during the dry-season is close to linear.

S4 Monte Carlo Analysis of Flow Regime Resilience

We used a Monte Carlo analysis on numerically generated streamflow to estimate the
e↵ect of catchment characteristics on streamflow resilience. In the context of this paper,
the resilience of flow regimes to climate change is defined as the robustness of the shape
of FDCs to shifts in the frequency and intensity of rainfall. The analysis proceeds as
follows:

1. Topographic and hydroclimatic characteristics are drawn from uniform distribu-
tions as described in Table S1.

2. 1000 years of ’current’ synthetic daily streamflows are generated from the drawn
parameters using the stochastic rainfall generator and rainfall-runo↵ model de-
scribed in Section 2.3.2. of the main article.
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3. Randomly drawn multiplicative biases are inserted to the parameters representing
frequency and intensity of rainfall (�P and ↵P ) to emulate climate change, and
1000 years of ’future’ synthetic daily streamflow are generated.

4. Current and future FDCs are constructed empirically from the simulated time
series, and normalized by their respective means.

5. Di↵erences in the shape of the flow distributions are quantified by computing the
Nash Sutcli↵e coe�cient on the (log) flow quantiles of the two normalized FDCs.

We repeated the procedure 5000 times and used linear regressions to estimate the e↵ect
of catchment characteristics on the resilience of flow regimes, as represented by the
Nash Sutcli↵e coe�cient.

Ordinary least squares estimates of the considered regression models are presented
in Table S2. The first column presents direct correlations between catchment charac-
teristics and flow regime resilience and indicate significant positive e↵ects for rainfall
frequency and intensity and a negative e↵ect of both recession constants. Regression
models shown in columns 2 and 3 test the relations hypothesized in the discussions.
As expected, column 2 shows that the �/k ratio has a positive significant e↵ect on the
resilience of flow regimes. In order to avoid colinearity issues, all variables used to con-
struct � (i.e. �P and ↵P in Equation A1 of the main article) where removed from the
regression model. The significant negative e↵ect of Tw on streamflow resilience is consis-
tant with the fact that dry season precipitations are neglected. Consequently, changes
in rainfall have a direct e↵ect on wet season flows, while only a↵ecting dry season flows
through their e↵ect on the initial conditions of the seasonal recession. Lastly, we use
mean wet-season rainfall (�P↵P ) as a proxy for the initial conditions of the seasonal
recession and assess the e↵ect of its interaction with b on flow resilience in column 3. As
expected, b is strongly negatively associated to flow resilience but its interaction with
�P↵P is significantly positive. This is consistent with our hypothesis that the shape of
non-linear recessions is more sensitive to climate, especially if the initial flow conditions
are low.
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Table S1: Parameters of the Monte Carlo analysis. At each run, all parameters are drawn
independently from a uniform distribution of the specified range.

Characteristic Description Distribution range
k

�1 [d] Mean response catchment [1, 10]
response time during the wet season

b [�] Exponent parameter of the [1, 3]
seasonal recession

Tw [d] Wet season duration [50, 300]
�

�1
P [d] Mean inter-arrival time of [1, 10]

wet season rainfall
↵P [mm/d] Mean intensity of wet seasonal rainfall [1, 50]
Log10(A) [log(km2)] (Log) catchment area [1, 5]
r�P [�] Relative change in rainfall frequency [�0.9, 0]
r↵P [�] Relative change in rainfall intensity [0, 1]
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Table S2: Linear regression results of the Monte Carlo analysis showing the e↵ect of catch-
ment characteristics on flow resilience. Dependent variables are the Nash Sutcli↵e
coe�cients estimated between the normalized current and future FDCs obtained
from the Monte Carlo analysis. Independent variables are constructed from the
randomly drawn catchment characteristics listed in Table S1. The first column
presents the raw e↵ects of the catchment characteristics on flow resilience. Column
2-3 test the direction and significance of the e↵ects described in Section S3. Su-
perscripted stars describe the significance of the estimated regression coe�cients,
as described by the p-value of Student’s t test: ⇤⇤⇤ indicates a trend di↵erent from
zero at the 99% confidence level; ⇤⇤ and ⇤ indicate confidence levels of 95% and
90% respectively.

