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Abstract. The prediction of flow duration curves (FDCs) in ungauged basins remains an important
task for hydrologists given the practical relevance of FDCs for water management and infrastructure
design. Predicting FDCs in ungauged basins typically requires spatial interpolation of statistical or
model parameters. This task is complicated if climate becomes non-stationary, as the prediction
challenge now also requires extrapolation through time. In this context, process-based models for
FDCs that mechanistically link the streamflow distribution to climate and landscape factors may
have an advantage over purely statistical methods to predict FDCs.

This study compares a stochastic (process-based) and statistical method for FDC prediction in
both stationary and non-stationary contexts, using Nepal as a case study. Under contemporary con-
ditions, both models perform well in predicting FDCs, with Nash-Sutcliffe coefficients above 0.80
in 75% of the tested catchments. The main drivers of uncertainty differ between the models: pa-
rameter interpolation was the main source of error for the statistical model, while violations of the
assumptions of the process-based model represented the main source of its error. The process-based
approach performed better than the statistical approach in numerical simulations with non-stationary
climate drivers. The predictions of the statistical method under non-stationary rainfall conditions
were poor if (i) local runoff coefficients were not accurately determined from the gauge network,
or (ii) streamflow variability was strongly affected by changes in rainfall. A Monte Carlo analy-
sis shows that the streamflow regimes in catchments characterized by frequent wet-season runoff
and a rapid, strongly non-linear hydrologic response are particularly sensitive to changes in rainfall

statistics. In these cases, process-based prediction approaches are favored over statistical models.
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1 Introduction

The flow duration curve (FDC) provides a compact summary of the variability of daily streamflow
by indicating what proportion of the flow regime exceeds a given flow rate. FDCs have consider-
able practical relevance, particularly in supporting decisions that are affected by the availability and
reliability of surface water. Common applications of FDCs include the design and management of
hydropower infrastructure (e.g.,[Basso and Botter, [2012; Miiller | 2015), the determination of envi-
ronmental flow standards for ecosystem protection (e.g., Lazzaro et al.,2013), the allocation of water
resources for consumptive uses (e.g., |Alaouze, [1989) or the prediction of streamflow time series in
ungauged or poorly gauged catchments (e.g.,/[Hughes and Smakhtinl [1996f Westerberg et al.|[2014).

Despite their utility, empirical FDCs are unavailable for many basins, primarily because they
require extensive on-site observations of daily streamflow (Vogel and Fennessey, |1994). Globally,
the majority of catchments remain ungauged (or the gauge data that exist are subject to signifi-
cant quality assurance and data availability constraints). Furthermore, the global number of stream
gauges continues to decline because of ongoing budgetary constraints faced by water monitoring
agencies (Stokstad, [1999} [United States Geological Surveyl 2015). Therefore FDCs must typically
be estimated in data-scarce areas. The most widely used techniques for FDC estimation are simple,
graphical methods. Such empirical methods are easy to implement but often rely on overly simplis-
tic assumptions that lead to substantial prediction errors. For instance in Nepal, the regionalization
method prescribed in official design manuals (e.g., [Chitrakar] 2004; |Alternative Energy Promotion
Center, [2014) relies on one in-situ observation of streamflow during the dry season to scale stan-
dardized regional indices for monthly flows. The procedure neglects the inter-annual variability of
low-flows, which leads to important biases in the predicted flow distributions (see Section S1 of
Supplementary Materials). Even in gauged catchments, FDCs constructed from historical observa-
tions may not represent current flow conditions well, because flow regimes are impacted by climate
change and anthropogenic alterations of the catchments (e.g. Botter et al.| [2013; [Mu et al., 2007).
Predicting streamflow in ungauged basins, particularly in the context of environmental change, re-
mains both a fundamental necessity for water managers and a major research challenge (Bloschl
et al.l 2013} Montanari et al., 2013)).

Recent efforts to predict FDCs in ungauged catchments focus on statistical approaches that predict
the flow distribution based on the catchment’s similarity to nearby, gauged watersheds (Castellarin
et al., 2013). Index flow approaches, which regionalize specific index flows (typically the mean
flow), and use those indices to rescale empirical FDCs from similar catchments, are particularly
popular (e.g., (Chalise et al., [2003}; |Castellarin et al., 2004bj [Sauquet and Catalogne} 2011} |Arora
et al.| [2005). While differing in methodological details, all index flow approaches assume that FDCs
do not vary within homogeneous regions, except by a scaling factor. Because they do not assume
any specific runoff-generating process, statistical methods are versatile. They have been successfully

been applied globally to predict FDCs in a variety of climates and catchment types (Bloschl et al.,
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2013). However, methods are also insensitive to the diversity of controls on the shape of the FDC
exerted by climate processes and catchment characteristics. This may affect their reliability under
non-stationary conditions (Milly et al., |2008)). Finally, the calibration of statistical methods relies
on extensive streamflow observations from a large number of representative and well characterized
catchments (e.g.,|Cheng et al., 2012; |Coopersmith et al., 2012). Their performance is therefore sen-
sitive to the spatial density of available gauges |Bloschl et al.| (2013), and their reliability in regions
where streamflow data is truly scarce is uncertain.

Stochastic, process-based models that mechanistically link the drivers, state and response of the
system are a promising avenue to address these issues. In these models, basic assumptions about
the stochastic structure of rainfall and the (deterministic) response of catchments allow the analytic
derivation of streamflow probability density functions (PDFs). (Note that because the FDC can be
obtained directly by transforming the PDF, a predictive technique that yields the streamflow PDF
will also allow the FDC to be estimated). Botter et al.| (2007b) show that runoff follows a gamma
distribution if catchments behave as a linear reservoir, forced by stochastic rainfall that follows a
marked Poisson process. The resulting gamma distribution depends on two parameters that are de-
termined by the recession characteristics of the catchment, and by the frequency and intensity of
effective rain. This process-based approach to the streamflow PDF has been extended to include
the fast flow component of streamflow (Muneepeerakul et al., 2010), non-linearities in subsurface
storage-runoff relationships (Botter et al.l [2009), the effects of short-term snowmelt (Schaefli et al.|
2013) and the carryover of subsurface storage between seasons in seasonally dry climates (Miiller|
et al., [2014). Although the stochastic framework allows the effects of changes in climate or land-
scape to be independently modeled, it relies on strong simplifying assumptions about the spatial ho-
mogeneity of catchments. These assumptions makes the existing process models less versatile than
statistical methods. Nonetheless, the approach has low calibration requirements because it relies on a
small number of parameters, which can be determined using rainfall, climate and geomorphological
characteristics of the catchments (Doulatyari et al., 2015)). This information is increasingly available
in ungauged basins, thanks to remote-sensing technologies, even when ground-based measurements
are sparse.

