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Abstract

Drought monitoring and early warning is an important measure to enhance resilience
towards drought. While there are numerous operational systems using different drought
indicators, there is no consensus on which indicator best represents drought impact
occurrence for any given sector. Furthermore, thresholds are widely applied in these5

indicators but, to date, little empirical evidence exists as to which indicator thresholds
trigger impacts on society, the economy, and ecosystems. The main obstacle for
evaluating commonly used drought indicators is a lack of information on drought
impacts. Our aim was therefore to exploit text-based data from the European Drought
Impact report Inventory (EDII) to identify indicators which are meaningful for region-,10

sector-, and season-specific impact occurrence, and to empirically determine indicator
thresholds. In addition, we tested the predictability of impact occurrence based on the
best performing indicators. To achieve these aims we applied a correlation analysis
and an ensemble regression tree approach (“random forest”), using Germany and the
UK (the most data-rich countries in the EDII) as a testbed. As candidate indicators15

we chose two meteorological indicators (Standardized Precipitation Index (SPI) and
Standardized Precipitation Evaporation Index (SPEI)) and two hydrological indicators.
The analysis revealed that accumulation periods of SPI and SPEI best linked to impact
occurrence are longer for the UK compared with Germany, but there is variability within
each country, among impact categories and, to some degree, seasons. The median20

of regression tree splitting values, which we regard as estimates of thresholds of
impact occurrence, was around −1 for SPI and SPEI in the UK; distinct differences
between northern/northeastern vs. southern/central regions were found for Germany.
Predictions with the ensemble regression tree approach yielded reasonable results
for regions with good impact data coverage. The predictions also provided insights25

into the EDII, in particular highlighting drought events where missing impact reports
reflect a lack of recording rather than true absence of impacts. Overall, the presented
quantitative framework proved to be a useful tool for evaluating drought indicators, and
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to model impact occurrence. In summary, this study demonstrates the information gain
for drought monitoring and early warning through impact data collection and analysis,
and highlights the important role that quantitative analysis with impacts data can have
in providing “ground truth” for drought indicators alongside more traditional stakeholder-
led approaches.5

1 Introduction

Drought is less tangible than other natural hazards, such as earthquakes or floods,
due to its slow onset, “creeping” nature, and complex, often non-structural impacts
(Gillette, 1950; Wilhite et al., 2007). Nonetheless, drought is known to affect more
people than any other hazard, and to cause high economic loss (Loayza et al., 2012;10

Wilhite et al., 2007). While droughts cannot be prevented, societal vulnerability can be
reduced, with monitoring and early warning (hereafter, M&EW) being one important
measure to enhance drought resilience. The aim of M&EW is to provide adequate
and timely information on drought conditions to enable people and organizations to
be better prepared and react accordingly (Svoboda et al., 2002; Wilhite and Svoboda,15

2000). Such systems are usually based on several drought indicators representing
different domains of the hydrological cycle, i.e. indicators for meteorological drought,
soil moisture drought and vegetation stress, hydrological drought, and groundwater
drought.

A recent trend has been the design of “combined” or “multivariate” indicators20

consisting of a blend of individual ones. The rationale behind the construction of
blended indictors is that a single indicator is not sufficient to adequately capture
different types of drought, and the corresponding multiplicity of drought impacts
that differ markedly in response time (Hao and Singh, 2015). There have been
several studies assessing the link between indicators of different types of droughts,25

e.g. between meteorological drought and streamflow, soil moisture, or remotely
sensed vegetation stress indicators (Haslinger et al., 2014; Ji and Peters, 2003;
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Martínez-Fernández et al., 2015; Vicente-Serrano and López-Moreno, 2005; Vicente-
Serrano et al., 2012). These are useful when there is an assumption that the lag
between, say, meteorological and hydrological drought represents the response time
for impact occurrence in, say, riverine ecosystems. Drought indicator choices can
be substantiated by stakeholder consultation or expert judgement, as has been5

implemented for the operational US Drought Monitor (Svoboda et al., 2002). Similar
initiatives have been developed in research project settings in southwest Germany
(Stölzle and Stahl, 2011) and Switzerland (Kruse et al., 2010).

However, while indicators representing different types of drought are commonly used
as proxies for impact occurrence, there is, to date, little empirical evidence as to which10

indicator best represents drought impact occurrence for any given sector. Lackstrom
et al. (2013) identified an impact-driven perspective as the “missing piece” of drought
monitoring; what is of ultimate interest is knowledge of when and where a precipitation
shortfall or low streamflow or groundwater level will translate into impacts on society,
the economy, and ecosystems. A direct, empirical evaluation of drought indicators with15

impact information would obviate the need for assumptions based on intercomparing
different drought indicators.

Aside from identifying indicators important for drought impacts, there is a need
for a better understanding of the meaning of indictor thresholds used for drought
declaration and as triggers for management actions in drought plans. Such thresholds20

are mostly based on hazard intensity classes corresponding to a certain frequency
of occurrence, e.g. following the widely accepted Standardized Precipitation Index
scheme, with classes ranging from 0 to −0.99 (mild drought), −1 to −1.49 (moderate
drought), −1.5 to −2 (severe drought), and < −2 (extreme drought) (McKee et al.,
1993). The US Drought Monitor (USDM) differentiates between five drought severity25

classes based on several indicators and corresponding thresholds (Svoboda et al.,
2002). Different thresholds again are used for delineating alert classes of the
Combined Drought indicator of the European Drought observatory (European Drought
observatory, 2013).
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Common to all thresholds is that they are arbitrary cut-off points (e.g. McKee
et al., 1993; Svoboda et al., 2002). A survey among drought managers in the US
on drought plans and respective indicators and triggers revealed that there is large
uncertainty in the selection of thresholds, with one survey reply uncovering that most
states selected their indicators “out of a hat” without knowing whether they “worked”5

(Steinemann, 2014). There is currently no consensus on appropriate drought indicators
and thresholds meaningful for practitioners of different sectors.

Regarding drought prediction, a substantial body of research has been dedicated to
forecasting drought indicators with sufficient lead time (e.g. Dutra et al., 2014; Mehta
et al., 2014; Trambauer et al., 2014; Wetterhall et al., 2015). However, while the models10

used for forecasting may propagate the climate signal into soils and hydrology, they do
not include a further link to the tangible negative environmental and socio-economic
impacts of a particular drought. Models bridging the gap between drought indicators
and impacts are rare. While predictions of crop yield are more common (e.g. Hlavinka
et al., 2009; Mavromatis, 2007; Quiring and Papakryiakou, 2003), very few studies15

have tested approaches for modeling other types of drought impacts (e.g. Blauhut
et al., 2015; Stagge et al., 2014; Gudmundsson et al., 2014; and Vicente-Serrano
et al., 2012). The complexity of processes and the interconnectedness of the multitude
of drought impacts, which may occur with much delay and even outside of the hazard
affected area (Logar and van den Bergh, 2013; Wilhite et al., 2007), may be one reason20

why few drought impact models have been presented.
The most important obstacle, however, is a paucity of information on drought

impacts. Initiatives to rectify this include the US Drought Impact Reporter (DIR) (Wilhite
et al., 2007), and the more recently developed European Drought Impact report
Inventory (EDII) (Stahl et al., 2015a). Both provide text-based, categorized information25

on reported drought impacts. The majority of impacts of the US DIR stem from
online media clipping (Wilhite et al., 2007), meaning that it can be used as a real-
time monitoring tool. In contrast, the EDII is designed as a research database with
a focus on past drought events. Other potential sources of drought impact data are
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reported crop yields, or losses assembled in the Emergency Events Database EM-DAT
(www.emdat.be) or by re-insurance companies. Nevertheless, crop yield reductions
may not necessarily be due to drought and loss data mostly provides aggregated
information on large events without details on the temporal and spatial evolution of
impacts, which is essential for empirically validating indicators and developing drought5

impact models.
Only very few studies to date have exploited text-based impact datasets. Dieker

et al. (2010) qualitatively and quantitatively compared the USDM to impact data from
the US DIR. Stagge et al. (2014) and Blauhut et al. (2015) both worked with EDII
data at the country- or macro-region-scale across Europe, with impacts coded as10

a binary response variable (impact vs. no impact) to determine the likelihood of impact
occurrence for different impact types. Bachmair et al. (2015) also used EDII data
to test the feasibility of evaluating drought indicators with impacts at smaller spatial
scales in Germany. As an extension to Stagge et al. (2014) and Blauhut et al. (2015),
they replaced the binary data with the number of impact occurrences, thus providing15

a measure of impact severity. A correlation analysis and extraction of indicator values
concurrent with past impact onset showed variability in indicator performance and
onset thresholds at the sub-country scale and between drought events. The effect of
different impact categories or types was not assessed (Bachmair et al., 2015).

