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Abstract. The prediction of flow duration curves (FDCs) in ungauged basins remains an important

task for hydrologists given the practical relevance of FDCs for water management and infrastructure

design. Predicting FDCs in ungauged basins typically requires spatial interpolation of statistical or

model parameters. This task is complicated if climate becomes non-stationary, as the prediction

challenge now also requires extrapolation through time. In this context, process-based models for5

FDCs that mechanistically link the streamflow distribution to climate and landscape factors may

have an advantage over purely statistical methods to predict FDCs.

This study compares a stochastic (process-based) and statistical method for FDC prediction in

both stationary and non-stationary contexts, using Nepal as a case study. Under contemporary con-

ditions, both models perform well in predicting FDCs, with Nash-Sutcliffe coefficients above 0.8010

in 75% of the tested catchments. The main drivers of uncertainty differ between the models: pa-

rameter interpolation was the main source of error for the statistical model, while violations of the

assumptions of the process-based model represented the main source of its error. The process-based

approach performed better than the statistical approach in numerical simulations with non-stationary

climate drivers. The predictions of the statistical method under non-stationary rainfall conditions15

were poor if (i) local runoff coefficients were not accurately determined from the gauge network,

or (ii) streamflow variability was strongly affected by changes in rainfall. A Monte Carlo analy-

sis shows that the streamflow regimes in catchments characterized by frequent wet-season runoff

and a rapid, strongly non-linear hydrologic response are particularly sensitive to changes in rainfall

statistics. In these cases, process-based prediction approaches are favored over statistical models.20
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1 Introduction

The flow duration curve (FDC) provides a compact summary of the variability of daily streamflow

by indicating what proportion of the flow regime exceeds a given flow rate. FDCs have consider-

able practical relevance, particularly in supporting decisions that are affected by the availability and

reliability of surface water. Common applications of FDCs include the design and management of25

hydropower infrastructure (e.g., Basso and Botter, 2012; Müller , 2015), the determination of envi-

ronmental flow standards for ecosystem protection (e.g., Lazzaro et al., 2013), the allocation of water

resources for consumptive uses (e.g., Alaouze, 1989) or the prediction of streamflow time series in

ungauged or poorly gauged catchments (e.g., Hughes and Smakhtin, 1996; Westerberg et al., 2014).

Despite their utility, empirical FDCs are unavailable for many basins, primarily because they30

require extensive on-site observations of daily streamflow (Vogel and Fennessey, 1994). Globally,

the majority of catchments remain ungauged (or the gauge data that exist are subject to signifi-

cant quality assurance and data availability constraints). Furthermore, the global number of stream

gauges continues to decline because of ongoing budgetary constraints faced by water monitoring

agencies (Stokstad, 1999; United States Geological Survey, 2015). Therefore FDCs must typically35

be estimated in data-scarce areas. The most widely used techniques for FDC estimation are simple,

graphical methods. Such empirical methods are easy to implement but often rely on overly simplis-

tic assumptions that lead to substantial prediction errors. For instance in Nepal, the regionalization

method prescribed in official design manuals (e.g., Chitrakar, 2004; Alternative Energy Promotion

Center, 2014) relies on one in-situ observation of streamflow during the dry season to scale stan-40

dardized regional indices for monthly flows. The procedure neglects the inter-annual variability of

low-flows, which leads to important biases in the predicted flow distributions (see Section S1 of

Supplementary Materials). Even in gauged catchments, FDCs constructed from historical observa-

tions may not represent current flow conditions well, because flow regimes are impacted by climate

change and anthropogenic alterations of the catchments (e.g. Botter et al., 2013; Mu et al., 2007).45

Predicting streamflow in ungauged basins, particularly in the context of environmental change, re-

mains both a fundamental necessity for water managers and a major research challenge (Blöschl

et al., 2013; Montanari et al., 2013).

Recent efforts to predict FDCs in ungauged catchments focus on statistical approaches that predict

the flow distribution based on the catchment’s similarity to nearby, gauged watersheds (Castellarin50

et al., 2013). Index flow approaches, which regionalize specific index flows (typically the mean

flow), and use those indices to rescale empirical FDCs from similar catchments, are particularly

popular (e.g., Chalise et al., 2003; Castellarin et al., 2004b; Sauquet and Catalogne, 2011; Arora

et al., 2005). While differing in methodological details, all index flow approaches assume that FDCs

do not vary within homogeneous regions, except by a scaling factor. Because they do not assume55

any specific runoff-generating process, statistical methods are versatile. They have been successfully

been applied globally to predict FDCs in a variety of climates and catchment types (Blöschl et al.,
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2013). However, methods are also insensitive to the diversity of controls on the shape of the FDC

exerted by climate processes and catchment characteristics. This may affect their reliability under

non-stationary conditions (Milly et al., 2008). Finally, the calibration of statistical methods relies60

on extensive streamflow observations from a large number of representative and well characterized

catchments (e.g., Cheng et al., 2012; Coopersmith et al., 2012). Their performance is therefore sen-

sitive to the spatial density of available gauges Blöschl et al. (2013), and their reliability in regions

where streamflow data is truly scarce is uncertain.

Stochastic, process-based models that mechanistically link the drivers, state and response of the65

system are a promising avenue to address these issues. In these models, basic assumptions about

the stochastic structure of rainfall and the (deterministic) response of catchments allow the analytic

derivation of streamflow probability density functions (PDFs). (Note that because the FDC can be

obtained directly by transforming the PDF, a predictive technique that yields the streamflow PDF

will also allow the FDC to be estimated). Botter et al. (2007b) show that runoff follows a gamma70

distribution if catchments behave as a linear reservoir, forced by stochastic rainfall that follows a

marked Poisson process. The resulting gamma distribution depends on two parameters that are de-

termined by the recession characteristics of the catchment, and by the frequency and intensity of

effective rain. This process-based approach to the streamflow PDF has been extended to include

the fast flow component of streamflow (Muneepeerakul et al., 2010), non-linearities in subsurface75

storage-runoff relationships (Botter et al., 2009), the effects of short-term snowmelt (Schaefli et al.,

2013) and the carryover of subsurface storage between seasons in seasonally dry climates (Müller

et al., 2014). Although the stochastic framework allows the effects of changes in climate or land-

scape to be independently modeled, it relies on strong simplifying assumptions about the spatial ho-

mogeneity of catchments. These assumptions makes the existing process models less versatile than80

statistical methods. Nonetheless, the approach has low calibration requirements because it relies on a

small number of parameters, which can be determined using rainfall, climate and geomorphological

characteristics of the catchments (Doulatyari et al., 2015). This information is increasingly available

in ungauged basins, thanks to remote-sensing technologies, even when ground-based measurements

are sparse.85

Process-based models successfully reproduce streamflow PDFs in numerous gauged catchments

worldwide (Botter et al., 2007a; Ceola et al., 2010), including Nepal (Müller et al., 2014). Yet their

predictive performance in ungauged basins remains largely unassessed, particularly in regions where

the local gauge density is globally representative (as opposed to densely monitored catchments in

developed countries such as, e.g., France and Austria in Castellarin et al. (2013). For lower gauge90

densities, it is unclear whether the advantages of the process-based approaches, which are derived

from an explicit representation of flow-generating processes, are outweighted by the limitations im-

posed by the restrictive assumptions underlying these methods - and whether this trade-off is altered

by non-stationarity in climate drivers.
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Using Nepal as a test case, this study compares the process-based and statistical approaches on95

the basis of (i) their ability to predict FDCs in ungauged basins, (ii) their sensitivity to data-scarcity,

represented both by the spatial density of the stream gauge network and by the temporal extent

(length) of the available streamflow records, and (iii) their ability to accommodate changes in the

rainfall regime.