Process-based models successfully reproduce streamflow PDFs in numerous gauged catchments
worldwide (Botter et al.,|2007a; |Ceola et al.,[2010), including Nepal (Miiller et al.,2014). Yet their
predictive performance in ungauged basins remains largely unassessed, particularly in regions where
the local gauge density is globally representative (as opposed to densely monitored catchments in
developed countries such as, e.g., France and Austria in |Castellarin et al.[(2013). For lower gauge
densities, it is unclear whether the advantages of the process-based approaches, which are derived
from an explicit representation of flow-generating processes, are outweighted by the limitations im-
posed by the restrictive assumptions underlying these methods - and whether this trade-off is altered

by non-stationarity in climate drivers.
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Using Nepal as a test case, this study compares the process-based and statistical approaches on
the basis of (i) their ability to predict FDCs in ungauged basins, (ii) their sensitivity to data-scarcity,
represented both by the spatial density of the stream gauge network and by the temporal extent
(length) of the available streamflow records, and (iii) their ability to accommodate changes in the
rainfall regime.

Nepal provides an ideal setting to compare the two approaches, for four reasons. First, the country
is representative of global availability of streamflow data, as measured by the density of its stream
gauge network (Figure [T(a)). Second, methods drawn from both statistical and process-based ap-
proaches have been developed and validated in Nepal. Here we compare the stochastic-dynamic
framework developed in Miiller et al.| (2014])), with the index flow model described in (Chalise et al.
(2003)). Third, flow generation processes in Nepalese Himalayan catchments are complex, particu-
larly with respect to the spatial and temporal properties of precipitation. Rainfall derives from the
Indian Summer Monsoon and is strongly affected by topography. As a result, local rainfall is tempo-
rally autocorrelated, spatially heterogeneous and highly seasonal. There is also significant carryover
of groundwater storage between the wet and dry seasons, so that dry season discharge reflects the
features of the antecedent wet season. These characteristics violate many of the assumptions that
underlie the process-based method. The analysis in Nepal is therefore likely to provide a conserva-
tive estimate of the potential performance of the process-based method in ungauged basins. Finally,
developing reliable methods for FDC prediction in Nepal represents an opportunity for ‘use-inspired
science’ (Thompson et al.l 2013b)). Nepal has an enormous untapped hydropower potential and is
in dire need of electrical power, particularly in rural areas. A reliable method to estimate FDCs in
ungauged catchments would be a valuable tool to support the development of micro hydropower, a
sustainable technology for rural electrification (Miiller | 2015)).

Section [2] describes the two models and the procedures used to estimate their parameters from
streamflow and rainfall observations. Section [3] presents the results of the comparative analysis in
Nepal. Section [4] examines the key sources of errors for both models and discusses implications
for both Prediction in Ungauged Catchments (PUB) and Predictions Under Change (PUC) beyond
Nepal.

2 Methods
2.1 Compared Approaches

2.1.1 Process-based model

The process-based approach models daily streamflow as a random variable. Subject to strong sim-
plifying assumptions about rainfall stochasticity and runoff generation, the streamflow PDF can be

analytically derived. During the wet season, daily rainfall is represented as a stationary marked Pois-
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son process with exponentially distributed depths. Assuming linear evapotranspiration losses, Botter
et al.| (2007b) showed that effective rain, that is the portion of the total rainfall that contributes to
streamflow generation, also follows a stationary marked Poisson process. For a spatially homoge-
nous catchments with an exponentially distributed response time (i.e. a catchment that behaves as a
linear reservoir), this effective rainfall will produce gamma-distributed streamflow. The parameters
of the gamma distribution are derived from the frequency (A p) and mean depth (ap) of rainfall, and
from the recession constant (k) of the catchment. If rainfall in the dry season is sufficiently minimal
that effective rainfall does not contribute to runoff generation, then dry season streamflow represents
only the discharge of groundwater stored during the previous wet season. This discharge is modeled
as a single seasonal recession with stochastic initial conditions that depend on the wet season prop-
erties. Because groundwater is not replenished during the dry season, the water table is subject to a
large transient drawdown, resulting in a nonlinear discharge behavior and a power law relation be-
tween recession rate and discharge (Brutsaert and Nieber, |1977). We showed in Miiller et al.| (2014)
that the distribution of streamflow, and therefore the FDC, in seasonally dry climates that meet the
assumptions above can be expressed analytically as a function of seven independent parameters: the
frequency (A\p) and mean intensity (ap) of wet season rainfall, maximum daily evapotranspiration
during the wet season (ET"), the water storage capacity of the soil in the root zone (S.SC), the (lin-
ear) wet-season recession constant (k), the duration of the dry season (7) and the exponent of the
power law recession during the dry season (b). The model admits an additional input parameters, the
scale a of the of the power-law seasonal recession, which we showed in Miiller et al.|(2014)) can be
expressed as a function of k, b, Ap and ap. The formal derivation of the model is summarized in
Appendix [A]

The model was successfully validated in a variety of regions with seasonally dry climates world-
wide, including Nepal, where observed FDCs were predicted in 24 gauged catchments with a median
Nash Sutcliffe Coefficient of 0.90 on log-transformed flow quantiles (Miiller et al., [2014). The ap-
proach successfully reproduced both the rain-driven distribution of flows during the wet season and
the release of stored monsoon water during the dry season recession. In this study, we assess the
operational performance of the process-based approach as a tool to predict streamflow in ungauged
catchments. Therefore, we do not further attempt to attribute model errors to parameters versus the
model structure in the results presented in Section 3] since in practice these errors are confounded in
any real application. The relative significance of these two error sources is nonetheless discussed in
Section[4. 1.1

In ungauged catchments, the process-based model is implemented as follows.Three of the seven
parameters of the model (T,;, Ap, ap) are rainfall characteristics that can be estimated in ungauged
basins using meteorological observations. Recession parameters (k and b) describe aquifer proper-
ties that are challenging to observe at the catchment scale. They can be estimated using observed

streamflow time series in nearby gauged basins, and subsequently interpolated from nearby gauges,
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using the geostatistical approach described in [Miiller and Thompson| (2015), which accounts for
the topology of the stream network. The last two parameters (E1) and (SSC') describe catchment-
scale soil moisture dynamics that are arduous to determine empirically. Previous applications of the
model relied on reasonable values of ET and SSC, based on land use, soil and climate characteris-
tics of the catchment (e.g., Botter et al., 2007a; |Ceola et al., 2010). Alternatively, runoff coefficients
can be used to directly relate rainfall statistics to streamflow increments (Doulatyari et al.l 2015).
Runoff coefficients describe the ratio of mean discharge to mean precipitation, and can be predicted
in ungauged basins using water balance models and meteorological observations. This approach cir-
cumvents the need to estimate £7 and SSC, but the accuracy of predicted runoff coefficients in
ungauged catchment is critically dependent on the type of water balance model used and on the
availability of appropriate calibration data (Doulatyari et al., [2015). Instead, this study follows the

former procedure and uses reasonable estimates of £7" and SSC for Nepal.
2.1.2 Statistical model