Building on these previous efforts, the aim of this study is to exploit the EDII to link20

drought indicators to impacts using quantitative methodologies. Germany (DE) and the
UK were selected as a test-bed, since they represent the countries with most impact
data in the EDII database, but the aim is to develop methods that can be extended to
other geographical areas in future applications. Specifically, the aims are to

– evaluate different drought indicators using text-based impact information to25

identify indicators that are meaningful for region-, sector-, and season-specific
impact occurrence,
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– to empirically determine indicator thresholds representative for impact
occurrence, as an alternative to using the default, arbitrarily selected hazard class
thresholds intrinsic to indicators such as the SPI,

– to model impact occurrence via machine learning to assess the potential for
predictive purposes (i.e. predicting impacts based on indicators alone), and exploit5

the relationships between indicators and text-based impact data to “backwards
learn” about the nature of the impact data itself.

2 Data

2.1 Spatial and temporal resolution

As temporal and spatial resolution of the drought indicator and impact data we selected10

monthly time series for the period 1970–2012, aggregated at the NUTS1 level (level 1
of the Nomenclature of Units for Territorial Statistics, a spatial unit used in the European
Union). NUTS1 regions represent major socio-economic regions. In Germany they
correspond to the federal states. In the UK there are 12 NUTS1 regions, in Germany
16 (see Table 1 for a list of NUTS1 regions considered for analysis and abbreviations15

used in this study). Note that two NUTS1 regions in the UK and three in Germany were
excluded from the analysis due to having insufficient impact data (see Sect. 2.3 for
details).

2.2 Drought indicators

As drought indicators we selected the Standardized Precipitation Index (SPI) (McKee20

et al., 1993), the Standardized Precipitation Evaporation Index (SPEI) (Vicente-
Serrano et al., 2010), and streamflow percentiles (Q). In addition, groundwater level
percentiles (G) were included for Germany. For the SPI and SPEI, accumulation
periods of 1–8, 12, and 24 months were chosen. Gridded SPI and SPEI data were
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calculated based on E-OBS gridded data (version 9.0; 0.25◦ regular spatial grid,
Haylock et al., 2008) using the R Package “SCI” (Stagge et al., 2015). The gamma
distribution was used for the computation of the SPIs and the generalized logistic
distribution for the SPEIs (reference period: 1971–2010). Potential evapotranspiration
for the SPEI was estimated using the Hargreaves method (Hargreaves, 1994). For5

each NUTS1 region, regional averages of mean monthly SPI-n or SPEI-n were
calculated. Here, n denotes the accumulation period. The mean was chosen since
Bachmair et al. (2015) found little differences between the performance of different
indicator metrics per spatial unit (e.g. mean vs. minimum, or 10th percentile vs. percent
area with SPI or SPEI below a threshold). The reference period for calculation of10

streamflow percentiles is 1960–2012 in the UK, and 1970–2011 in Germany (also for
groundwater).

The monthly streamflow percentiles are based on monthly mean streamflows. In
Germany these are calculated from daily streamflow records for several gauging
stations per federal state; monthly groundwater percentiles come from weekly to15

monthly readings of groundwater levels or spring discharge for several monitoring
stations per state (data provision by different agencies of the German federal states,
see Kohn et al., 2014). Many of these stations are used for the federal states’
hydrological forecasting systems and thus represent stations with good data quality.
Monthly streamflow records for the UK were taken from daily river flow records20

held on the UK National River Flow Archive (NRFA) (www.ceh.ac.uk/data/nrfa/index.
html). The UK Benchmark Network (Bradford and Marsh, 2003) of near-natural
catchments was used, alongside the network of sites used in the National Hydrological
Monitoring Programme (NHMP: http://www.ceh.ac.uk/data/nrfa/nhmp/nhmp.html). No
groundwater measurements were used from the UK due to the limited number of25

NHMP borehole records available in many NUTS regions, reflecting the concentration
of productive aquifers in the south and east of the country.

The streamflow gauging stations in the UK and Germany encompass both natural
and anthropogenically influenced catchments. Figure 1 displays the spatial location
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of Q and G measurement stations and the boundaries of the NUTS1 regions in the
UK and Germany. The number of stations per NUTS1 region is displayed in Table 1.
Regional average mean monthly Q and G values were calculated for each NUTS1
region, provided there was at least one station with non-missing observations in the
region. As further predictors that may modify the drought indicators’ power to explain5

drought impact occurrence we also selected the month of impact occurrence (M) and
the year of impact occurrence (Y ). For this purpose the series of months (1–12) was
transformed into a sinusoidal curve shifted by four months (peak in July and lowest
value in January).

2.3 Drought impacts10

Drought impact data come from the European Drought Impact report Inventory
(EDII) (Stahl et al., 2015a), which can be viewed online at http://www.geo.uio.no/
edc/droughtdb/ (data extraction for this study: October 2014). The EDII defines a
“drought impact” as a negative environmental, economic or social effect experienced
under drought conditions. Examples of drought impacts are crop losses, water15

supply shortages and hosepipe bans, increased mortality of aquatic species, reduced
production at thermal or nuclear power plants due to a lack of cooling water, or impaired
navigability of streams, to name a few. Drought conditions themselves (anomaly in
precipitation, soil moisture, streamflow, groundwater levels etc.), without a negative
consequence or at least evoking serious concerns, are not considered an impact. The20

source of EDII entries is text-based reports on drought impacts, e.g. governmental or
NGO reports, books, newspapers, digital media or scientific papers. Each impact report
in the EDII contains the following information: (1) a spatial reference (different levels of
geographical regionalization, including the European Union NUTS regions standard),
(2) a temporal reference (at least the year of occurrence), and (3) an assigned impact25

category. The 15 categories, e.g. agriculture, water supply, etc., are shown in Fig. 2.
Each category subsumes several impact type subcategories (see Stahl et al., 2015a
for details).
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For the analysis the qualitative information on drought impacts was transformed into
monthly time series of number of drought impact occurrences per NUTS1 region. The
same methodology as in Bachmair et al. (2015) was applied during the conversion of a
“drought impact report” (EDII entry) into “drought impact occurrence” (hereafter termed
I). In short, this entails the following (see Bachmair et al., 2015 for details):5

– Each impact report was assigned to a NUTS1 region. Impact reports with country-
level information only were omitted from the analysis. An impact report was
converted into several I if (1) the impact report stated impact occurrence in several
NUTS1 regions or (2) an impact fell into several impact subtypes.

– Each I is temporally referenced by specifying a start and end month. Impact10

reports only stating the year of occurrence were omitted from the analysis. In
case only the season was provided in the report, we assumed the drought
impact occurred during each month of this season (winter=DJF, spring=MAM,
summer= JJA, fall=SON).