Nepal provides an ideal setting to compare the two approaches, for four reasons. First, the country100

is representative of global availability of streamflow data, as measured by the density of its stream

gauge network (Figure 1(a)). Second, methods drawn from both statistical and process-based ap-

proaches have been developed and validated in Nepal. Here we compare the stochastic-dynamic

framework developed in Müller et al. (2014), with the index flow model described in Chalise et al.

(2003). Third, flow generation processes in Nepalese Himalayan catchments are complex, particu-105

larly with respect to the spatial and temporal properties of precipitation. Rainfall derives from the

Indian Summer Monsoon and is strongly affected by topography. As a result, local rainfall is tempo-

rally autocorrelated, spatially heterogeneous and highly seasonal. There is also significant carryover

of groundwater storage between the wet and dry seasons, so that dry season discharge reflects the

features of the antecedent wet season. These characteristics violate many of the assumptions that110

underlie the process-based method. The analysis in Nepal is therefore likely to provide a conserva-

tive estimate of the potential performance of the process-based method in ungauged basins. Finally,

developing reliable methods for FDC prediction in Nepal represents an opportunity for ‘use-inspired

science’ (Thompson et al., 2013b). Nepal has an enormous untapped hydropower potential and is

in dire need of electrical power, particularly in rural areas. A reliable method to estimate FDCs in115

ungauged catchments would be a valuable tool to support the development of micro hydropower, a

sustainable technology for rural electrification (Müller , 2015).

Section 2 describes the two models and the procedures used to estimate their parameters from

streamflow and rainfall observations. Section 3 presents the results of the comparative analysis in

Nepal. Section 4 examines the key sources of errors for both models and discusses implications120

for both Prediction in Ungauged Catchments (PUB) and Predictions Under Change (PUC) beyond

Nepal.

2 Methods

2.1 Compared Approaches

2.1.1 Process-based model125

The process-based approach models daily streamflow as a random variable. Subject to strong sim-

plifying assumptions about rainfall stochasticity and runoff generation, the streamflow PDF can be

analytically derived. During the wet season, daily rainfall is represented as a stationary marked Pois-
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son process with exponentially distributed depths. Assuming linear evapotranspiration losses, Botter

et al. (2007b) showed that effective rain, that is the portion of the total rainfall that contributes to130

streamflow generation, also follows a stationary marked Poisson process. For a spatially homoge-

nous catchments with an exponentially distributed response time (i.e. a catchment that behaves as a

linear reservoir), this effective rainfall will produce gamma-distributed streamflow. The parameters

of the gamma distribution are derived from the frequency (λP ) and mean depth (αP ) of rainfall, and

from the recession constant (k) of the catchment. If rainfall in the dry season is sufficiently minimal135

that effective rainfall does not contribute to runoff generation, then dry season streamflow represents

only the discharge of groundwater stored during the previous wet season. This discharge is modeled

as a single seasonal recession with stochastic initial conditions that depend on the wet season prop-

erties. Because groundwater is not replenished during the dry season, the water table is subject to a

large transient drawdown, resulting in a nonlinear discharge behavior and a power law relation be-140

tween recession rate and discharge (Brutsaert and Nieber, 1977). We showed in Müller et al. (2014)

that the distribution of streamflow, and therefore the FDC, in seasonally dry climates that meet the

assumptions above can be expressed analytically as a function of seven independent parameters: the

frequency (λP ) and mean intensity (αP ) of wet season rainfall, maximum daily evapotranspiration

during the wet season (ET ), the water storage capacity of the soil in the root zone (SSC), the (lin-145

ear) wet-season recession constant (k), the duration of the dry season (Td) and the exponent of the

power law recession during the dry season (b). The model admits an additional input parameters, the

scale a of the of the power-law seasonal recession, which we showed in Müller et al. (2014) can be

expressed as a function of k, b, λP and αP . The formal derivation of the model is summarized in

Appendix A.150

The model was successfully validated in a variety of regions with seasonally dry climates world-

wide, including Nepal, where observed FDCs were predicted in 24 gauged catchments with a median

Nash Sutcliffe Coefficient of 0.90 on log-transformed flow quantiles (Müller et al., 2014). The ap-

proach successfully reproduced both the rain-driven distribution of flows during the wet season and

the release of stored monsoon water during the dry season recession. In this study, we assess the155

operational performance of the process-based approach as a tool to predict streamflow in ungauged

catchments. Therefore, we do not further attempt to attribute model errors to parameters versus the

model structure in the results presented in Section 3, since in practice these errors are confounded in

any real application. The relative significance of these two error sources is nonetheless discussed in

Section 4.1.1.160

In ungauged catchments, the process-based model is implemented as follows.Three of the seven

parameters of the model (Td, λP , αP ) are rainfall characteristics that can be estimated in ungauged

basins using meteorological observations. Recession parameters (k and b) describe aquifer proper-

ties that are challenging to observe at the catchment scale. They can be estimated using observed

streamflow time series in nearby gauged basins, and subsequently interpolated from nearby gauges,165
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using the geostatistical approach described in Müller and Thompson (2015), which accounts for

the topology of the stream network. The last two parameters (ET ) and (SSC) describe catchment-

scale soil moisture dynamics that are arduous to determine empirically. Previous applications of the

model relied on reasonable values of ET and SSC, based on land use, soil and climate characteris-

tics of the catchment (e.g., Botter et al., 2007a; Ceola et al., 2010). Alternatively, runoff coefficients170

can be used to directly relate rainfall statistics to streamflow increments (Doulatyari et al., 2015).

Runoff coefficients describe the ratio of mean discharge to mean precipitation, and can be predicted

in ungauged basins using water balance models and meteorological observations. This approach cir-

cumvents the need to estimate ET and SSC, but the accuracy of predicted runoff coefficients in

ungauged catchment is critically dependent on the type of water balance model used and on the175

availability of appropriate calibration data (Doulatyari et al., 2015). Instead, this study follows the

former procedure and uses reasonable estimates of ET and SSC for Nepal.