Dependent variable:

Nash Sutcli↵e Coe�cient

(Baseline) (Wet. seas) (Dry seas.)

�P 3.17 · 10�1⇤⇤⇤

(2.07 · 10�2)
↵P 1.49 · 10�3⇤⇤⇤

(3.27 · 10�4)
k �4.54 · 10�1⇤⇤⇤

(3.32 · 10�2)
Tw �3.23 · 10�4⇤⇤⇤ �3.36 · 10�4⇤⇤⇤ �3.68 · 10�4⇤⇤⇤

(5.72 · 10�5) (5.70 · 10�5) (5.81 · 10�5)
b �5.75 · 10�2⇤⇤⇤ �6.14 · 10�2⇤⇤⇤ �1.02 · 10�1⇤⇤⇤

(7.46 · 10�3) (7.42 · 10�3) (1.21 · 10�2)
�/k 6.28 · 10�2⇤⇤⇤

(3.19 · 10�3)
�P↵P �1.31 · 10�3

(2.19 · 10�3)
�P↵P :b 4.06 · 10�3⇤⇤⇤

(1.03 · 10�3)

Observations 5,000 5,000 5,000
F Statistic 559⇤⇤⇤ 753⇤⇤⇤ 589⇤⇤⇤

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Figure S1: (a) Performance in ungauged basins of the MIP method currently used in Nepal
for infrastructure design. The method produces significant upward biases on
the predicted FDCs. (b) Error duration curve showing the prediction errors
of the statistical methods when the parameters are estimated using observed
streamflow, instead of linear regression. Comparison with Figure 2(b) of the
main article shows that interpolation uncertainties on the model parameters are
the main source of error of the statistical method.
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Figure S2: E↵ect of parameter estimation errors in the predictive performance of the mod-
els. Results were obtained using the Monte Carlo analysis described in Section
S4, with errors in the parameters inserted instead of rainfall changes. (a) The
performance of the statistical model is driven by errors in Qm, with little e↵ect of
q95. (b) The process-based model is sensitive to errors in both of its parameters,
but k mostly a↵ects prediction performance through its e↵ect on a (Equation 2
of the main article). (c) Errors in k have little e↵ect on modeling performance if
the true values of a are used instead of Equation of the main article.
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Figure S3: (a - c) Error duration curve of leave-one-out cross-validations for the process-
based model using (a) observed values (i.e. estimated from local streamflow
observations) for k and b, (b) observed values of k, b and a, and (c) observed
value of k, b, a, � and ↵. Comparing panels (a) to (c) shows that errors in
low flow decrease substantially when using observed values for a, instead of its
approximation from k and b (Equation 2 in main article), whereas errors in
high flow decrease substantially when using streamflow, instead of rainfall (see
Appendix A of the main article), to estimate � and ↵. (d) Scatterplot of observed
vs predicted values for a. Predictions errors are small when using Equation 2
of the main article with observed values of k and b (black), and significantly
larger when interpolating a from observed values in neighboring catchments using
ordinary kriging (grey).
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Figure S4: Streamflow resilience to rain changes. (a) E↵ect of a 50% increase of rainfall
frequency on wet-season FDCs for di↵erent flow regimes. The solid FDCs as-
sume a persistant regime (�/k = 2.0), with lower and upper curves representing
the ’current’ and ’future’ flow distribution respectively. The dashed curves as-
sume an intermittent regime (�/k = 0.2). The persistent regime (solid) is more
sensitive to changes than the intermittent regime (dashed), as seen in its lower
Nash Sutcli↵e Coe�eicnt (NSC) of 0.24. (b) The FDCs presented in panel (a)
are normalized by their mean flow. The intermittent regime (dashed) is now
more sensitive to change than the resilient regime (solid) because high flows are
disproportionately a↵ected by changes in rainfall. (c) Seasonal recession curves
for linear (dashed) and non-linear (solid) catchments with di↵erent initial flow
conditions. The figure illustrate that the shape of the recession is a↵ected by
initial conditions only if the catchment recessions are non-linear. For identical
relative changes in initial conditions (here 1000%), the e↵ect on recession shape
is most important for low initial flow conditions.
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