For each NUTS1 region and month the total number of I was determined, hereafter15

termed NI. Table 1 shows the NI per NUTS1 region included in the analysis, which sum
up to 4551 NI (UK) and 1534 NI (DE) in total for each country. Some analyses were
undertaken for impacts separated into the 15 impact categories. However, a different
kind of split of the data was also made, into two larger groups:

– hydrological drought impacts (Ih), i.e. impacts resulting from drought conditions of20

surface waters or groundwater,

– impacts due to other types of drought (Io), i.e. impacts associated with
meteorological and soil moisture drought and concurrent extremes (e.g. heat
waves).

The differentiation between Ih and Io is based on a keyword search of the impact25

description field in the database and therefore does not strictly follow any impact
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category or impact subtype. Examples of Ih include impaired navigability of streams,
increased temperature in surface waters negatively affecting aquatic species, drying up
of reservoirs, or reduced fishery production. Io comprises most agricultural and forestry
impacts, impacts on recreation or human health, soil subsidence, or wildfire. Figure 2
shows the total number of I , Ih and Io per NUTS1 region and season, as well as their5

categorical distributions.

2.4 Selection of years for analysis

For each NUTS1 region separately, a subset of years within 1970–2012 were selected
for analysis based on drought impact occurrence. Years with at least one impact
occurrence in the region were selected. All months of the selected years were included10

in this censored time series. The censoring was undertaken to exclude years with
drought conditions yet no impact reports in the EDII, similar to Bachmair et al. (2015).
The search for impact reports in both countries focused on known drought events; the
absence of impact reports in the EDII for years with drought conditions may therefore
be attributable to either a lack of impact occurrence or simply a lack of drought impact15

reports, whether through not being discovered or not being published in the first place.
Table 1 shows the length of time series per region and the percentage of months with
impact occurrence in this censored time series. Despite the above-described censoring
approach a considerable percentage of months with zero impact occurrence remained.
The data analysis was only applied to regions with at least 10 months with impact20

occurrence, which led to the exclusion of Northern Ireland and Scotland (UK), and the
Hanseatic City of Bremen, Hanseatic City of Hamburg, and Thuringia (DE).
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3 Methods linking indicators and impacts

3.1 Correlation analysis

First, we carried out a cross-correlation analysis between different drought indicators
and the number of impacts, accounting for temporal autocorrelation in the indicator
and/or impact time series. Spearman rank correlation coefficients (ρ) were calculated5

between time series of drought indicators and number of impact occurrences, for
each NUTS1 region separately. Rank correlation was chosen over Pearson correlation
since the counts of the impact data are not normally distributed. Correlations were
undertaken between time series of different indicators on the one hand (mean SPI
and SPEI for 1–8, 12, and 24 months; Q; G (DE only); month (M) and year (Y ) of10

impact occurrence), and time series of number of impact occurrences for different
impact subsets on the other:

– total impacts (NI)

– hydrological drought impacts (NIh)

– impacts due to other types of drought (NIo)15

– impacts per impact category, and

– impacts per season (DJF, MAM, JJA, SON).

A subset of impact data was only included in the analysis if there were at least 10
months with impact occurrence. Since there was temporal autocorrelation present
in the time series of SPI and SPEI of longer accumulation periods, in time series20

of Q and G, and in the impact time series for most UK and some German NUTS1
regions, significance levels of the cross-correlation analysis had to be corrected.
Temporal autocorrelation of time series used in cross-correlation analysis violates
the assumption of serial independence and increases the likelihood of type I error
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(Hurlbert, 1984; Jenkins, 2005). We applied the “Modified Chelton method” by Pyper
and Peterman (1998), which adjusts the “effective” number of degrees of freedom used
for determining significance levels. While we use Spearman’s ρ for the cross-correlation
analysis, autocorrelation coefficients represent Pearson’s r (based on square root
transformed data for the counts of impact occurrence). We define strength of correlation5

as follows: 0–0.1 (no correlation), > 0.1–0.3 (weak), > 0.3–0.6 (moderate), > 0.6–0.9
(strong), and > 0.9 (very strong).

3.2 Random forest modeling

Second, we employed a machine learning approach utilizing an ensemble regression
tree approach called “random forest” (Breiman, 2001). Similar to the cross-correlation10

analysis, the random forest approach also identifies drought indicators best linked to
impact occurrence. In addition to extracting predictor importance, the random forest
approach is used for obtaining splitting values as estimates of thresholds of impact
occurrence, and to model drought impact occurrence.

A “random forest” (Breiman, 2001) is a machine learning algorithm, which constructs15

a large number of classification or regression trees (CARTs) on bootstrapped
subsamples of the data. Non-parametric regression using random forest (RF) consists
of the following steps (see Liaw and Wiener, 2002 for details): (1) ntree bootstrap
samples are used. The individual cases making up the sample are drawn randomly
with replacement from the original data, preserving each month’s pairing of predictand20

and predictors. The size of each sample is about two-thirds of the size of the total
dataset, (2) for each bootstrap sample, an unpruned tree is grown. That is, for each
node in turn, a split-in-two of the data is performed for each of mtry randomly chosen
predictor variables, and the predictor whose split results in the two most homogeneous
groups (minimizing the residual sum of squares) of the predictand is chosen as the25

splitting variable for that node, (3) new data is predicted by averaging predictions over
ntree regression trees (Liaw and Wiener, 2002). The user-defined variable ntree was
set to 1000. The model parameter mtry (number of predictors randomly sampled as
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candidates at each split) was left as default: one third of the total number of predictors
(Liaw and Wiener, 2002). For all other parameters the default was kept as well. The
model error is determined by predicting the excluded data (“out-of-bag” data according
to Breiman, 2001) at each bootstrap iteration using the tree grown with the bootstrap
sample and averaging all errors (Liaw and Wiener, 2002).5

For our analysis we applied the R package “randomForest” developed by Liaw
and Wiener (2002). The RF predictors for each NUTS1 region included the same
indicators as used in the correlation analysis. The response variable is the square
root transformed monthly counts of impact data per NUTS1 region. The transformation
yielded a near normal distribution of the non-zero data in many regions. Some British10

NUTS1 regions, however, showed a bi-modal distribution of NI (NEE, NEW, YHU,
and SEE with varying extent), and in some German states the distribution of NI
remained positively skewed after the square root transformation. Results for a log-
transform were similar. We then ran models for the same subsets of impacts as in
the correlation analysis if there were at least 10 months with impact occurrence: total15

impacts (NI), hydrological drought impacts (NIh), non-hydrological drought impacts
(NIo), and impacts per impact category.

To identify the drought indicators best linked to impact occurrence we a used the
“variable importance” feature of the RF algorithm. For each predictor it is assessed by
how much the prediction error increases when the “out-of-bag” data for that predictor20

are permuted while all others are left unchanged (Liaw and Wiener, 2002). We use
the ranks of percent decrease in accuracy as variable importance measure (e.g. Strobl
et al., 2009). Another output from the RF analysis are the splitting values for each
predictor. The construction of each regression tree is based on recursively splitting the
data into more homogenous groups (nodes). At each node, the best splitting variable25

and splitting value are determined, with multiple splits possible for the same variable
(Strobl et al., 2009). For our analysis we extracted the splitting values corresponding
to each predictor, considering all trees and nodes, and visualized their distribution
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as boxplot. We regard these splitting values as estimates of thresholds of impact
occurrence.