2.1.2 Statistical model

The statistical approach is entirely driven by observation data and does not assume any specific

runoff generation process. Instead, it identifies and exploits statistical correlations that may occur180

between streamflow observed at existing gauges and the geology, topography and climate of the

corresponding catchments. The index flow model used in this study was developed by Chalise et al.

(2003) to regionalize FDCs in Nepal to assess the potential for small hydropower development. The

model is based on local flow indices for mean (Qm= E [Q]) and low flows (q95 =Q95/Qm, where

Q95 is the 95th streamflow percentile) and uses a non-parametric approach to represent the shape185

of the FDC. Empirical FDCs from available gauges are normalized by Qm and pooled into equally-

sized groups based on the q95 index of the gauge. A standardized curve is determined for each group

by taking the average of the normalized flows corresponding to each duration, in order to represent

the average catchment response in the group. The chosen statistical approach is considerably less

complex than many alternative state-of-the-art methods using multiple (often non-linear) equations190

to relate multiple flow quantiles to a variety of observed covariates (see Castellarin et al. (2013) for

a review). However, Chalise et al. (2003) is, to our knowledge, the most recent statistical method

specifically developed and validated in the study region. The approach is parsimonious and adapted

to situations, where in-situ observations of catchment characteristics are scarce. The method is there-

fore representative of the level of complexity of statistical approaches likely to be implemented in195

developing countries practical hydrological engineering purposes.

Predictions in ungauged catchments are obtained by first using linear regressions to predict Qm

and q95. Although the original method calls for a stepwise multiple regressions approach to de-

termine regression covariates inductively, we used the regression models obtained in Chalise et al.

(2003):Qm is regressed against annual rainfall (Ry) and gauge elevation (zmin) as a proxy for evap-200

otranspiration; and q95 is regressed against the ratios of catchment area occupied by each of the
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considered geological units. The two regressions loosely represent the long term water balance and

short-term response of the catchment. The predicted low-flow index is then used to determine the

standardized FDC shape, which is finally multiplied by the predicted mean flow to obtain the FDC.

An important assumption, inherent to the linear regression models, is that the dependent variable205

(here Qm and q95) is not spatially correlated, when controlling for the considered covariates. This

assumption is reasonable in Nepal, where the typical distance between stream gauges is much larger

than the correlation scale of runoff (Müller and Thompson, 2015). In more densely gauged areas

(or if runoff is correlated over larger distances), streamflow observations at neighboring or flow-

connected gauges are likely to be correlated. In these regions, accounting for the effect of distance210

and stream network topology when interpolating flow indices (e.g., using TopREML (Müller and

Thompson, 2015)) will improve predictions.

2.2 Study region and data

The two methods were evaluated using observed streamflow data from 25 Nepalese catchments

mapped in Figure 1 (b). The gauges in this dataset (HKH-FRIEND, 2004; Department of Hydrol-215

ogy and Meteorology, 2011) have at least 10 years of daily streamflow records. They were checked

for consistency, using double mass plots (Searcy and Hardison, 1960), and bias: we discarded non-

glaciated catchments that had a precipitation deficit on their long term water balance. Watersheds

were delineated using the ASTER GDEM v2 digital elevation model (NASA Land Processes Dis-

tributed Active Archive Center (LP DAAC), 2011). The study watersheds are located in central220

Nepal but cover a wide variety of catchment sizes, elevation ranges, precipitation characteristics and

geological units (Table 1).

We focused on the Chepe Kohla catchment in central Nepal (Figure 1 (b, insert)) as a case study

for analyses requiring resampling (Section 2.3.1) or simulation (Section 2.3.2) of streamflow time

series. The Chepe Kohla watershed has a long (by Nepalese standards) record of daily streamflow225

observations (31 years) and is representative of the full sample of gauges in terms of topography

and recession behavior (Table 1). The catchment is also small (i.e. close to spatially homogenous)

and local rainfall is well approximated by a marked Poisson process (First order autocorrelation

coefficient of rainfall occurence (AR): 0.09, Coefficient of variation of rainfall depths (CV): 1.09),

echoing the underlying assumptions of the process-based model.230

Rainfall characteristics over the sampled catchments were obtained from 178 precipitation gauges

(HKH-FRIEND, 2004; Department of Hydrology and Meteorology, 2011), also mapped on Figure

1 (b). The average duration of the dry season (Td) was estimated at each precipitation gauge by

fitting a step function to the corresponding rainfall time series (Müller and Thompson, 2013), and

wet-season precipitation records were used to compute the frequency and mean intensity of rainfall

(λP and αP ). Rainfall characteristics were then aggregated at the catchment level by assuming that

the rain process aggregates linearly within the basins. For rainfall occurence, we assumed that the
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duration between rain events caused by two consecutive storms can be estimated as the average of

the inter-arrival times measured at the rain gauges within the catchment. This allows us to compute

catchment level rainfall frequency as:

λP =

 1

Ng

Ng∑
i

1

λ
(i)
P

−1

where λ(i)
P designates rainfall frequency observed at gauge i and Ng the number of rain gauges

within the catchment. Similarly, the catchment-level duration between rainy seasons is assumed to

be the average of the durations observed within the catchment:

Td =
1

Ng

Ng∑
i

T
(i)
d

Finally, the precipitation depth received on any given day by a catchment is assumed to be the

average of the precipitation depths observed by individual rain gauges. It follows that the aggregated

mean rainfall intensity can be expressed as:

αP = λ−1
P

1

Ng

Ng∑
i

λ
(i)
P α

(i)
P

If no precipitation station is located within the catchment, rainfall characteristics observed at the

rain station closest to the catchment centroid were considered. Although aggregating rainfall time

series before computing their statistics would better account for spatial correlation in rainfall, aggre-

gating rainfall statistics instead allows for non-overlapping observation periods (assuming rainfall

is stationary). This is important in the context of Nepal, where rain gauges are scarce with sporadic235

observations. Unfortunately, the low density of rain gauges within the considered basins prevents a

formal treatment of spatial correlation when aggregating frequencies. However, in a previous study

(Müller and Thompson, 2013) we observed large spatial correlation ranges on rainfall occurrence in

Nepal (125km during the monsoon). Under these conditions the selected method stands out as the

most parsimonious approach to utilize multiple, yet sparse, rainfall observations.240

Recession characteristics were estimated using streamflow observations as described in Müller

et al. (2014). We computed wet season recession constants (k) by regressing the logarithm of stream-

flow against time for each period of consecutively decreasing streamflow during the wet season. The

recession constant was then obtained by taking the median value of the regression coefficients of

recessions lasting more than four days. The power law exponent of dry season recessions (b) was245

obtained by fitting a non-linear recession curve

Q(t) = (Q1−b
0 − a(1− b)t)

1
1−b (1)

to base flow, which was computed from observed streamflow time series using the Lyne Hollick

algorithm (Nathan and McMahon, 1990). The last streamflow peak of the wet season was taken as
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initial flow condition Q0, and we used a stochastic optimization algorithm (Simulated Annealing,250

Bélisle (1992)) to minimize least square fitting errors. In ungauged catchments, the scale exponent

of the seasonal recession was approximated as (Müller et al., 2014):

a≈ λ

−r

(
e

−r
m − 1

)
(αQ · (m+ 1)) , (2)

where r = 1− b; m is the ratio between the frequency λ of effective rain events and the linear

recession constant k, and αQ is the average depth of effective rain events (see Appendix A).255

Potential evapotranspiration was approximated by applying the empirical relation estimated by

Lambert and Chitrakar (1989) for Nepal during the rainy season (July-September):

ET ≈ 4.0− 0.0008 · zmean

where ET is given in [mm · d−1] and zmean is the average elevation of the catchment in meters.