The statistical approach is entirely driven by observation data and does not assume any specific
runoff generation process. Instead, it identifies and exploits statistical correlations that may occur
between streamflow observed at existing gauges and the geology, topography and climate of the
corresponding catchments. The index flow model used in this study was developed by [Chalise et al.
(2003) to regionalize FDCs in Nepal to assess the potential for small hydropower development. The
model is based on local flow indices for mean (Qm = E[Q]) and low flows (g95 = Qg5/Qm, Where
Qos is the 95" streamflow percentile) and uses a non-parametric approach to represent the shape
of the FDC. Empirical FDCs from available gauges are normalized by (),,, and pooled into equally-
sized groups based on the qy5 index of the gauge. A standardized curve is determined for each group
by taking the average of the normalized flows corresponding to each duration, in order to represent
the average catchment response in the group. The chosen statistical approach is considerably less
complex than many alternative state-of-the-art methods using multiple (often non-linear) equations
to relate multiple flow quantiles to a variety of observed covariates (see [Castellarin et al.| (2013)) for
a review). However, (Chalise et al.| (2003) is, to our knowledge, the most recent statistical method
specifically developed and validated in the study region. The approach is parsimonious and adapted
to situations, where in-situ observations of catchment characteristics are scarce. The method is there-
fore representative of the level of complexity of statistical approaches likely to be implemented in
developing countries practical hydrological engineering purposes.

Predictions in ungauged catchments are obtained by first using linear regressions to predict @,
and qg5. Although the original method calls for a stepwise multiple regressions approach to de-
termine regression covariates inductively, we used the regression models obtained in [Chalise et al.
(2003): @, is regressed against annual rainfall (R,) and gauge elevation (z,,,;») as a proxy for evap-

otranspiration; and qys is regressed against the ratios of catchment area occupied by each of the
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considered geological units. The two regressions loosely represent the long term water balance and
short-term response of the catchment. The predicted low-flow index is then used to determine the
standardized FDC shape, which is finally multiplied by the predicted mean flow to obtain the FDC.
An important assumption, inherent to the linear regression models, is that the dependent variable
(here @,, and gg5) is not spatially correlated, when controlling for the considered covariates. This
assumption is reasonable in Nepal, where the typical distance between stream gauges is much larger
than the correlation scale of runoff (Miiller and Thompson, [2015). In more densely gauged areas
(or if runoff is correlated over larger distances), streamflow observations at neighboring or flow-
connected gauges are likely to be correlated. In these regions, accounting for the effect of distance
and stream network topology when interpolating flow indices (e.g., using TopREML (Miiller and

Thompsonl, [2015)) will improve predictions.
2.2 Study region and data

The two methods were evaluated using observed streamflow data from 25 Nepalese catchments
mapped in Figure [I] (b). The gauges in this dataset (HKH-FRIEND| 2004} [Department of Hydrol-
ogy and Meteorology, [2011)) have at least 10 years of daily streamflow records. They were checked
for consistency, using double mass plots (Searcy and Hardison, [1960), and bias: we discarded non-
glaciated catchments that had a precipitation deficit on their long term water balance. Watersheds
were delineated using the ASTER GDEM v2 digital elevation model (NASA Land Processes Dis-
tributed Active Archive Center (LP DAAC)|, 2011). The study watersheds are located in central
Nepal but cover a wide variety of catchment sizes, elevation ranges, precipitation characteristics and
geological units (Table/[I)).

We focused on the Chepe Kohla catchment in central Nepal (Figure [T] (b, insert)) as a case study
for analyses requiring resampling (Section [2.3.T) or simulation (Section [2.3.2) of streamflow time
series. The Chepe Kohla watershed has a long (by Nepalese standards) record of daily streamflow
observations (31 years) and is representative of the full sample of gauges in terms of topography
and recession behavior (Table [T). The catchment is also small (i.e. close to spatially homogenous)
and local rainfall is well approximated by a marked Poisson process (First order autocorrelation
coefficient of rainfall occurence (AR): 0.09, Coefficient of variation of rainfall depths (CV): 1.09),
echoing the underlying assumptions of the process-based model.

Rainfall characteristics over the sampled catchments were obtained from 178 precipitation gauges
(HKH-FRIEND] 2004} [Department of Hydrology and Meteorology, |2011), also mapped on Figure
[I] (b). The average duration of the dry season (Ty) was estimated at each precipitation gauge by
fitting a step function to the corresponding rainfall time series (Miller and Thompson, [2013), and
wet-season precipitation records were used to compute the frequency and mean intensity of rainfall
(Ap and ap). Rainfall characteristics were then aggregated at the catchment level by assuming that

the rain process aggregates linearly within the basins. For rainfall occurence, we assumed that the
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duration between rain events caused by two consecutive storms can be estimated as the average of
the inter-arrival times measured at the rain gauges within the catchment. This allows us to compute
catchment level rainfall frequency as:

-1

1S
Ap= | —=S"—
PR

where )\Sﬁ) designates rainfall frequency observed at gauge ¢ and N, the number of rain gauges
within the catchment. Similarly, the catchment-level duration between rainy seasons is assumed to

be the average of the durations observed within the catchment:

N,
L )
Ty = E;Td

Finally, the precipitation depth received on any given day by a catchment is assumed to be the
average of the precipitation depths observed by individual rain gauges. It follows that the aggregated

mean rainfall intensity can be expressed as:

N,

a1 o)

ap = Plﬁz/\;)a%)
9

If no precipitation station is located within the catchment, rainfall characteristics observed at the
rain station closest to the catchment centroid were considered. Although aggregating rainfall time
series before computing their statistics would better account for spatial correlation in rainfall, aggre-
gating rainfall statistics instead allows for non-overlapping observation periods (assuming rainfall
is stationary). This is important in the context of Nepal, where rain gauges are scarce with sporadic
observations. Unfortunately, the low density of rain gauges within the considered basins prevents a
formal treatment of spatial correlation when aggregating frequencies. However, in a previous study
(Miiller and Thompsonl 2013) we observed large spatial correlation ranges on rainfall occurrence in
Nepal (125km during the monsoon). Under these conditions the selected method stands out as the
most parsimonious approach to utilize multiple, yet sparse, rainfall observations.