The predictive potential of the random forest models was assessed in two ways. First,
the overall model performance was evaluated based on a 10-fold cross-validation. The
goal of this assessment (hereafter “RF Predictions”) is to test the performance of RF5

models as a potential tool for predictive purposes, and to learn about the indicator–
impact relationship. The data for cross-validation is the censored time series for each
NUTS1 region, i.e. the time series based on the sub-selection of years with drought
impact occurrence within 1970–2012. For each of the ten model runs the censored
time series was split into 90 % for training and 10 % for prediction; impact occurrence10

of the left-out 10 % is predicted with a random forest model constructed on the training
data. The cross-validation procedure allows evaluation of the predictive performance
for “unseen” data excluded from model fitting. As model performance metrics we
computed mean absolute error (MAE), root mean squared error (RMSE), and error
components according to the Kling–Gupta efficiency (Gupta et al., 2009) modified by15

Gudmundsson (2012): relative difference in mean (∆µ), relative difference in standard
deviation (∆σ), and strength of correlation between observed vs. modeled number of
impacts (r). Zero is the optimal value of ∆µ and ∆σ; negative and positive values
indicate under- and over-prediction, respectively (Gudmundsson et al., 2012).

The second assessment (hereafter “RF Backwards Learning”) is the application of20

the RF models that were fitted to the censored time series to predict NI per NUTS1
region to those years that had been excluded, i.e. the years within 1970–2012 that
have zero impact occurrence. The purpose of this second assessment is to scrutinize
the impact data in the EDII database to backwards learn where a year without impacts
may either be due to no impacts or due to the lack of reporting or finding reports. As the25

observations themselves are examined no model performance metrics are presented.
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4 Results

4.1 Correlation of indicators with impacts

In the UK the strength of correlation between times series of NI and different indicators
ranges between −0.65 and 0.51 (Fig. 3). Lower indicator values coincide with higher NI
(negative correlation) for all drought indicators except for M, where positive values in5

summer concur with a higher NI (positive correlation). Overall, SPI and SPEI are very
similar in terms of strength of correlation. For southern and central UK, accumulation
periods of SPI and SPEI exceeding about 6 months show the strongest correlation
with NI, whereas the more northern regions show the strongest correlation for short
to intermediate accumulation periods. SPI-24 and SPEI-24 are the indicators with the10

strongest correlation for half of the NUTS1 regions (WAL, CWE, EE, SWE, and SEE),
with ρ ranging between −0.38 and −0.65. Streamflow percentiles display a moderate
and significant ρ in parts of eastern England: SEE (−0.46), EE (−0.47), and CEE
(−0.32). For the other regions the correlation is weak to moderate and not significant at
the 5 % level (two-sided test). There is mainly no or a weak (non-significant) correlation15

with Y , which varies in sign.
A split into Ih vs. Io, and a split by impact category reveal distinct differences in

correlation patterns for some impact subsets (Fig. 3). The difference between I and Ih
is rather minor. As can be seen in Fig. 2, Ih is the dominant impact type in the UK.
Other drought impacts (Io) show a distinctly different pattern. With weak to moderate ρ20

for all indicators, no best SPI and SPEI time scale can be singled out. For agriculture,
which mostly represents Io, only CEE and CWE show strong relationships, but for all
accumulation periods. While the correlation patterns for water supply and freshwater
ecosystem impacts are similar to Ih, shorter to intermediate accumulation periods
of SPI and SPEI (4 to 8 months, for a few cases also 12 months) show highest25

correlation with water quality impacts. For other impact categories correlation could
only be determined for very few regions (wildfire, tourism, waterborne transportation),
or not at all due to too few months with impact occurrence.
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A split by season (Fig. 4) also shows distinct differences, yet could not be determined
for all regions given limited impact data if partitioned seasonally. In winter and spring
the general trend stays the same as for the full series (higher ρ for longer accumulation
periods of SPI and SPEI, 12 and 24 months dominating). In the fall, in contrast, there
is a notable shift towards intermediate SPI and SPEI time scales as best indicators5

in many regions. In summer, the correlation pattern is more diverse, but in general
is dominated by strong correlations across the majority of indicators and accumulation
periods. Also, the correlation with streamflow percentiles in summer is higher and more
often significant when compared with year-round data.

In Germany, the overall strength of correlation between times series of NI and10

different indicators is in a similar range as in the UK (−0.62 to 0.74). Contrary to the
UK, shorter to intermediate accumulation periods of SPI and SPEI best correlate with
impact occurrence (Fig. 5). Eleven of the 13 analyzed regions show the highest ρ
for SPEI-2 to SPEI-4; for SPI-24 and SPEI-24 a non-significant correlation in inverse
direction is found. The difference between SPI and SPEI is slightly more pronounced in15

Germany, with SPEI performing somewhat better (absolute difference in ρ up to 0.13).
Q performs similar to SPI in many cases. Groundwater level percentiles show no or
non-significant weak correlation with NI. In contrast, the sine expression of the month
shows a higher and often significant ρ, especially in the northern NUTS1 regions.
Similar to the UK, there is no or only a weak correlation with Y . As in the UK, there20

are regional differences, yet mostly regarding the strength of correlation. Most regions
in the north and northeast of Germany display a noticeably lower strength of correlation
(mostly weak ρ) than the central and southern regions.

Similar to the UK, a split into Ih and Io reveals differences in correlation patterns
compared with I , yet the picture for Ih and Io is the opposite: while the correlation pattern25

for NIo is rather similar to NI, there is a noticeable shift towards higher correlation
with longer SPI and SPEI time scales for Ih. NIo dominates over NIh in some German
regions, in contrast to the situation in the UK (Fig. 2). For several states the correlation
between Q and NIh is higher than between Q and NI. A further split by impact category

9453

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/9437/2015/hessd-12-9437-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/9437/2015/hessd-12-9437-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
12, 9437–9488, 2015

Appraising drought
indicators and

modelling drought
impacts

S. Bachmair et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

uncovered the following: agricultural impacts show highest ρ for SPI and SPEI time
scales of 1–4 months, yet most correlations are weak and not significant; there is
a shift towards higher correlation with longer SPI and SPEI timescales for impacts
on waterborne transportation in some NUTS1 regions; for all other impact categories
correlations could only be determined for one or two regions (BV or BW or RP) due to5

too little impact data. A seasonal split was also not possible to assess due to too few
months with I in spring, fall, and winter; the majority of impacts in Germany occurred
in summer (Fig. 2).

4.2 Indicator importance in random forest models

For the UK, the general picture from the random forest approach is very similar to the10

findings from the correlation analysis, both regarding I and different impact subsets
(Ih, Io, and I per impact category) (Fig. 6). Long accumulation periods of SPI and
SPEI (12 and 24 months) appear as the highest ranking predictors for most regions,
except the more northern regions NEE, NEW and YHU. Q does not show up as
important predictor. Distinct differences compared with the correlation analysis include15

the following: (1) Y plays an important role for I and most impact subsets, (2) for Io,
the RF predictor importance shows a shift to intermediate accumulation periods of SPI
and SPEI (7/8 months). This shift is not as clearly discernible in the correlation patterns.
The same holds true for the agricultural impacts.

In contrast to the UK, where the RF predictor importance plots look very similar to the20

correlation analysis plots, there is more variation for Germany (Fig. 7). The RF predictor
importance patterns are spottier than the correlation analysis patterns with less smooth
transitions between adjacent indicators. Nevertheless, the general tendency of best
predictors is confirmed. Short to intermediate accumulation periods of SPI and SPEI
are highest ranking predictors; the sine expression of the month is top-scoring in the25

northern states for I , Io, and agricultural impacts. Also, there is a shift towards higher
correlation with longer SPEI accumulation periods (7/8 months) for Ih and impacts
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on waterborne transportation. Y shows lower importance than for RF models of UK
regions.