The formula provides daily average evapotranspiration estimates for each month. It accounts for

elevation but assumes a spatially homogenous elevation gradient. A uniform soil moisture capacity

of 50 mm was assumed throughout the country, based on empirical observations reported in Shrestha

(1997). By neglecting local variation in soil characteristics, this produces conservative estimates of260

the performance of the process-based model in ungauged basins.

2.3 Comparative Analyses

2.3.1 Predictions in Ungauged Basins

We used three cross-validation techniques to evaluate the predictive ability of both methods in un-

gauged basins. Firstly, a leave-one-out analysis was carried out to assess predictive performances265

in a realistic situation, where FDCs are predicted in Nepal using all streamflow gauges available in

the region. Secondly, we examined the sensitivity of the methods to decreasing data-availability by

reducing the number of gauges available to calibrate the models. Finally, we performed a similar

data-degradation procedure, but in this case we reduced the number of daily streamflow observa-

tions, while holding the number of gauges constant. This final analysis accounts for the challenges270

posed by recent or temporary installation of stream gauges, which introduce uncertainties into the

estimation of model parameters due to the short streamflow records used. These errors can propagate

through the model and affect the prediction of FDCs.

In a leave-one-out analysis, one gauge is ‘left out’ of the dataset, and streamflow is predicted at

the ‘missing’ location using observations from the remaining gauges. The predicted FDC is then275

compared to observations from the omitted gauge. The resulting error between observation and pre-

diction yields the prediction performance of the method at that catchment if it were not gauged.

Repeating the procedure for all gauges offers an approximation to the overall prediction error of the

method. To measure this error we constructed error duration curves (Müller et al., 2014), where the

relative prediction error at each flow quantile is plotted against the corresponding duration. Error280
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duration curves allow the partitioning of prediction errors across flow quantiles to be visualized.

General prediction performances (across all durations) at individual gauges were also determined

using the Nash Sutcliffe coefficient (NSC) on log streamflow quantiles (Müller et al., 2014):

NSC = 1

∑364
t=1

(
lnQ

(emp)
t − lnQ

(mod)
t

)2

∑364
t=1

(
lnQ

(emp)
t −E

[
lnQ

(emp)
t

])2 (3)

where Q(emp)
t and Q(mod)

t are the empirical and modeled streamflow quantile of duration t.285

The effect of the number of calibration gauges was assessed using a Jack-Knife cross-validation

analysis (Shao and Tu, 2012; Müller and Thompson, 2013). At each of 10,000 iterations, a selected

fraction of the available gauges was randomly sampled (without replacement) and used to predict

the FDC at one (randomly selected) remaining gauge. Prediction accuracies for flow duration curves

(given by theNSC) and uncertainties on the spatial interpolation of model parameters were reported290

for each iteration. The procedure was repeated for decreasing numbers of selected ‘training’ gauges.

The available streamflow data did not allow a direct evaluation of the effects of timeseries length

through cross-validation, because such an analysis requires substantial overlaps in the monitoring

periods of all gauges. Therefore we focused the final analysis on the Chepe Kohla catchment which

has the longest observation record in our dataset. We evaluated the effect of the length of the available295

observation records on parameter estimation, and propagated the ensuing uncertainty in the param-

eters to the FDCs predicted by each model. To do this, we selected a fixed number of full years of

streamflow observations, estimated the parameters, predicted the FDC using these parameters, and

compared the results to the empirical FDC obtained from the full observation record. The procedure

was repeated 10,000 times. The estimation errors in the model parameters and the resulting FDC300

prediction performances (NSC) were recorded as a function of the number of sampled years. This

analysis is not intended to describe the models’ ability to predict FDCs at catchments with short

observation records: in this case, constructing an empirical FDC using the available (however short)

observation record is likely to be the best course of action (Castellarin et al., 2004a). Instead, the

analysis is intended to simulate the effect of short observation records on FDC prediction at nearby,305

ungauged catchments. The underlying assumptions behind this analysis are that (i) the error associ-

ated with interpolation is independent of the flow record length, and (ii) the Chepe Kohla catchment

is representative of Nepalese basins .

2.3.2 Predictions Under Change

We used numerical simulations to assess the ability of both models to predict streamflow when310

subject to changing rainfall regimes, as described in Figure 2.

Synthetic streamflow time series were generated by coupling the stochastic rainfall generator de-

scribed in Müller and Thompson (2013) to a rainfall-runoff model. The generated wet-season rainfall

is a first order Markov process (i.e. rainfall occurrence on a given day is correlated to rainfall oc-
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currence on the previous day) with gamma-distributed rainfall intensities, and as such produces a315

rainfall record that explicitly violates the assumptions under-pinning the process-based model. The

duration of the rainy season was assumed constant, and no rainfall was generated during the dry sea-

son. Wet-season streamflow was simulated by feeding synthetic rainfall into a linear reservoir (with a

recession constant k) with linear evapotranspiration losses, as in Müller et al. (2014). Dry season dis-

charge was obtained by simulating non-linear seasonal recessions of duration Td starting at randomly320

selected runoff peaks in the (previously generated) wet-season streamflow. These assumptions are

close to the observed reality in Nepal, as seen in Figure 5 (a), where the FDC constructed from the

simulated streamflow is a close approximation to the empirical FDC in the Chepe Kohla watershed.

We translated the effect of shifts in precipitation regimes into changed streamflow for the Chepe

Kohla catchment by considering a range of future combinations for rainfall frequencies and intensi-325

ties. In line with what is expected in Nepal (Turner and Slingo, 2009; Turner and Annamalai, 2012),

we considered negative changes in the frequency and positive changes in the mean daily rainfall

depth. We neglected changes in soil moisture capacity, evapotranspiration, rainfall autocorrelation

and the duration of the rainy season. These parameters are explicit in the process-based model, so

we expect differences in the sensitivity of the process-based and statistical models to climate change330

to be underestimated by this procedure. For each rainfall scenario, we evaluated the performance of

the models in a changing climate by generating 1000 years of daily streamflow using future rainfall

frequencies and intensities.