Recession characteristics were estimated using streamflow observations as described in [Miiller
et al.[(2014). We computed wet season recession constants (k) by regressing the logarithm of stream-
flow against time for each period of consecutively decreasing streamflow during the wet season. The
recession constant was then obtained by taking the median value of the regression coefficients of
recessions lasting more than four days. The power law exponent of dry season recessions (b) was

obtained by fitting a non-linear recession curve

1

Q)= (Qy " —a(l—b)t)T (1)

to base flow, which was computed from observed streamflow time series using the Lyne Hollick

algorithm (Nathan and McMahon, [1990). The last streamflow peak of the wet season was taken as
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initial flow condition (Q¢, and we used a stochastic optimization algorithm (Simulated Annealing,
Bélisle| (1992)) to minimize least square fitting errors. In ungauged catchments, the scale exponent
of the seasonal recession was approximated as (Miiller et al.l 2014)):
A/ o=

az?(em —1>(aQ~(m—|—1)), 2)
where 7 =1 —b; m is the ratio between the frequency A of effective rain events and the linear
recession constant k, and o is the average depth of effective rain events (see Appendix [A).

Potential evapotranspiration was approximated by applying the empirical relation estimated by

Lambert and Chitrakar (1989) for Nepal during the rainy season (July-September):
ET ~4.0—0.0008 - z;can

where ET is given in [mm - d_l] and z,,cqn 1S the average elevation of the catchment in meters.
The formula provides daily average evapotranspiration estimates for each month. It accounts for
elevation but assumes a spatially homogenous elevation gradient. A uniform soil moisture capacity
of 50 mm was assumed throughout the country, based on empirical observations reported in|Shrestha
(1997). By neglecting local variation in soil characteristics, this produces conservative estimates of

the performance of the process-based model in ungauged basins.
2.3 Comparative Analyses
2.3.1 Predictions in Ungauged Basins

We used three cross-validation techniques to evaluate the predictive ability of both methods in un-
gauged basins. Firstly, a leave-one-out analysis was carried out to assess predictive performances
in a realistic situation, where FDCs are predicted in Nepal using all streamflow gauges available in
the region. Secondly, we examined the sensitivity of the methods to decreasing data-availability by
reducing the number of gauges available to calibrate the models. Finally, we performed a similar
data-degradation procedure, but in this case we reduced the number of daily streamflow observa-
tions, while holding the number of gauges constant. This final analysis accounts for the challenges
posed by recent or temporary installation of stream gauges, which introduce uncertainties into the
estimation of model parameters due to the short streamflow records used. These errors can propagate
through the model and affect the prediction of FDCs.

In a leave-one-out analysis, one gauge is ‘left out” of the dataset, and streamflow is predicted at
the ‘missing’ location using observations from the remaining gauges. The predicted FDC is then
compared to observations from the omitted gauge. The resulting error between observation and pre-
diction yields the prediction performance of the method at that catchment if it were not gauged.
Repeating the procedure for all gauges offers an approximation to the overall prediction error of the
method. To measure this error we constructed error duration curves (Miiller et al., [2014)), where the

relative prediction error at each flow quantile is plotted against the corresponding duration. Error
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duration curves allow the partitioning of prediction errors across flow quantiles to be visualized.
General prediction performances (across all durations) at individual gauges were also determined

using the Nash Sutcliffe coefficient (NSC) on log streamflow quantiles (Miiller et al., 2014):

2
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where Qiemp ) and ng(’d) are the empirical and modeled streamflow quantile of duration ¢.

The effect of the number of calibration gauges was assessed using a Jack-Knife cross-validation
analysis (Shao and Tu} [2012; Miiller and Thompson, [2013)). At each of 10,000 iterations, a selected
fraction of the available gauges was randomly sampled (without replacement) and used to predict
the FDC at one (randomly selected) remaining gauge. Prediction accuracies for flow duration curves
(given by the N.SC') and uncertainties on the spatial interpolation of model parameters were reported
for each iteration. The procedure was repeated for decreasing numbers of selected ‘training’ gauges.

The available streamflow data did not allow a direct evaluation of the effects of timeseries length
through cross-validation, because such an analysis requires substantial overlaps in the monitoring
periods of all gauges. Therefore we focused the final analysis on the Chepe Kohla catchment which
has the longest observation record in our dataset. We evaluated the effect of the length of the available
observation records on parameter estimation, and propagated the ensuing uncertainty in the param-
eters to the FDCs predicted by each model. To do this, we selected a fixed number of full years of
streamflow observations, estimated the parameters, predicted the FDC using these parameters, and
compared the results to the empirical FDC obtained from the full observation record. The procedure
was repeated 10,000 times. The estimation errors in the model parameters and the resulting FDC
prediction performances (/NSC') were recorded as a function of the number of sampled years. This
analysis is not intended to describe the models’ ability to predict FDCs at catchments with short
observation records: in this case, constructing an empirical FDC using the available (however short)
observation record is likely to be the best course of action (Castellarin et al., 2004a). Instead, the
analysis is intended to simulate the effect of short observation records on FDC prediction at nearby,
ungauged catchments. The underlying assumptions behind this analysis are that (i) the error associ-
ated with interpolation is independent of the flow record length, and (ii) the Chepe Kohla catchment

is representative of Nepalese basins .
2.3.2 Predictions Under Change

We used numerical simulations to assess the ability of both models to predict streamflow when
subject to changing rainfall regimes, as described in Figure [2]

Synthetic streamflow time series were generated by coupling the stochastic rainfall generator de-
scribed in Miiller and Thompson|(2013) to a rainfall-runoff model. The generated wet-season rainfall

is a first order Markov process (i.e. rainfall occurrence on a given day is correlated to rainfall oc-
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currence on the previous day) with gamma-distributed rainfall intensities, and as such produces a
rainfall record that explicitly violates the assumptions under-pinning the process-based model. The
duration of the rainy season was assumed constant, and no rainfall was generated during the dry sea-
son. Wet-season streamflow was simulated by feeding synthetic rainfall into a linear reservoir (with a
recession constant k) with linear evapotranspiration losses, as in Miiller et al.|(2014). Dry season dis-
charge was obtained by simulating non-linear seasonal recessions of duration 7; starting at randomly
selected runoff peaks in the (previously generated) wet-season streamflow. These assumptions are
close to the observed reality in Nepal, as seen in Figure 3] (a), where the FDC constructed from the
simulated streamflow is a close approximation to the empirical FDC in the Chepe Kohla watershed.
We translated the effect of shifts in precipitation regimes into changed streamflow for the Chepe
Kohla catchment by considering a range of future combinations for rainfall frequencies and intensi-
ties. In line with what is expected in Nepal (Turner and Slingol 2009; |Turner and Annamalail, [2012)),
we considered negative changes in the frequency and positive changes in the mean daily rainfall
depth. We neglected changes in soil moisture capacity, evapotranspiration, rainfall autocorrelation
and the duration of the rainy season. These parameters are explicit in the process-based model, so
we expect differences in the sensitivity of the process-based and statistical models to climate change
to be underestimated by this procedure. For each rainfall scenario, we evaluated the performance of
the models in a changing climate by generating 1000 years of daily streamflow using future rainfall
frequencies and intensities.