4.3 Indicator thresholds in random forest models

While splitting values of all indicators for all impact subsets (I , Ih, Io, different impact
categories) were extracted, we only show the threshold distribution, i.e. splitting value5

distribution, for SPI and SPEI time scales of 8, 12, and 24 months (best performance
for different regions and/or impact subsets) and streamflow percentiles (Figs. 8 and 9).
For the UK, the threshold distribution for both meteorological indicators generally shows
a considerable range, which decreases with increasing accumulation period (roughly
+2 to −2.5/−3.5 for SPI-8, +1.5 to −2.5/−3 for SPI-12, and +1 to −2.5 for SPI-24).10

For the same accumulation periods of SPEI the range extends to less negative values.
Apart from this, the differences between SPI and SPEI are negligible with interquartile
ranges (IQR) predominantly between 0 and −2. When only focusing on the median of
the distribution, SPI-8 and SPEI-8 values scatter around −1 for most NUTS1 regions.
For SPI and SPEI of 12 and especially 24 months duration the scatter around −1 is15

slightly more variable, and differences among NUTS1 regions are somewhat stronger.
Regarding streamflow percentiles the splitting values cover almost the entire range,
the IQR is distinctly larger than for SPI and SPEI, and the median ranges between
0.2 and 0.37. The split by impact category results in slightly narrower ranges of
threshold distributions for many impact categories, and often a more negative median20

(not shown). This is not the case for Ih and water supply impacts; yet, there is much
variation among indicators. All indicators show regional differences, however without
systematic patterns.

For Germany, SPI and SPEI of 3 and 6 months accumulation period are generally
well linked to NI or impact numbers in different impact subsets. Figure 9 shows that25

the splitting values in the different federal states range from roughly +1.5 to −2/−3
for both SPI and SPEI. Absolute values of the IQR of German regions are similar to
the UK. Contrary to the UK, a regional pattern exists regarding the median of the SPI
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and SPEI threshold distributions. The southern and most central federal states display
a more negative median (mainly between −1 and −1.5) than the northern/northeastern
states (with a median between 0 and −1). A small but noticeable gradient from SH
to BV can be seen in Fig. 9. A further difference to the UK is the more pronounced
differences between SPI and SPEI thresholds, with more negative threshold values5

for SPEI. Streamflow percentiles show a similarly large spread of splitting values to
the UK, yet the IQR is mostly smaller and the median is slightly lower (0.14–0.29).
Regional differences occur as well, but, similar to the situation for SPI and SPEI, these
differences are less pronounced in Germany than in the UK. No pattern is found for
groundwater level percentiles. The median per region ranges between 0.2 and 0.68.10

The split by impact category often resulted in less negative splitting values for Io and
agricultural impacts compared with Ih (not shown). Too little impact data for the RF
analysis for several impact categories prevented a systematic intercomparison among
impact categories.

4.4 Impact predictions with random forest models15

RF Predictions for the UK show that observed and modeled impacts agree well for the
NUTS1 regions SWE, SEE, and EE (Fig. 10). In most central regions and LND there
is more spread. The northern regions NEE and NEW show least agreement. The R2

ranges between 0.16 (NWE) and 0.73 (WAL) (Table 2). Due to the random component
in the RF algorithm, model performance varies marginally for replications. Regional20

differences more or less reflect the length of each time series and the percentage of
months with impact occurrence. That is, regions with R2 > 0.6 generally have longer
time series and a higher percentage of months with I than regions with lower R2

(Tables 1 and 2). For Germany, observed and modeled impacts agree less well than
for many UK regions (Table 2). However, much fewer data points for Germany than25

for the UK make a comparison difficult (Figs. 10 and 11). Among the federal states
of Germany, BV and BB show better agreement than other regions. The majority of
federal states shows an R2 between 0.33 and 0.54 (Table 2). Only four states show
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an R2 > 0.6. Overall, the lower agreement between observations and predictions than
in the UK concurs with the shorter time series of indicator and impact time series in
Germany, and a smaller percentage of months with NI > 0 (Table 1).

The generally small difference in the mean (∆µ) of observed vs. modeled impacts
for both the UK and Germany (Table 2) suggests that the central tendency is well5

modeled. However, a closer look at the time series of observed and modeled number
of impact occurrences (Fig. 12, time series with gray background (RF Predictions))
reveals that small values are generally over-predicted and large values often under-
predicted. Notable under-predictions of peak values include, for example, events in
2003 in Germany, and in 2011/12 for many regions in the UK. The under-prediction of10

NI causes lower standard deviations for the modelled values than for the observed (∆σ
between −0.22 and −0.52, see Table 2).

Furthermore, Fig. 12 shows that predictions and observations in the UK and
Germany generally agree well both regarding initiation of impact occurrence and
its subsequent temporal evolution. This is also reflected by a moderate to strong15

correlation between predictions and observations (Table 2). The blue line in Fig. 12
represents an impact threshold of one, as guidance for interpretation: modeled impacts
smaller than one may be regarded as an absence of impacts. Taking this into account
the temporal dynamics agree even better, especially regarding impact onset. An
obvious disagreement between dynamics of observations and predictions is found20

in many regions in the UK in 1991/92, where modeled NI is more dynamic than the
observed static “block” ofNI following an impact peak. The block-shaped data represent
impacts due to a contraction of the stream network in large parts of the south and
east of the UK during these years. In Germany, states with larger amplitude of NI (BV,
BW, RP, and NW) tend to have a better agreement of temporal dynamics, especially25

when only focusing on values above the one-impact-threshold line. For states with low
amplitude of NI, which often concurs with less negative splitting values (see Sect. 4.3),
the temporal dynamics are less well modeled (not shown).
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The RF Backwards Learning predictions for all years with zero impact occurrence
according to the EDII database are shown on white background in Fig. 12. They expose
instances of potentially “false-positive impacts”, i.e. a positive number of impacts is
modeled while there are no observed impacts. A clear example for the UK is the period
1972–1974, when drought conditions occurred, which would have caused impacts in5

many UK regions according to the RF model trained on the censored time series.
Another example of false-positive impacts in the UK is found for many southern and
central regions in the second half of the 1990s after a peak of NI in 1995. While for the
UK two major, spatially coherent cases of false-positive impacts exist, the pattern for
Germany is more diverse and region-specific. In BW, for instance, the impact data in10

the EDII appears to well represent true impact occurrence (no significant false-positive
impacts). IN BV and BB, in contrast, false-positive impact events are noticeable in
1971/72 (BV) and 1976 (BB; not shown). During these periods drought impacts are
present in the EDII for other states in the vicinity. Remarkable as well is that states with
low amplitude of NI and less negative splitting values (see Sect. 4.3) are characterized15

through frequent false-positive impacts with small NI (e.g. LS, not shown).

5 Discussion

5.1 Performance of drought indicators

The correlation analysis and the random forest approach revealed the following insights
about the performance of drought indicators, which will be discussed in the context of20

expectations and literature: (1) the best-performing drought indicators are region and
impact category specific, and in the UK season specific to some degree. While in the
UK generally long accumulation periods of SPI and SPEI (12–24 months) performed
best, short to intermediate accumulation periods (2–4 months) were best linked with
drought impacts in Germany. However, there is spatial variability within each country,25

and differences among impact categories. (2) A comparison among indicators (SPI
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vs. SPEI vs. Q (vs. G in Germany)) uncovered that in the UK SPI and SPEI perform
similarly to each other, and Q performs less well. In Germany SPEI often performed
slightly better than SPI, the linkage with Q is better than in the UK, and there is low
agreement between G and impact occurrence. (3) The largely congruent findings from
the two different statistical approaches independently validate the results.5

While much can be speculated about the drivers of region-, impact type-, and
season-specific variability, it is nonetheless necessary to explore the underlying
mechanisms for the observed differences to rule out purely data-driven, yet physically
meaningless, indicator–impact relationships. Regional differences can result from both
(1) “real” physical, spatial differences in geographic properties (e.g. climate, geology,10

soil, land use), vulnerability towards drought, and hazard characteristics, triggering
impacts differing in type and response time, and (2) differences due to inherent spatial
and temporal biases in the impact data (see Bachmair et al., 2015) on potential EDII
error sources).