We compared the synthetic FDCs to model predictions that were made with future rainfall statis-

tics, but contemporary recession and low flow parameters (Figure 2). The statistical method in335

Chalise et al. (2003) uses a linear regression over a cross-sectional sample of observations to pre-

dict mean flow based on mean rainfall and altitude. The regression may fail to capture a variety of

unobserved characteristics affecting both rainfall and streamflow (e.g., local topographic features),

and hence may not capture the causal relation between the two variables. The extent of this bias

cannot be quantified a priori, so we considered two extreme cases: infinite and zero bias. The infinite340

bias case (Case 1 on Figure 2) represents the case where no effective relationship can be determined

between rainfall and mean flow. The best estimator of future mean flow is then the current flow

condition. Conversely, if regression coefficients perfectly describe the effect of annual rainfall on

average flow (Case 2 on Figure 2), then the future flow conditions can be perfectly estimated using

the (known) future annual rainfall. We modeled this situation by estimating Qm directly from the345

(simulated) future flow conditions. While the two cases differed in the determination of mean flow

(Qm), the low-flow parameter (q95) was determined from current flow conditions in both cases. In

Chalise et al. (2003), q95 is normalized by Qm and represents recession behavior, which is assumed

independant from rainfall. The process-based predictions were obtained by inserting future rainfall

statistics and contemporary recession constants into the analytical FDC equation described in Ap-350
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pendix A. The two models were compared by plotting prediction performances (NSC) against the

relative change in the frequency and intensity of synthetic rainfall.

Although the recession assumptions of the process-based model are taken to generate the synthetic

streamflow used as control, we believe that the analysis is not biased against the statistical approach

for three reasons. Firstly, the only parameter of the statistical approach that is influenced by rainfall355

(Qm) is also computed from synthetic streamflow (Case 2 on Figure 2). Secondly, although based

on identical recession assumptions, the process-based model and the synthetic streamflow generator

are driven by different stochastic rainfall processes (i.e. Poisson and Markov respectively). Lastly

and most importantly, empirical observations reveal that synthetic streamflow distributions generated

under contemporaneous rainfall conditions reproduce closely FDCs constructed from gauge records360

(Figure 5 (a)), showing that the underlying recession assumptions are, in fact, representative with

runoff processes actually occuring in Nepal.

3 Results

3.1 Prediction in Ungauged Basins

Results from the leave-one-out cross-validation analysis are presented in Figure 3 and show that365

both methods perform similarly in the prediction of FDCs in ungauged basins. Error duration curves

(Figure 3 (a) and (b)) show comparable streamflow prediction uncertainties: 75% of the predicted

flow quantiles are between half and double the observed streamflow for both models, although the

low flows in the process-based model display an increasing upwards bias (Figure 3 (b)). Considering

the Nash-Sutcliffe coefficients computed at the individual basin level, the mean and median perfor-370

mances are again comparable for both models, but the accuracy of the statistical model predictions

are more variable across sites than the process model predictions, as indicated by the larger spread

of the Nash Sutcliffe coefficients (Figure 3(c)).

Figure 4 (a, top) shows prediction performances of both models as the number of streamflow

gauges available for predictions decreases, and indicates that the performance of both models is rel-375

atively insensitive to the gauge density, until it declines to less than approximately 0.6 gauges per

10,000 km2. For such situations, which represent discarding more than half the available gauges

in Nepal, the statistical model performance declines rapidly compared to the process-based model.

Prediction performances are strongly affected by uncertainties on the interpolation of model param-

eters, as seen in Figure 4 (a, bottom). Interpolation uncertainties are generally larger for the flow380

indices of the statistical model (Qm and q95) than for the recession parameters of the process-based

model (k and b). This explains the larger spread in prediction performances of the former (Figure

3 (c) and error bars in Figure 4 (a, top)). The parameter uncertainties are also relatively insensitive

to the total gauge density until about 60% of the originally available gauges are discarded. At this
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point, the uncertainties associated with estimation of the flow indices increase significantly, while385

the process-based model parameters remain more reasonably estimated.

When considering short observation windows, parameter uncertainties also drive the performance

of the models. Figure 4 (b, top) shows the prediction performance of both models at the Chepe Khola

watershed, as the number of observation years used to estimate the model parameters is reduced. In

this case, the statistical model outperforms the process-based model when less than 10 years of390

streamflow observations are available. The parameter uncertainties associated with the short time-

series estimates (Figure 4 (b, bottom)) suggest that a longer time series of streamflow observations

is needed to accurately estimate the wet-season recession parameter (k), resulting in the lower per-

formance of the process-based model for short streamflow records.

3.2 Prediction Under Change395

Simulation results presented in Figure 5 (b) show both models’ ability to predict a simulated future

flow duration curve of the Chepe Kohla River, under a range of different possible changes in rain-

fall regimes. In all simulations, parameters describing the hydrological response of the basin (k, b,

and q95) are determined using current flow conditions, and evapotranspiration is assumed constant.

The results show that explicitly modeling rainfall-runoff processes allows the process-based model400

to accommodate the effects of the changing precipitation regime. In contrast, the performance of

the statistical model is affected at various degrees by shifts in rainfall regimes, depending on how

the model translates changes in annual precipitation to changes in average flows. If these shifts are

perfectly represented by the model, then prediction errors arise solely from changes in the shape

of the FDC, and the process and statistical models perform similarly in the Chepe Kohla watershed405

across the full range of considered rainfall scenarios (Figure 5 (b), dashed curve). If, however, aver-

age (future) streamflows cannot be reliably predicted from the predicted changes in annual rainfall,

the statistical model does not accommodate flow regime changes at all. In this case, future FDCs are

modeled using current streamflow observations, and the ensuing prediction errors can be substantial

(Figure 5 (b), dotted curve). The simulated cases provide upper and lower bounds for the actual410

performance of the statistical model in future rainfall regimes. We evaluated the model’s ability to

predict Qm by using cross sectional data (i.e. average streamflow and annual rainfall from the 25

catchments) to estimate the linear relation betweenQm and annual rainfallRy . Applied to the Chepe

Kohla watershed, the estimated regression coefficients allowed the annual streamflow to be estimated

from annual precipitation with a bias of −13% and a coefficient of determination ofR2 = 0.57 (Fig-415

ure 5 (c)). Regardless, prediction errors remained negligible for both bounds (NSC>0.95) for the

range of changes actually anticipated in Nepal (e.g., ∆λP /λP ≈ 0.98 and ∆αP /αP ≈ 1.20 for the

2 ·CO2 scenario (Turner and Slingo, 2009)) .
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4 Discussion