We compared the synthetic FDCs to model predictions that were made with future rainfall statis-
tics, but contemporary recession and low flow parameters (Figure [2). The statistical method in
Chalise et al.| (2003)) uses a linear regression over a cross-sectional sample of observations to pre-
dict mean flow based on mean rainfall and altitude. The regression may fail to capture a variety of
unobserved characteristics affecting both rainfall and streamflow (e.g., local topographic features),
and hence may not capture the causal relation between the two variables. The extent of this bias
cannot be quantified a priori, so we considered two extreme cases: infinite and zero bias. The infinite
bias case (Case 1 on Figure [2)) represents the case where no effective relationship can be determined
between rainfall and mean flow. The best estimator of future mean flow is then the current flow
condition. Conversely, if regression coefficients perfectly describe the effect of annual rainfall on
average flow (Case 2 on Figure 2, then the future flow conditions can be perfectly estimated using
the (known) future annual rainfall. We modeled this situation by estimating (),,, directly from the
(simulated) future flow conditions. While the two cases differed in the determination of mean flow
(Qm), the low-flow parameter (qg5) was determined from current flow conditions in both cases. In
Chalise et al.|(2003)), g5 is normalized by @),,, and represents recession behavior, which is assumed
independant from rainfall. The process-based predictions were obtained by inserting future rainfall

statistics and contemporary recession constants into the analytical FDC equation described in Ap-
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pendix A. The two models were compared by plotting prediction performances (N.SC) against the
relative change in the frequency and intensity of synthetic rainfall.

Although the recession assumptions of the process-based model are taken to generate the synthetic
streamflow used as control, we believe that the analysis is not biased against the statistical approach
for three reasons. Firstly, the only parameter of the statistical approach that is influenced by rainfall
(Qm) is also computed from synthetic streamflow (Case 2 on Figure [2). Secondly, although based
on identical recession assumptions, the process-based model and the synthetic streamflow generator
are driven by different stochastic rainfall processes (i.e. Poisson and Markov respectively). Lastly
and most importantly, empirical observations reveal that synthetic streamflow distributions generated
under contemporaneous rainfall conditions reproduce closely FDCs constructed from gauge records
(Figure [3] (a)), showing that the underlying recession assumptions are, in fact, representative with

runoff processes actually occuring in Nepal.

3 Results
3.1 Prediction in Ungauged Basins

Results from the leave-one-out cross-validation analysis are presented in Figure [3 and show that
both methods perform similarly in the prediction of FDCs in ungauged basins. Error duration curves
(Figure [3] (a) and (b)) show comparable streamflow prediction uncertainties: 75% of the predicted
flow quantiles are between half and double the observed streamflow for both models, although the
low flows in the process-based model display an increasing upwards bias (Figure[3](b)). Considering
the Nash-Sutcliffe coefficients computed at the individual basin level, the mean and median perfor-
mances are again comparable for both models, but the accuracy of the statistical model predictions
are more variable across sites than the process model predictions, as indicated by the larger spread
of the Nash Sutcliffe coefficients (Figure EKC)).

Figure {4| (a, top) shows prediction performances of both models as the number of streamflow
gauges available for predictions decreases, and indicates that the performance of both models is rel-
atively insensitive to the gauge density, until it declines to less than approximately 0.6 gauges per
10,000 km?. For such situations, which represent discarding more than half the available gauges
in Nepal, the statistical model performance declines rapidly compared to the process-based model.
Prediction performances are strongly affected by uncertainties on the interpolation of model param-
eters, as seen in Figure [] (a, bottom). Interpolation uncertainties are generally larger for the flow
indices of the statistical model (Q,, and gg5) than for the recession parameters of the process-based
model (k and b). This explains the larger spread in prediction performances of the former (Figure
[3] (¢) and error bars in Figure [ (a, top)). The parameter uncertainties are also relatively insensitive

to the total gauge density until about 60% of the originally available gauges are discarded. At this
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point, the uncertainties associated with estimation of the flow indices increase significantly, while
the process-based model parameters remain more reasonably estimated.

When considering short observation windows, parameter uncertainties also drive the performance
of the models. Figure[d] (b, top) shows the prediction performance of both models at the Chepe Khola
watershed, as the number of observation years used to estimate the model parameters is reduced. In
this case, the statistical model outperforms the process-based model when less than 10 years of
streamflow observations are available. The parameter uncertainties associated with the short time-
series estimates (Figure [ (b, bottom)) suggest that a longer time series of streamflow observations
is needed to accurately estimate the wet-season recession parameter (k), resulting in the lower per-

formance of the process-based model for short streamflow records.
3.2 Prediction Under Change

Simulation results presented in Figure [5] (b) show both models’ ability to predict a simulated future
flow duration curve of the Chepe Kohla River, under a range of different possible changes in rain-
fall regimes. In all simulations, parameters describing the hydrological response of the basin (%, b,
and qg5) are determined using current flow conditions, and evapotranspiration is assumed constant.
The results show that explicitly modeling rainfall-runoff processes allows the process-based model
to accommodate the effects of the changing precipitation regime. In contrast, the performance of
the statistical model is affected at various degrees by shifts in rainfall regimes, depending on how
the model translates changes in annual precipitation to changes in average flows. If these shifts are
perfectly represented by the model, then prediction errors arise solely from changes in the shape
of the FDC, and the process and statistical models perform similarly in the Chepe Kohla watershed
across the full range of considered rainfall scenarios (Figure E] (b), dashed curve). If, however, aver-
age (future) streamflows cannot be reliably predicted from the predicted changes in annual rainfall,
the statistical model does not accommodate flow regime changes at all. In this case, future FDCs are
modeled using current streamflow observations, and the ensuing prediction errors can be substantial
(Figure [5] (b), dotted curve). The simulated cases provide upper and lower bounds for the actual
performance of the statistical model in future rainfall regimes. We evaluated the model’s ability to
predict @),,, by using cross sectional data (i.e. average streamflow and annual rainfall from the 25
catchments) to estimate the linear relation between (), and annual rainfall R,,. Applied to the Chepe
Kohla watershed, the estimated regression coefficients allowed the annual streamflow to be estimated
from annual precipitation with a bias of —13% and a coefficient of determination of R? = 0.57 (Fig-
ure E] (c)). Regardless, prediction errors remained negligible for both bounds (NSC>0.95) for the
range of changes actually anticipated in Nepal (e.g., AAp/Ap ~ 0.98 and Aap/ap ~ 1.20 for the
2 - C'Os scenario (Turner and Slingo), [2009)) .
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4 Discussion
4.1 Predictions in Ungauged Basins