In the UK we found differences in best SPI and SPEI accumulation periods between15

most southern/central regions (long periods) vs. more northern regions (shorter
periods). This corresponds well to known differences in the nature of the drought
hazard, and impacts. Strong regional contrasts in drought occurrence across the UK
have been noted previously, with a particular contrast between the upland northern and
western UK, which is susceptible to short-term (6 month) summer half-year droughts,20

and the lowlands of the south-eastern UK that are susceptible to longer-term (18 month
or greater) multi-annual droughts (Jones and Lister, 1998; Marsh et al., 2007; Parry
et al., 2011). These findings reflect both the climatological rainfall gradient across
the UK and the predominance of groundwater dominated catchments in the south-
east (Folland et al., 2015). While we also found regional differences in indicator–25

impact-linkage patterns in Germany, they mostly relate to differences in strength of
correlation (weaker correlation in northern/northeastern states). The smaller amplitude
of impact time series in these states may explain weaker correlation in contrast to
southern/central states with predominantly larger amplitude, i.e. pronounced impact
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peaks, as hypothesized by Bachmair et al. (2015). In contrast to the UK, which has
seen a limited number of multi-annual droughts, most droughts in Germany have been
of shorter duration, although such short (typically summer) droughts are fairly frequent
(e.g. Bradford, 2000).

The differences in indicator–impact-relationships between the UK and Germany,5

and some of the within-country variability, are also very likely a result of the regional
composition of drought impact types. It is common knowledge that impacts caused by
different types of drought have different response times due to propagation through the
hydrological cycle (e.g. Mishra and Singh, 2011; National Drought Mitigation Center,
2015; Wilhite and Glantz, 1985). Some impacts develop quickly (e.g. agricultural10

impacts) during a precipitation shortfall or heatwave and thus show shorter response
times than impacts triggered by more slowly evolving streamflow or groundwater
drought. In the UK impacts associated with drought conditions of surface waters and
groundwater (Ih) clearly dominate (see Fig. 2). This agrees well with longer SPI and
SPEI accumulation periods as best predictors in the UK compared with Germany.15

While hydrological drought impacts still make up the larger part of impacts in Germany,
the fraction of non-hydrological drought impacts (Io) is distinctly larger than in the UK.
Agricultural and forestry impacts in Germany account for roughly 20–70 % of impacts
depending on the region, and this may explain why short to intermediate SPI and
SPEI accumulation periods are the best predictors. In British regions these two impact20

categories sum up to a maximum of 20 %. A subdivision of Ih reveals that in the UK
impacts on water supply and freshwater ecosystems are most prominent, whereas in
Germany impacts on waterborne transportation and water quality dominate in most
regions.

The identification of best-performing indicators for specific impact types is a key25

outcome of this study. While the absolute values of best SPI and SPEI accumulation
periods were not identical in both countries, we found commonalities in the relative shift
from total impacts to different impact types. For instance, agricultural and hydrological
drought impacts were generally best linked to shorter and longer SPI and SPEI time
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scales, respectively. Here, “shorter” and “longer” refers to different absolute values: 1–
4 (DE) and 7–8 months (UK) for agriculture, and 7/8 (DE) and 12/24 months (UK) for
Ih. Perhaps unsurprisingly, a universal recommendation about best indicators hence
cannot be inferred. However, the similar relative shift in best SPI and SPEI time scales
suggests that there are likely to be typical patterns of response for given impact5

types, but that these are mediated by regional cause-effect-mechanisms. This is in line
with two studies introduced earlier, which investigated likelihood of impact occurrence
specific to particular impact types across different European countries (Blauhut et al.,
2015; Stagge et al., 2014). Seasonal variation in linkage patterns as observed in our
study for the UK further complicates recommendations regarding a single best drought10

indicator. Part of the variation across the seasons is likely to reflect differences in impact
type distribution between the seasons (see Fig. 2).

A surprising result is that streamflow did not appear as an important drought indicator
in the UK, even after a separation of hydrological drought impacts. In Germany,
groundwater level percentiles played only a minor role. There are several possible15

reasons for these discrepancies. For groundwater level percentiles the mismatch is
likely attributable to a lagged groundwater response (Bachmair et al., 2015); cross-
correlation for different time lags would be a way to assess if and which delay period
is linked to impacts. One probable reason for the lack of relationship between I and
Q is the nature of the spatially aggregated streamflow data, which represents different20

catchments varying in size and characteristics (including degree of human influence),
lumped over a large administrative area, which does not coincide with catchment
boundaries. A further reason may be the nature of the EDII data, especially regarding
the subdivisions of Ih. While in Germany the fraction of instream impacts of Ih is
larger (e.g. impaired navigability of streams, water quality, and reduced power plant25

production due to a lack of cooling water), water supply impacts dominate Ih in the UK.
For groundwater or reservoir-fed water supply systems these impacts are, to a certain
extent, disconnected from river flows (the purpose of reservoirs being to smooth out
variations in instream water availability).
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Overall, despite a rather complex picture in terms of best drought indicator for
impact occurrence, the empirical evaluation of drought indicators with text-based
impact information proved to be a feasible approach. Given the minor differences in the
outcomes of the correlation and the random forest analysis for the UK, both methods
appear recommendable. Generally, the strength of the random forest algorithm is5

that it can handle interactions and nonlinearities among variables, and thus identify
non-intuitive relationships (Evans et al., 2011; Hastie et al., 2009). Furthermore,
random forests are robust to noise (Breiman, 2001; Hastie et al., 2009), and the
bootstrap sampling provides a way to account for the uncertainty of the impact data.
Nevertheless, the “black-box” nature of the RF model (Breiman, 2001) may not be10

as useful when an intuitive method for the choice of best drought indicator is needed
(e.g. when working with a wide range of stakeholders from different backgrounds). For
Germany, systematic differences in indicator–impact-linkage patterns were easier to
perceive in the correlation plots than in the RF predictor importance plots. For large
data sets the RF algorithm has the potential to detect relatively complex structures;15

for small data sets, however, this is unlikely to be the case (Maindonald and Braun,
2006). The generally shorter time series for German regions and stronger zero-inflation
of the data may therefore explain the “spottier” pattern of RF predictor importance.
The correlation analysis thus yielded more powerful results for Germany. However,
this method does not provide further information such as on thresholds of impact20

occurrence, in contrast to the RF algorithm (see Sect. 4.3). Both approaches therefore
complemented each other in our study.

5.2 Indicator thresholds for impact occurrence

The analysis of splitting values used in the random forest construction highlighted
a large spread. Yet, when focusing on the median there are differences between the25

countries and among the regions (medians around −1 for SPI and SPEI of different
accumulation periods in the UK, and in DE between ca. 0 and −1 (north/northeast)
and −1 and −1.5 (southern/central states)), and, to some extent, impact categories.
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We regard splitting values during recursive partitioning as estimates of thresholds
of impact occurrence because they provide guidance on critical predictor values
triggering a consequence. Nevertheless, the uncertainty of the text-based impact data
clearly must be taken into account in the search for meaningful thresholds. One
cause of the large spread of the threshold distributions is the uncertain timing of5

actual impact occurrence, especially regarding its termination. First, when only the
season was provided in the impact report, the assumption was made that impacts
lasted during all months of this season. This may cause a mismatch in cases where
drought conditions recede within the course of the season. Second, in the UK there
are impacts appearing as “blocks” following an impact peak in 1990. They arise10

from EDII reports citing long-lasting impacts without an exact known end-point or
temporal evolution of the severity of the impact (i.e. low flow anomalies in eastern
and southern Britain causing contraction of the stream network and thus impacts on
aquatic species reported for the years 1990–1992). Third, hosepipe bans and drought
orders do not represent direct impacts of drought, but are triggered (and canceled) by15

an administrative/political decision as an intermediate step. The onset and termination
of the impacts they are meant to reflect may therefore be more uncertain than those
for other, more direct impacts. We tested this by removing all the drought orders
from the database and reanalyzing the data, showing that the SPI-24 and SPEI-
24 become less dominant and the strongest correlations are shifted towards slightly20

shorter accumulation durations. These issues highlight the necessity to separately
consider phases of drought development and recovery for drought M&EW (Parry et al.,
2015; Steinemann and Cavalcanti, 2006).