4.1 Predictions in Ungauged Basins420

The analysis suggests that both statistical and process-based methods to estimate FDCs in ungauged

basins perform comparably in Nepal, over a wide range of gauge densities and observation dura-

tions. Yet prediction performances varied significantly between the models as data became increas-

ingly sparse. The statistical method is more sensitive to spatially sparse data, which degrades the

interpolation accuracy of Qm. In contrast, the estimation method for recession parameters makes425

the process-based approach more sensitive to temporally restricted observations, which reduce the

accuracy with which recession parameters can be estimated. This suggests that the performance of

the two models in ungauged basins is affected by different sources of uncertainty. In this section,

we investigate the source of prediction error in each methods and discuss the implications for their

application in ungauged basins beyond Nepal.430

4.1.1 Sources of Uncertainty

The statistical model relies on two assumptions about the correlations of observed data. The first

assumption is that catchments with similar low-flow indices (q95) have identical hydrological re-

sponses, and therefore identical FDC shapes. Second, the model assumes that the flow indices (Qm

and q95) at ungauged catchments can be best predicted using linear regressions against observable435

covariates (annual rainfall, elevation and geology). The latter assumption does not hold if the flow

indices are spatially auto-correlated, or if the posited linear relations are spatially heterogeneous

or, in fact, non-linear. Further, ‘omitted variable’ biases (Greene, 2003) will arise if an unobserved

variable is correlated to both a covariate and a flow index. For instance, local topographic features

may affect both the annual rainfall and the average streamflow in mountainous regions. Violation440

of the second assumption leads to substantial uncertainty in the interpolation of the flow indices

in Nepal and drives the prediction errors of the statistical approach, as shown in Section S2 of the

Supplementary Materials.

While the performance of the process-based model is also driven by parameter estimation uncer-

tainties, these errors arise from simplifying assumptions about local hydrological processes (rather445

than uncertainties from their statistical interpolation from neighboring gauges). Additional cross-

validation analyses (shown in Section S2 of the supplementary material) suggest that uncertainties

caused by the aggregation of observed point-rainfall statistics at the catchment level drive prediction

errors of high flow quantiles. While increasingly accurate remote sensing rainfall data will progres-

sively allow such spatial heterogeneities to be resolved, current precipitation products (e.g., TRMM450

3B42) remain substantially biased in mountainous regions like Nepal, where they do not outper-

form available rain gauges in predicting the frequency and intensity of areal rainfall (Müller and

Thompson, 2013). A second source of error arises from the simplifying assumptions made about
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streamflow recession that do not hold perfectly in the observed catchments. Because they describe

the same watershed, the wet and dry recession parameters are assumed to be physically related. In455

Müller et al. (2014), the scale parameter of the non-linear seasonal recession (a) is expressed as

an explicit function of the two recession parameters (k and b) for sufficiently short recession times,

where power-law recessions can be approximated by exponential functions. We show in Supplemen-

tary Materials (Section S2) that, although this approach provides more accurate estimates of a than

would be obtained through spatial interpolation, estimation uncertainties remain, propagate through460

the model and result in prediction errors during the dry season.

4.1.2 Applicability beyond Nepal

This study compares two specific methods on their ability to predict FDCs in the particular context

of ungauged Nepalese basins. Results are thus not necessarily representative of the relative perfor-

mance of process-based and statistical methods in general, particularly in regions where abundant465

field data allow more advanced statistical approaches to be implemented. Yet fundamentally, the

statistical model relies on observed correlations, rather than assumptions about hydrologic mecha-

nisms. Because FDC shapes are modeled non-parametrically, the approach is applicable to regions

with highly variable catchment responses. However, prediction performance in ungauged basins is

constrained by interpolation errors in the mean flow. This makes the method unsuitable for regions470

where the local determinants of mean flow (i.e. rainfall, evapotranspiration, glacial melt) cannot be

accurately monitored at the catchment level. In contrast, a key advantage of the process-based model

is its ability to exploit characteristics of the stochastic structure of rainfall that can be estimated from

daily rainfall observations. The model is appropriate for regions where the spatial heterogeneity of

runoff is driven by rainfall, and where the frequency and intensity of rainfall depths at the catchment475

level can be readily estimated (i.e. small catchments with numerous rain gauges, or places where

satellite observations provide a good representation of rainfall statistics). Unlike rainfall, recession

behavior arises from lumped and complex interactions between climate, vegetation and groundwa-

ter processes that typically cannot be monitored in a spatially explicit manner. The process-based

model is therefore inappropriate for regions where the hydrologic response of the catchment is the480

main source of runoff heterogeneity, or where the assumed recession behavior (in particular the

relation between a, k and b) does not occur.

Conveniently, the appropriate implementation contexts for both methods appear to be comple-

mentary, and the optimal method in a given region is determined by the driving source of runoff

heterogeneity in the catchments. Ultimately, the performance of both methods is constrained by their485

ability to estimate their parameters in ungauged basins. This relation is apparent in Figure 4, where

drops in prediction performances correspond to increases in the estimation uncertainty of model

parameters. Under these conditions, the performance of each method is driven by the ability of the

available observations to capture the variability of the model parameters. When interpolated from
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neighboring gauges, uncertainties are governed by the interplay between the layout of the gauges490

and the spatial correlation range of the considered model parameter. When estimated from short ob-

servation records, accuracy is determined by the extent to which the available record is representative

of the temporal variability of the parameter. These interactions between data availability and runoff

variability are inherently local and will affect the determination of the most appropriate method for

any given region.495

4.2 Prediction under Change

Expected shifts in the frequency and intensity of Monsoon rainfall over Nepal only have a marginal

impact on the streamflow distributions in the Chepe Kohla catchment, as shown by the numerical

simulation presented in (Figure 5 (a, dashed curve). Consequently, changes in rainfall regime do not

appear to affect the performance of either model (Figure 5 (b)), unless they are significantly larger500

then expected. Climate change may nonetheless affect flow predictions elsewhere. It is therefore

helpful to consider the conditions under which FDCs can be reliably predicted in a changing climate.