The analysis suggests that both statistical and process-based methods to estimate FDCs in ungauged
basins perform comparably in Nepal, over a wide range of gauge densities and observation dura-
tions. Yet prediction performances varied significantly between the models as data became increas-
ingly sparse. The statistical method is more sensitive to spatially sparse data, which degrades the
interpolation accuracy of @),,,. In contrast, the estimation method for recession parameters makes
the process-based approach more sensitive to temporally restricted observations, which reduce the
accuracy with which recession parameters can be estimated. This suggests that the performance of
the two models in ungauged basins is affected by different sources of uncertainty. In this section,
we investigate the source of prediction error in each methods and discuss the implications for their

application in ungauged basins beyond Nepal.
4.1.1 Sources of Uncertainty

The statistical model relies on two assumptions about the correlations of observed data. The first
assumption is that catchments with similar low-flow indices (qg5) have identical hydrological re-
sponses, and therefore identical FDC shapes. Second, the model assumes that the flow indices (Q,,
and qy5) at ungauged catchments can be best predicted using linear regressions against observable
covariates (annual rainfall, elevation and geology). The latter assumption does not hold if the flow
indices are spatially auto-correlated, or if the posited linear relations are spatially heterogeneous
or, in fact, non-linear. Further, ‘omitted variable’ biases (Greene) 2003) will arise if an unobserved
variable is correlated to both a covariate and a flow index. For instance, local topographic features
may affect both the annual rainfall and the average streamflow in mountainous regions. Violation
of the second assumption leads to substantial uncertainty in the interpolation of the flow indices
in Nepal and drives the prediction errors of the statistical approach, as shown in Section S2 of the
Supplementary Materials.

While the performance of the process-based model is also driven by parameter estimation uncer-
tainties, these errors arise from simplifying assumptions about local hydrological processes (rather
than uncertainties from their statistical interpolation from neighboring gauges). Additional cross-
validation analyses (shown in Section S2 of the supplementary material) suggest that uncertainties
caused by the aggregation of observed point-rainfall statistics at the catchment level drive prediction
errors of high flow quantiles. While increasingly accurate remote sensing rainfall data will progres-
sively allow such spatial heterogeneities to be resolved, current precipitation products (e.g., TRMM
3B42) remain substantially biased in mountainous regions like Nepal, where they do not outper-
form available rain gauges in predicting the frequency and intensity of areal rainfall (Miiller and

Thompson, 2013). A second source of error arises from the simplifying assumptions made about
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streamflow recession that do not hold perfectly in the observed catchments. Because they describe
the same watershed, the wet and dry recession parameters are assumed to be physically related. In
Miiller et al.| (2014), the scale parameter of the non-linear seasonal recession (a) is expressed as
an explicit function of the two recession parameters (k and b) for sufficiently short recession times,
where power-law recessions can be approximated by exponential functions. We show in Supplemen-
tary Materials (Section S2) that, although this approach provides more accurate estimates of a than
would be obtained through spatial interpolation, estimation uncertainties remain, propagate through

the model and result in prediction errors during the dry season.
4.1.2 Applicability beyond Nepal

This study compares two specific methods on their ability to predict FDCs in the particular context
of ungauged Nepalese basins. Results are thus not necessarily representative of the relative perfor-
mance of process-based and statistical methods in general, particularly in regions where abundant
field data allow more advanced statistical approaches to be implemented. Yet fundamentally, the
statistical model relies on observed correlations, rather than assumptions about hydrologic mecha-
nisms. Because FDC shapes are modeled non-parametrically, the approach is applicable to regions
with highly variable catchment responses. However, prediction performance in ungauged basins is
constrained by interpolation errors in the mean flow. This makes the method unsuitable for regions
where the local determinants of mean flow (i.e. rainfall, evapotranspiration, glacial melt) cannot be
accurately monitored at the catchment level. In contrast, a key advantage of the process-based model
is its ability to exploit characteristics of the stochastic structure of rainfall that can be estimated from
daily rainfall observations. The model is appropriate for regions where the spatial heterogeneity of
runoff is driven by rainfall, and where the frequency and intensity of rainfall depths at the catchment
level can be readily estimated (i.e. small catchments with numerous rain gauges, or places where
satellite observations provide a good representation of rainfall statistics). Unlike rainfall, recession
behavior arises from lumped and complex interactions between climate, vegetation and groundwa-
ter processes that typically cannot be monitored in a spatially explicit manner. The process-based
model is therefore inappropriate for regions where the hydrologic response of the catchment is the
main source of runoff heterogeneity, or where the assumed recession behavior (in particular the
relation between a, k£ and b) does not occur.

Conveniently, the appropriate implementation contexts for both methods appear to be comple-
mentary, and the optimal method in a given region is determined by the driving source of runoff
heterogeneity in the catchments. Ultimately, the performance of both methods is constrained by their
ability to estimate their parameters in ungauged basins. This relation is apparent in Figure 4] where
drops in prediction performances correspond to increases in the estimation uncertainty of model
parameters. Under these conditions, the performance of each method is driven by the ability of the

available observations to capture the variability of the model parameters. When interpolated from
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neighboring gauges, uncertainties are governed by the interplay between the layout of the gauges
and the spatial correlation range of the considered model parameter. When estimated from short ob-
servation records, accuracy is determined by the extent to which the available record is representative
of the temporal variability of the parameter. These interactions between data availability and runoff
variability are inherently local and will affect the determination of the most appropriate method for

any given region.
4.2 Prediction under Change

Expected shifts in the frequency and intensity of Monsoon rainfall over Nepal only have a marginal
impact on the streamflow distributions in the Chepe Kohla catchment, as shown by the numerical
simulation presented in (Figure[3] (a, dashed curve). Consequently, changes in rainfall regime do not
appear to affect the performance of either model (Figure [5] (b)), unless they are significantly larger
then expected. Climate change may nonetheless affect flow predictions elsewhere. It is therefore
helpful to consider the conditions under which FDCs can be reliably predicted in a changing climate.