Differences in impact reporting between Germany and the UK also need to be
considered. In the UK, a significant proportion of impacts for later droughts (2004–25

2006 and 2010–2012) were sourced from weekly Drought Management Briefs by
the Environment Agency (EA). In Germany there is no continuous information on
drought impacts, and no unifying impact reporting scheme exists within the federal
state structure. In both countries, reporting mechanisms may put more weight on
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specific impact categories. For example, the EA Drought Management Briefs have an
emphasis on water supply and freshwater ecosystems while for other impact categories
such information is sparse, or not routinely published.

A reason why we consider tree splitting values as meaningful thresholds of impact
occurrence is because Bachmair et al. (2015) found similar threshold patterns for5

Germany using the same impact data but a different methodological approach based
on extracting indicator values concurrent with past impact onset. Both approaches
revealed differences in indicator thresholds between northern/northeastern vs.
southern/central German federal states. These differences were speculated to
result from differences in geographic properties and thus different vulnerability to10

drought (Bachmair et al., 2015). The northern/north-eastern states tend to have
more sandy soils with lower water holding capacity than in the south, and lower
natural water availability (Bundesamt für Gewässerkunde, 2003; Bundesanstalt für
Geowissenschaften und Rohstoffe, 2007). This could explain impact occurrence for
less negative SPI and SPEI thresholds. Why we did not find systematic differences in15

thresholds among British regions despite obvious regional differences in geographic
properties is not clear.

Despite possible shortcomings of EDII data and the method to derive indicator
thresholds, we recommend further efforts to empirically validate indicator thresholds
with impact data. The use of indicator thresholds to issue drought warnings or to trigger20

management actions of drought plans is widespread (Shukla et al., 2011; Steinemann
and Cavalcanti, 2006; Steinemann, 2014). As pointed out in the introduction section
there is no consensus on what a meaningful threshold is. In our study the median of
the SPI and SPEI threshold distribution ranged around −1 in the UK, which correspond
to the transition between mild and moderate drought according to the SPI classification25

by McKee (1993). At the same time, the differences in median of the SPI and SPEI
threshold distributions for Germany (lower values for SPEI) demonstrate that, despite
the standardized nature of such indices, the same thresholds (and corresponding
statistical return periods) are not necessarily equally meaningful for drought impact
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occurrence. To our knowledge, there are hardly any publicized studies systematically
evaluating the delineation rules of different drought severity classes by using drought
impacts (e.g. Sepulcre-Canto et al., 2012) or by stakeholders’ experience (e.g.
Steinemann and Cavalcanti, 2006). Our analysis and previous findings on indicator
thresholds for impact onset in Germany (Bachmair et al., 2015) demonstrate the5

potential of text-based impact data to do this.

5.3 Lessons learned from random forest predictions

The two parts of the random forest modeling exercise exposed that: (1) there are
differences among regions in terms of predictive power, with RF models for regions
with better impact data (longer censored time series, a higher percentage of non-zero10

data, and larger amplitude of the impact time series) showing good agreement between
observations and predictions. (2) While the temporal dynamics of impact occurrence
were reasonably reproduced, over- and under-prediction of small and large values,
respectively, are an issue. (3) Backwards Leaning about impact occurrence for years
with no observations (through RF models trained on drought years) provided valuable15

insights into time periods which potentially lack impact data in the EDII.
Overall, the analysis revealed that RF models generally represent a suitable tool

for drought M&EW, yet further model tuning is possible (e.g. reduction of predictors,
grouping several regions for increasing the number of observations, and impact
category specific models). The finding that there is good agreement between observed20

and predicted number of drought impact occurrences for regions with good data
availability is promising. It also underlines the benefit of spending time and resources
on impact data collection. Currently the process of impact data collection is not
automated but labor intensive. Good model performance for South West England, for
example, which is characterized by better data availability than in other regions, makes25

a strong argument for the value of impact monitoring. The necessity of expanding
impact data collection and its benefit for drought M&EW has been reported by others
(Lackstrom et al., 2013; Stahl et al., 2015b; Wilhite et al., 2007).
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Despite the promising predictive capability of RF models for some regions, the under-
prediction of peaks is an issue. There are several possible reasons for this. First, there
seems to be an inherent bias of the random forest algorithm with high values being
under-predicted and low values being over-predicted, as observed by others (Ordoyne
and Friedl, 2008). This is because the RF algorithm computes averages over a large5

number of model predictions and hence reduces the range and variance of predictions
compared with observed values (Liaw and Wiener, 2002; Ordoyne and Friedl, 2008).
Second, there may be an impact-reporting bias caused by impact-reporting increasing
during peaks of events. We hypothesize that drought impacts may go unreported during
the early stages of a drought, but once a certain threshold of public attention and10

media coverage is exceeded there is a tendency for more complete reporting. Also,
the chances of finding information on drought impacts are higher for recent events
due to better online availability of reports and new media channels compared with
decades ago. The above-described reasons may explain the high number of impacts
in the EDII for Germany in 2003 compared with 1976, and the dominance of 2010–15

2012 in the UK. To account for the strong weight of the 2003 drought event, a predictor
representing the reporting bias would be needed, which is very difficult to determine
or to find proxies for. However, the predictor year may cater for the reporting bias to
a certain degree. Another way would be to normalize the number of impacts per drought
event but this would distort differences among events. For some UK NUTS1 regions the20

under-prediction of NI may also stem from impact reports appearing as static “blocks”
following an impact peak in 1990, which was discussed earlier (Sect. 5.2). The modeled
time series, which is more dynamic than the observed one, could potentially be more
representative of the true impact occurrence (although this is speculative).

The RF Backwards Learning assessment provided additional examples of where25

modeled impacts are likely to be more representative of the true impact occurrence
than the absent impact data in the EDII. For the UK there is an interesting contrast
between the false-positive impacts of the early 1970s, and those of the late 1990s.
Both are well documented droughts, but the former genuinely had less impacts
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(Cole and Marsh, 2006), in part due to a wet summer in 1973. For the 1995–1997
drought, only impacts from the hot, dry summer of 1995 are captured in the EDII,
as the summer drought was very extensively reported due to water supply failures
and government responses. However, a protracted groundwater drought, with water
restrictions in some areas, extended into 1997 (Cole and Marsh, 2006). However no5

“formal” drought report was written so these later impacts have not been captured by
the EDII. Such discrepancies support our choice of time series censoring via drought
impact occurrence. Altogether, false-positive impacts provide guidance on which time
periods to focus on when searching for additional impact information. This may, in turn,
result in more reliable predictions or impact thresholds based on more drought events.10

6 Conclusion

The broad goal of our analysis was two-fold: to learn about the relationship between
drought indicators and text-based impact information to advance drought monitoring
and early warning, and to test methodologies that can be extended to other locations
in a next step. We found that drought indicators best linked to impact occurrence15

are region and impact category specific. In the UK they are additionally season
specific to some degree. However, we identified several common traits, allowing the
potential grouping of regions and/or impact categories according to their indictor-
impact-response. This calls for evaluating continental drought M&EW systems at
smaller spatial scales. Also, our analysis provided empirical evidence that impacts20

associated with different types of drought (e.g. agricultural vs. hydrological drought)
have different response times, as reflected by distinct differences in indicator–impact-
linkage patterns for each impact category. Regarding methodologies, a random forest
machine learning approach proved to be a suitable tool for objectively identifying
indicator thresholds for impact occurrence, and to predict the number of drought25

impact occurrences for regions with sufficient data. We therefore suggest validating
any chosen triggers in drought M&EW with impact data as a complementary approach
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to, for example, stakeholder consultation. While there are certainly caveats given the
uncertainty in exact timing, number, and severity of impacts, the utilized data served as
a reasonable basis for quantifying impacts. A comparison of time series of observed vs.
modeled impacts additionally yielded valuable insights into the nature of the European
Drought Impact report Inventory contents and allowed us to identify potential gaps5

in the temporal coverage of the impact database. Overall, the information gain from
evaluating commonly applied drought indicators with impacts underlines the strong
benefits of impact data collection, and closes the gap between knowledge about hazard
intensity and on-the-ground drought conditions.