Although rainfall stationarity is an inherent assumption of the process-based approach, climate

change can be incorporated by updating the relevant parameters to their future value to predict the

(pseudo-) stationary future state of the system. The method accounts for otherwise confounding505

changes in the frequency and intensity of rainfall, which are expected in Nepal. By explicitly ac-

counting for soil moisture dynamics and recession behavior, the model emulates the (causal) effect

of rainfall on streamflow. As a result, the method reliably predicts the distribution of future stream-

flow, provided that governing flow generation processes are in line with the basic assumptions listed

in Section 2.1.1.510

In contrast, the statistical model is solely based on observed correlations, leading to two important

sources of errors for predictions under change. First, the model only accommodates rainfall changes

to the extent that the estimated statistical relation between rainfall and runoff is representative of local

runoff coefficients. The model will not reliably predict future streamflows if runoff coefficients are

strongly spatially heterogeneous, or if the cross sectional sample of gauges fails to capture important515

processes governing mean flow. This source of uncertainty appears to be significant in Nepal, as

illustrated by the substantial bias in annual flow predictions on Figure 5(c). Secondly, the statistical

model only considers the effect of average rainfall on average flow: the effect of rainfall distribution

in streamflow distribution is ignored. As a result, the model cannot predict changes in the shape

of FDC that are brought about by changing rainfall. The prediction performance of the statistical520

approach is therefore determined by the resilience of the flow regime, that is the extent to which

streamflow distribution is affected by shifting rain signals (Botter et al., 2013): the method will

perform poorly in catchments with non-resilient flow regimes. The Monte Carlo analysis presented

in Supplementary Materials (Sections S3 and S4) shows that streamflow resilience in seasonally dry

catchments depends on two distinct seasonal effects: a ’direct’ effect driven by the ratio between525
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λP and k during the wet season, and an ’indirect’ effect during the dry season, when resilience is

determined by the interplay between Q0 (i.e. wet-season rainfall) and b. In seasonally dry climates,

we expect the statistical method to be most reliable in regions where wet seasons are short with

limited total rainfall but persistent flow regimes, and where the recession behavior during the dry-

season is close to linear.530

Lastly, a key assumption in this study is that catchment response (in terms of low-flow or reces-

sion characteristics) is independant of climate. It is possible that shifts in climate have an effect on

catchment response by affecting the partitionning of effective rainfall between storage and runoff.

Although not quantitatively assessed in this study, we expect that this effect would negatively affect

the performance of both approaches.535

5 Conclusions

Stochastic, process-based models predicted the FDCs for ungauged catchments in Nepal well, with

a performance that was comparable to that of statistical models. It suggests that in regions with

globally representative gauge-densities, and under seasonally dry climates, the advantages of the

statistical approaches relative to stochastic models noted in previous analyses (Blöschl et al., 2013)540

may not apply. Fundamentally, the performances of both approaches are strongly affected by the

method chosen to estimate model parameters in ungauged basins, so this conclusion comes with the

caveat that this study cannot be interpreted as a general benchmark to compare these approaches at a

global level. Although we believe that the selected models are appropriate to compare process-based

and statistical approaches for practical PUB application in Nepal, their relative performance may be545

different in other regions, where more abundant information on catchment characteristics allow more

complex (and presumably more accurate) regionalization approaches to be applied. Thus, substantial

research remains to be done to compare these approaches in other parts of the world, where locally

appropriate methods should be carefully considered.

Nonetheless, this study finds a complementarity between the different sources of uncertainty in550

the stochastic and statistical methods. This suggests that model selection should be driven by a

consideration of the main drivers of heterogeneity in any study catchment: Process-based models

are advisable if climate is likely to be the main source of runoff heterogeneity. Conversely, statistical

methods are more appropriate for regions with substantially different recession behaviors across

catchments. These distinctions provide a potentially robust basis for model selection in any given555

application.

The results also suggest that the sensitivity of statistical approaches to changes in rainfall statistics

is dependent on the ‘resilience’ of the flow regime as defined by Botter et al. (2013). Overall, the

process-based models are more reliable in projecting FDCs into new rainfall regimes. This is particu-

larly true for catchments characterized by a strong wet-season runoff and a rapid, strongly non-linear560
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hydrologic response, because their flow regime is particularly vulnerable to rainfall changes, making

the assumptions of the statistical model inappropriate.

The excellent performance of both process-based and statistical models for the FDC and PDF in

ungauged basins suggests that extending probabilistic analyses in such basins to also include flow-

derived variables such as hydropower capacity (Basso and Botter, 2012) or ecological responses565

(Thompson et al., 2013a) may be feasible. While these prospects are enticing, we note that a model’s

ability to predict an FDC with high fidelity is not necessarily indicative of prediction performances

on all derived stochastic properties. For instance, Dralle et al. (2015) demonstrate that the crossing

properties of streamflow can be very poorly estimated by stochastic process-based models, even

in applications where the same models predict the PDF of flow well. Further exploration of the570

potential opportunities and limitations afforded by use of probabilistic models in ungauged basins

offers a promising avenue for future study.

Appendix A: Process-based streamflow distribution model for seasonally dry climates

This appendix presents the analytical expression of FDC in seasonal climates derived in Müller

et al. (2014). The approach assumes that rainfall can be represented as a marked Poisson process

with with exponentially distributed depths. Catchments are modeled as spatially homogenous linear

reservoirs with linear evapotranspiration losses. Under these conditions, wet season streamflow can

be represented as a gamma-distributed random variable (Botter et al., 2007b):

Qw ∼Gamma(m,α−1
Q )

with m= λ/k and αQ = αP kA, and where k is the linear recession constant, A the area of the

contributing catchment and αP the mean intensity of wet season rainfall. The frequency λ of runoff575

events can be expressed as a function of the frequency (λP ) and intensity of rainfall (Botter et al.,

2007b):

λ= η
exp(−γ)γ

λP
η

ΓL (λP /η,γ)
(A1)

where ΓL(·, ·) is the lower incomplete gamma function, and where η = ET/SSC and γ = SSC/αP

are respectively the ratio between maximum evapotranspiration and soil storage capacity, and the580

ratio between soil storage capacity and mean rainfall intensity.

Dry season streamflow is modeled as a seasonal recession starting at the last discharge peak of the

wet season. Because wet season streamflow is a gamma-distributed variable, streamflow at discharge

peaks, and therefore the initial condition of the seasonal recession, is itself a gamma distributed

variable (Müller et al., 2014):

Qpeak ∼Gamma(m+ 1,α−1
Q ).
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Assuming a power law-relation between discharge and recession rate, the cumulative distribution

function of dry season streamflow can be expressed as (Müller et al., 2014):

PQd(Q) =



1 +
qrdΓ1−αrQΓ2

arTdΓ(m+1) , if

Q>−(arTd)
1
r

and r < 0

1 +
qrdΓ1−αrQΓ2

arTdΓ(m+1) +
αrQΓ4+(Qr−arTd)Γ3

arTdΓ(m+1) , otherwise

with585

Γ1 = ΓU (m+ 1,α−1
Q Q)

Γ2 = ΓU

(
r+m+ 1,α−1

Q Q
)

Γ3 = ΓU

(
m+ 1,α−1

Q (Qr + arTd)
1
r

)
Γ4 = ΓU

(
r+m+ 1,α−1

Q (Qr + arTd)
1
r

)
Γ(·) and ΓU (·, ·) denote the complete and upper incomplete gamma functions; Td is the duration of590

the dry season; r = 1− b and a are the parameters of the non-linear recession, which are assumed

stationary. Because they describe the same watershed, recession parameters for the wet and dry

seasons are related. If power-law recessions can be approximated by an exponential function for

sufficiently short recession times, we can express a as a function of k and b (Müller et al., 2014):

a≈ λ

−r

(
e

−r
m − 1

)
(αQ · (m+ 1)) (A2)595

The law of total probability can finally be used to combine seasonal streamflow distributions and

derive the cumulative distribution function of streamflow for the whole year:

PQ(Q) =

(
1− Td

365

)
·PQw(Q) +

Td
365

·PQd(Q) (A3)

The FDC for seasonally dry climates is finally obtained by plotting the streamflow quantiles Q

against 1−PQ(Q), the complement of the the cumulative distribution function of streamflow.600
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Figure 1. (a) Global histogram of the approximate spatial density of streamflow gauges by nation, represented

by the sample of 8540 gauges indexed by the Global Runoff Data Center for 146 countries (Global Runoff

Data Center, 2014). With a density of 1.6 gauges per 10,000 km2, Nepal falls close to the mode of the global

distribution. (b) Location of the rain gauges, streamflow gauges and corresponding Nepalese catchments used

in the analysis.

Table 1. Catchment characteristics. Median values and interquartile distances (IQD) are given for the whole

sample of 25 gauges. The table also presents characteristics of the Chepe Kohla watershed considered in the

analysis as a case study.

Streamflow: Topography: Climate: Recession:

Qm q95 Ny A zm zM Py Tmons λP αP AR CV ET k b

All gauges

Median 76.1 0.14 22 1355 481 5209 1952 99 0.71 18.8 0.29 0.92 2.5 0.17 2.38

Min 7.3 0.06 10 130 116 1913 1260 88 0.54 12.1 0.09 0.61 0.40 0.07 1.99

Max 1462.4 0.25 41 32817 1641 8369 4030 152 0.91 33.0 0.51 1.53 3.27 0.32 2.99

Chepe Kohla 23.0 0.14 31 277 475 4711 3050 100 0.84 26.5 0.09 1.03 2.1 0.20 2.41

Qm is mean annual flow inm3s−1; q95 is the 95th flow percentile normalized byQm;Ny indicates the number of observation years;A is the catchment area in km2; zm
and zM are respectively the minimum and maximum elevation of the basins meters; Py is mean precipitation inmm · yr−1; Tmons is the estimated duration of the monsoon

in days; λP is rainfall frequency during the monsoon (in d−1); αP is mean rainfall intensity inmm · d−1;AR is the first-order autocorrelation coefficient of rainfall

occurrence (AR = 0 if rainfall follows a Poissonian process),CV is the coefficient of variation of rainfall intensity on rainy days (CV=1 if depths are exponentially distributed);

ET [mm · d−1] is the reference evapotranspiration during the rainy season Lambert and Chitrakar (1989); k is the linear recession constant estimated during the monsoon (in

d−1) and b is the non linear exponent of the seasonal recession. A soil moisture capacity of 16mm is assumed throughout the country (Müller et al., 2014).
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Figure 2. Numerical simulation analysis to assess predictions under change. Future rainfall characteristics (fre-

quency λP , mean intensity αP , auto-correlation coefficientAR and coefficient of variationCV ) are determined

according to expected changes in rain regimes in Nepal (see Section 2.3.2), and fed into a stochastic rainfall

generator. The resulting 1000 years of synthetic daily rainfall values (PSynth(t)) are fed into a rainfall-runoff

model that simulates the processes described in Section 2.1.1. The rainfall-runoff model uses current recession,

soil and evapotranspiration conditions observed at the Chepe Kohla catchment. The resulting 1000 years of

synthetic daily flow values (QSynth(t)) are then reordered to construct an empirical synthetic (future) FDC,

which was compared (in terms of the Nash Sutcliffe Coefficient) to modeled FDCs predicted by the statistical

and process-based models. The process-based model admits current recession conditions, but future estimates

for rainfall frequency (λP ) and mean intensity (αP ). Note that unlike the numerically generated empirical FDC,

the process-based model assumes Poissonian rainfall with exponetially distributed depths, that is CV = 1 and

AR= 0. Current low flow characteristics (q95) are fed into the statistical model, as well as the current or fu-

ture (i.e. computed from synthetic streamflow time series) mean flow, depending on the extent to which mean

rainfall is an unbiased predictor of mean flow (Cases 1 and 2 described in Section 2.3.2).
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Figure 3. Flow duration curve prediction performance in ungauged basins. The error duration curves of the

leave-one-out cross-validation analysis using the process-based and statistical models are presented in panels

(a) and (b) respectively. Relative errors are plotted on a log scale in order to allow the graphs to be balanced

on the y-axis: a relative prediction error of 2 (the model predicts double the observed value) is at the same

distance from y=1 (perfect prediction) than a relative error of 1/2 (the model predicts half the observed value).

Durations are plotted on the x-axis, with x=0 and x=1 for the highest and lowest flow quantiles respectively.

Panel (c) shows box plots of Nash Sutcliffe coefficients computed from log-transformed flow quantiles.
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Figure 4. Sensitivity of models to data scarcity. (a) Cross-validation analysis showing the sensitivity of both

models to a decreasing number of calibration gauges. (b) Resampling analysis of streamflow observations in

the Chepe Kohla (N=10,000) catchment showing the effect of the number of observation years. In panels (a)

and (b), the effects on FDC prediction performances (top) are shown by plotting the ratio of calibration gauges

sampled (or the number of observation years) against the relative Nash Sutcliffe coefficient (with the NSC for

the full set of available data as reference). The plot shows the median value for all iterations, and the error bars

indicate the interquartile (25 - 75%) range. The prediction uncertainties of model parameters (bottom) are given

in absolute values of relative prediction errors.
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Figure 5. Sensitivity of models to changes in the precipitation regime. (a) Empirical and simulated flow dura-

tion curves at Chepe Kohla. The simulated FDC obtained from the stochastic rainfall generator and the bucket

watershed model (solid) reproduces the empirical FDC constructed from the observed streamflow well (grey

dots). Rainfall changes expected in Nepal (αP /αP,0 = 1.2, λP /λP,0 = 0.98) do not have a substantial influ-

ence on the simulated flow distribution (dashed). αP and λP designate the mean depth and frequency of wet

season rainfall, respectively. (b) Sensitivities to relative changes in rainfall frequency and intensity over the

Chepe Kohla catchment. The performance of the process-based model is not affected by rainfall changes (dot-

ted). The sensitivity of the statistical model depends on its ability to predict changes in mean flow from annual

rainfall. The model is highly sensitive to rain changes if average streamflow cannot be predicted (dashed), and

is robust to moderate changes if average flow is perfectly predicted (solid). (c) The linear regression of the sta-

tistical model underestimates annual flows at the Chepe Kohla when using a cross-sectional sample (25 gauges)

to estimate the local relation between average rainfall and average runoff.
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