Although rainfall stationarity is an inherent assumption of the process-based approach, climate
change can be incorporated by updating the relevant parameters to their future value to predict the
(pseudo-) stationary future state of the system. The method accounts for otherwise confounding
changes in the frequency and intensity of rainfall, which are expected in Nepal. By explicitly ac-
counting for soil moisture dynamics and recession behavior, the model emulates the (causal) effect
of rainfall on streamflow. As a result, the method reliably predicts the distribution of future stream-
flow, provided that governing flow generation processes are in line with the basic assumptions listed
in Section 2.1.11

In contrast, the statistical model is solely based on observed correlations, leading to two important
sources of errors for predictions under change. First, the model only accommodates rainfall changes
to the extent that the estimated statistical relation between rainfall and runoff is representative of local
runoff coefficients. The model will not reliably predict future streamflows if runoff coefficients are
strongly spatially heterogeneous, or if the cross sectional sample of gauges fails to capture important
processes governing mean flow. This source of uncertainty appears to be significant in Nepal, as
illustrated by the substantial bias in annual flow predictions on Figure[5|c). Secondly, the statistical
model only considers the effect of average rainfall on average flow: the effect of rainfall distribution
in streamflow distribution is ignored. As a result, the model cannot predict changes in the shape
of FDC that are brought about by changing rainfall. The prediction performance of the statistical
approach is therefore determined by the resilience of the flow regime, that is the extent to which
streamflow distribution is affected by shifting rain signals (Botter et al., 2013): the method will
perform poorly in catchments with non-resilient flow regimes. The Monte Carlo analysis presented
in Supplementary Materials (Sections S3 and S4) shows that streamflow resilience in seasonally dry

catchments depends on two distinct seasonal effects: a ’direct’ effect driven by the ratio between
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Ap and k during the wet season, and an ’indirect’ effect during the dry season, when resilience is
determined by the interplay between () (i.e. wet-season rainfall) and b. In seasonally dry climates,
we expect the statistical method to be most reliable in regions where wet seasons are short with
limited total rainfall but persistent flow regimes, and where the recession behavior during the dry-
season is close to linear.

Lastly, a key assumption in this study is that catchment response (in terms of low-flow or reces-
sion characteristics) is independant of climate. It is possible that shifts in climate have an effect on
catchment response by affecting the partitionning of effective rainfall between storage and runoff.
Although not quantitatively assessed in this study, we expect that this effect would negatively affect

the performance of both approaches.

5 Conclusions

Stochastic, process-based models predicted the FDCs for ungauged catchments in Nepal well, with
a performance that was comparable to that of statistical models. It suggests that in regions with
globally representative gauge-densities, and under seasonally dry climates, the advantages of the
statistical approaches relative to stochastic models noted in previous analyses (Bloschl et al.| 2013)
may not apply. Fundamentally, the performances of both approaches are strongly affected by the
method chosen to estimate model parameters in ungauged basins, so this conclusion comes with the
caveat that this study cannot be interpreted as a general benchmark to compare these approaches at a
global level. Although we believe that the selected models are appropriate to compare process-based
and statistical approaches for practical PUB application in Nepal, their relative performance may be
different in other regions, where more abundant information on catchment characteristics allow more
complex (and presumably more accurate) regionalization approaches to be applied. Thus, substantial
research remains to be done to compare these approaches in other parts of the world, where locally
appropriate methods should be carefully considered.

Nonetheless, this study finds a complementarity between the different sources of uncertainty in
the stochastic and statistical methods. This suggests that model selection should be driven by a
consideration of the main drivers of heterogeneity in any study catchment: Process-based models
are advisable if climate is likely to be the main source of runoff heterogeneity. Conversely, statistical
methods are more appropriate for regions with substantially different recession behaviors across
catchments. These distinctions provide a potentially robust basis for model selection in any given
application.

The results also suggest that the sensitivity of statistical approaches to changes in rainfall statistics
is dependent on the ‘resilience’ of the flow regime as defined by [Botter et al.| (2013). Overall, the
process-based models are more reliable in projecting FDCs into new rainfall regimes. This is particu-

larly true for catchments characterized by a strong wet-season runoff and a rapid, strongly non-linear
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hydrologic response, because their flow regime is particularly vulnerable to rainfall changes, making
the assumptions of the statistical model inappropriate.

The excellent performance of both process-based and statistical models for the FDC and PDF in
ungauged basins suggests that extending probabilistic analyses in such basins to also include flow-
derived variables such as hydropower capacity (Basso and Botter, 2012) or ecological responses
(Thompson et al.,[2013al) may be feasible. While these prospects are enticing, we note that a model’s
ability to predict an FDC with high fidelity is not necessarily indicative of prediction performances
on all derived stochastic properties. For instance, Dralle et al.| (2015) demonstrate that the crossing
properties of streamflow can be very poorly estimated by stochastic process-based models, even
in applications where the same models predict the PDF of flow well. Further exploration of the
potential opportunities and limitations afforded by use of probabilistic models in ungauged basins

offers a promising avenue for future study.

Appendix A: Process-based streamflow distribution model for seasonally dry climates

This appendix presents the analytical expression of FDC in seasonal climates derived in Miiller|
et al.| (2014). The approach assumes that rainfall can be represented as a marked Poisson process
with with exponentially distributed depths. Catchments are modeled as spatially homogenous linear
reservoirs with linear evapotranspiration losses. Under these conditions, wet season streamflow can

be represented as a gamma-distributed random variable (Botter et al.,[2007b):
Qu ~ Gamma(m,aél)

with m = \/k and ag = apkA, and where k is the linear recession constant, A the area of the
contributing catchment and a.p the mean intensity of wet season rainfall. The frequency A of runoff
events can be expressed as a function of the frequency (\p) and intensity of rainfall (Botter et al.|

2007b):

Ap

eap(—y)v

)\ = _—
T, O /n)

where I'f, (-, -) is the lower incomplete gamma function, and where n = ET/SSC and y = SSC/ap

(A)

are respectively the ratio between maximum evapotranspiration and soil storage capacity, and the
ratio between soil storage capacity and mean rainfall intensity.

Dry season streamflow is modeled as a seasonal recession starting at the last discharge peak of the
wet season. Because wet season streamflow is a gamma-distributed variable, streamflow at discharge
peaks, and therefore the initial condition of the seasonal recession, is itself a gamma distributed

variable (Muller et al.l [2014):

Qpeak ~ Gamma(m + 1,0451).
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Assuming a power law-relation between discharge and recession rate, the cumulative distribution

function of dry season streamflow can be expressed as (Miller et al., 2014):

4'T1—al Ty '
1+ aﬁTdFi(m,QJrl)v if
Q> —(arTy)+
P, (Q) =
andr <0
qgl1—agle anTa+(Q"—arTy)Ts .
1+ aszr(mQH) + -2 @ TaT (1) , otherwise
with
T, = Tu(m+1,05'Q)
r, = Fu(r+m+1 ag Q)
I's = FU<m+1 aQ Qr+aer) )
Ny = To(r+m+1,05'(Q +arTy)t)