The Supplement related to this article is available online at10

doi:10.5194/hessd-12-9437-2015-supplement.
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(LUNG), Landesamt für Umwelt, Wasserwirtschaft und Gewerbeaufsicht Rheinland-Pfalz
(LUWG), Landesanstalt für Umwelt, Gesundheit und Verbraucherschutz Brandenburg (LUGV,
Regionalabteilungen Ost, Süd, West), Landesanstalt für Umwelt, Messungen und Naturschutz
Baden-Württemberg (LUBW), Landesbetrieb für Hochwasserschutz und Wasserwirtschaft
Sachsen-Anhalt (LHW), Landesbetrieb für Küstenschutz, Nationalpark und Meeresschutz5

Schleswig-Holstein (LKNM), Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten-
und Naturschutz (NLWKN), Ruhrverband, Sächsisches Landesamt für Umwelt, Landwirtschaft
und Geologie (LfULG), Staatliches Amt für Landwirtschaft und Umwelt Vorpommern (StALU-
VP), Thüringer Landesamt für Umwelt und Geologie (TLUG), Landesamt für Landwirtschaft,
Umwelt und ländliche Räume (LLUR), Wasser- und Schifffahrtsverwaltung des Bundes (WSV).10
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Table 1. Information on NUTS1 regions in the UK and Germany (DE) considered for analysis.

Country NUTS1 region name NUTS1 NI Length of Percentage No. No.
region censored of months streamflow groundwater
abbr. timeseries with stations stations

(months) NI > 0

UK North East NEE 28 48 22.9 9 –
UK North West NWE 400 120 35.8 16 –
UK Yorkshire and the Humber YHU 213 108 32.4 11 –
UK East Midlands CEE 345 120 37.5 13 –
UK Wales WAL 884 156 35.9 20 –
UK West Midlands CWE 310 96 42.7 12 –
UK East of England EE 545 156 50.0 12 –
UK South West SWE 456 156 57.1 23 –
UK South East SEE 1079 168 57.1 23 –
UK London LND 291 144 45.1 1 –
DE Schleswig-Holstein SH 34 60 25.0 9 9
DE Mecklenburg-Western Pomerania MP 54 96 28.1 7 4
DE Lower Saxony LS 107 132 28.0 38 42
DE Saxony-Anhalt ST 46 96 22.9 16 14
DE Brandenburg BB 114 96 30.2 21 18
DE Berlin BE 57 72 23.6 – –
DE North Rhine-Westphalia NW 143 84 34.5 23 18
DE Hesse HE 95 60 43.3 19 18
DE Saxony SX 50 96 31.3 23 10
DE Rhineland-Palatinate RP 182 84 35.7 20 18
DE Saarland SL 42 36 30.6 3 –
DE Baden-Wuerttemberg BW 228 84 39.3 28 15
DE Bavaria BV 382 72 33.3 69 26
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Table 2. Model performance metrics of cross-validated random forest models per NUTS1
region.

Country NUTS1 MAE RMSE ∆µ ∆σ r R2

UK NEE 0.44 0.58 0.03 −0.49 0.51 0.26
UK NWE 1.01 1.48 0.06 −0.51 0.40 0.16
UK YHU 0.57 0.77 0.00 −0.32 0.76 0.58
UK CEE 0.72 0.96 −0.01 −0.31 0.74 0.54
UK WAL 0.82 1.25 −0.01 −0.42 0.85 0.73
UK CWE 0.59 0.88 0.00 −0.22 0.79 0.62
UK EE 0.71 0.92 −0.02 −0.40 0.79 0.62
UK SWE 0.55 0.70 0.01 −0.25 0.84 0.70
UK SEE 0.92 1.23 0.01 −0.38 0.79 0.62
UK LND 0.67 0.84 0.02 −0.42 0.67 0.45
DE SH 0.19 0.31 0.08 −0.25 0.90 0.81
DE MP 0.35 0.48 0.05 −0.46 0.68 0.46
DE LS 0.38 0.56 0.04 −0.45 0.73 0.53
DE ST 0.30 0.45 0.10 −0.40 0.68 0.46
DE BB 0.43 0.62 −0.02 −0.40 0.78 0.61
DE BE 0.26 0.50 0.08 −0.30 0.79 0.62
DE NW 0.57 0.87 0.00 −0.52 0.69 0.48
DE HE 0.61 0.82 0.08 −0.51 0.61 0.37
DE SN 0.31 0.43 0.00 −0.41 0.71 0.50
DE RP 0.68 1.03 0.06 −0.44 0.58 0.34
DE SL 0.56 0.72 0.13 −0.48 0.65 0.42
DE BW 0.74 1.16 0.02 −0.32 0.58 0.34
DE BV 0.68 1.21 0.04 −0.27 0.82 0.67
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Figure 1. Maps displaying NUTS1 regions in the UK (left) and Germany (right), and the location
of streamflow gauging and groundwater monitoring stations. See Table 1 for NUTS1 region
abbreviations.
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Figure 2. Number of impact occurrences and distribution of impacts per impact category per
NUTS1 region and season for the UK (top four plots) and Germany (bottom four plots).
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Figure 3. UK: rank correlation coefficients (ρ) between drought indicators and number of impact
occurrences for total impacts, hydrological drought impacts (Ih), impacts due to other types of
drought (Io), and selected impact categories per NUTS1 region.
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Figure 4. UK: rank correlation coefficients (ρ) between drought indicators and number of impact
occurrences per NUTS1 region and season.
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Figure 5. Germany: rank correlation coefficients (ρ) between drought indicators and number
of impact occurrences for total impacts, hydrological drought impacts (Ih), impacts due to other
types of drought (Io), and selected impact categories per NUTS1 region.
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Figure 6. UK: ranks of predictor importance during random forest construction for total impacts,
hydrological drought impacts (Ih), impacts due to other types of drought (Io), and selected
impact categories per NUTS1 region.
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Figure 7. Germany: ranks of predictor importance during random forest construction for total
impacts, hydrological drought impacts (Ih), impacts due to other types of drought (Io), and
selected impact categories per NUTS1 region.

9483

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/9437/2015/hessd-12-9437-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/9437/2015/hessd-12-9437-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
12, 9437–9488, 2015

Appraising drought
indicators and

modelling drought
impacts

S. Bachmair et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 8. UK: distribution of splitting values during random forest construction (i.e. thresholds of
impact occurrence) for selected drought indicator variables for each NUTS1 region. The boxplot
whiskers extend to the minimum and the maximum of the distribution, the box encompasses
the interquartile range, and the line inside the box displays the median.
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Figure 9. Germany: distribution of splitting values during random forest construction (i.e.
thresholds of selected drought indicator variables for each NUTS1 region. Boxplots as Fig. 8.
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Figure 10. RF Predictions for different regions in the UK (transformed variables).
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Figure 11. RF Predictions for different regions in Germany (transformed variables).
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Figure 12. Time series of observed and modeled number of impact occurrences for a selection
of NUTS1 regions in the UK and Germany (transformed variables). Grey background: RF
Predictions, white background: RF Backwards Learning. The blue line indicates an impact
threshold of one: modeled impacts smaller than one should be regarded as absent impact.
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