I'() and T'ys (-, -) denote the complete and upper incomplete gamma functions; 7} is the duration of
the dry season; 7 =1 — b and a are the parameters of the non-linear recession, which are assumed
stationary. Because they describe the same watershed, recession parameters for the wet and dry
seasons are related. If power-law recessions can be approximated by an exponential function for
sufficiently short recession times, we can express a as a function of k£ and b (Miiller et al.,[2014):
A/ o=
ax = (7 —1) (aq- (m+1)) (A2)
—r
The law of total probability can finally be used to combine seasonal streamflow distributions and

derive the cumulative distribution function of streamflow for the whole year:

Ty Ty
Po(@ = (1- 3t ) Fo_(@)+ P (@) (%)

The FDC for seasonally dry climates is finally obtained by plotting the streamflow quantiles )

against 1 — Pg(Q), the complement of the the cumulative distribution function of streamflow.
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Figure 1. (a) Global histogram of the approximate spatial density of streamflow gauges by nation, represented
by the sample of 8540 gauges indexed by the Global Runoff Data Center for 146 countries (Global Runoff]
Data Center, [2014). With a density of 1.6 gauges per 10,000 km?, Nepal falls close to the mode of the global
distribution. (b) Location of the rain gauges, streamflow gauges and corresponding Nepalese catchments used

in the analysis.

Table 1. Catchment characteristics. Median values and interquartile distances (IQD) are given for the whole
sample of 25 gauges. The table also presents characteristics of the Chepe Kohla watershed considered in the

analysis as a case study.

Streamflow: Topography: Climate: Recession:

Qm qo5 Ny A Zm ZM Py Tmons )\P ap AR CV ET k b

All gauges
Median 76.1 0.14 22 1355 481 5209 1952 99 071 188 029 092 25 017 238

Min 7.3 0.06 10 130 116 1913 1260 88 054 121 009 061 040 0.07 199

Max | 14624 025 41 32817 1641 8369 4030 152 091 330 051 153 327 032 299

Chepe Kohla 23.0 0.14 31 2717 475 4711 3050 100 0.84 265 009 103 21 020 241

Q. i1s mean annual flow in m3s™1; qos 1s the 95" flow percentile normalized by Q,,.: N, indicates the number of observation years; A is the catchment area in km?; Zm
and zps are respectively the minimum and maximum elevation of the basins meters; P, is mean precipitation in mm - yr~— LT ons is the estimated duration of the monsoon
in days; A p is rainfall frequency during the monsoon (in d ™ L), ap is mean rainfall intensity in mm - d™ L. AR is the first-order autocorrelation coefficient of rainfall
occurrence (AR = 0 if rainfall follows a Poissonian process), C'V is the coefficient of variation of rainfall intensity on rainy days (CV=1 if depths are exponentially distributed);
ET [mm - d~ '] is the reference evapotranspiration during the rainy season|Lambert and Chitrakar|(1989); k is the linear recession constant estimated during the monsoon (in

d~1) and b is the non linear exponent of the seasonal recession. A soil moisture capacity of 16 mm is assumed throughout the country (Miiller et al.|[2014).
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Figure 2. Numerical simulation analysis to assess predictions under change. Future rainfall characteristics (fre-
quency A p, mean intensity ap, auto-correlation coefficient AR and coefficient of variation C'V') are determined
according to expected changes in rain regimes in Nepal (see Section [2.3.2), and fed into a stochastic rainfall
generator. The resulting 1000 years of synthetic daily rainfall values (Psyn:h (t)) are fed into a rainfall-runoff
model that simulates the processes described in Sectionm The rainfall-runoff model uses current recession,
soil and evapotranspiration conditions observed at the Chepe Kohla catchment. The resulting 1000 years of
synthetic daily flow values (Q syntn (t)) are then reordered to construct an empirical synthetic (future) FDC,
which was compared (in terms of the Nash Sutcliffe Coefficient) to modeled FDCs predicted by the statistical
and process-based models. The process-based model admits current recession conditions, but future estimates
for rainfall frequency (A p) and mean intensity (a.p). Note that unlike the numerically generated empirical FDC,
the process-based model assumes Poissonian rainfall with exponetially distributed depths, that is C'V =1 and
AR = 0. Current low flow characteristics (ggs) are fed into the statistical model, as well as the current or fu-
ture (i.e. computed from synthetic streamflow time series) mean flow, depending on the extent to which mean

rainfall is an unbiased predictor of mean flow (Cases 1 and 2 described in Section 23.2).
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Figure 3. Flow duration curve prediction performance in ungauged basins. The error duration curves of the
leave-one-out cross-validation analysis using the process-based and statistical models are presented in panels
(a) and (b) respectively. Relative errors are plotted on a log scale in order to allow the graphs to be balanced
on the y-axis: a relative prediction error of 2 (the model predicts double the observed value) is at the same
distance from y=1 (perfect prediction) than a relative error of 1/2 (the model predicts half the observed value).
Durations are plotted on the x-axis, with x=0 and x=1 for the highest and lowest flow quantiles respectively.

Panel (c) shows box plots of Nash Sutcliffe coefficients computed from log-transformed flow quantiles.
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Figure 4. Sensitivity of models to data scarcity. (a) Cross-validation analysis showing the sensitivity of both
models to a decreasing number of calibration gauges. (b) Resampling analysis of streamflow observations in
the Chepe Kohla (N=10,000) catchment showing the effect of the number of observation years. In panels (a)
and (b), the effects on FDC prediction performances (top) are shown by plotting the ratio of calibration gauges
sampled (or the number of observation years) against the relative Nash Sutcliffe coefficient (with the NSC for
the full set of available data as reference). The plot shows the median value for all iterations, and the error bars
indicate the interquartile (25 - 75%) range. The prediction uncertainties of model parameters (bottom) are given

in absolute values of relative prediction errors.
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Figure 5. Sensitivity of models to changes in the precipitation regime. (a) Empirical and simulated flow dura-
tion curves at Chepe Kohla. The simulated FDC obtained from the stochastic rainfall generator and the bucket
watershed model (solid) reproduces the empirical FDC constructed from the observed streamflow well (grey
dots). Rainfall changes expected in Nepal (ap/ap,o = 1.2, Ap/Ap,0 = 0.98) do not have a substantial influ-
ence on the simulated flow distribution (dashed). ap and Ap designate the mean depth and frequency of wet
season rainfall, respectively. (b) Sensitivities to relative changes in rainfall frequency and intensity over the
Chepe Kohla catchment. The performance of the process-based model is not affected by rainfall changes (dot-
ted). The sensitivity of the statistical model depends on its ability to predict changes in mean flow from annual
rainfall. The model is highly sensitive to rain changes if average streamflow cannot be predicted (dashed), and
is robust to moderate changes if average flow is perfectly predicted (solid). (c) The linear regression of the sta-
tistical model underestimates annual flows at the Chepe Kohla when using a cross-sectional sample (25 gauges)

to estimate the local relation between average rainfall and average runoff.

28



