
Response to the review comments of the manuscript “A quantitative analysis 
to objectively appraise drought indicators and model drought impacts” 

 
We thank the editor and both reviewers for their constructive comments and help to improve the 
manuscript. We revised the manuscript according to all comments and included most points without 
reservation. Below please find a point‐by‐point response to all comments.  

 

1 Response to the editor’s comments:  
 

I believe the authors’ comments in response to Referee #1 are convincing and I agree with their 
decision to try and keep hydrological indicators in the manuscript. Additionally, I would suggest 
adding vertical lines in Figures 3‐7 to (1) distinguish meteorological from hydrological indicators and 
(2) maybe also distinguish SPI from SPEI indicators (and Q from Y).  

 Thank you for further suggestions how to improve the readability of the figures. We added the 
vertical lines in Figures 3‐7.  

 

Like referee #1, I would also appreciate to read a shorter version of section 5, even if all what is 
discussed there is of much interest. The challenge is therefore to make it more synthetic. 

 We shortened both the results and the discussion section by omitting some details and examples. 
Previously, we had 25.5 pages up to the conclusion section; we reduced the length to 22 pages up to 
the conclusion section. Since reviewer 1 suggested to add more findings to the conclusion section 
this section is now slightly longer. 

 

Concerning the quality of data used, it would be worth mentioning the (relatively high in the two 
studied countries) underlying density of stations in the gridded E‐OBS dataset. 

 We added this to page 6, L16‐18 

 

Authors’ comments in response to Referee #2 (W. Pozzi) appear also satisfactory. About the choice of 
NUTS1 region, it would be maybe useful to warn against a potential effect of the size range and type 
of regions (e.g. in Germany, BE vs BV). 

 We feel the potential effects of size and type of region may not warrant a detailed warning as this 
could be rather speculative and potentially rather lengthy while still not providing any hard evidence 
of the effects. We transparently show the size of NUTS1 region in Figure 1, and now also specifically 
draw the reader’s attention in section 2.1 to the fact that the different sizes of regions are shown in 
this Figure. We hope this satisfies the editor. 

 

On the criticism about the reference to individual indicators, one way to make the tree approach 
clearer, I would suggest to explicitly show one of these decision trees as an example, possibly in the 
supplementary material or annexes. I may be useful for those readers not accustomed to random 
forest analyses. 

 Reviewer 1 stressed that we provided too much detail about the random forest (RF) method, 
which is nowadays relatively widely used. We therefore deleted some of the details, but moved the 
bulk of the text to an appendix. We think that because the RF method is widely used and many 
papers exist using this method, there is no need to provide further plots of single regression trees. A 
few examples of current studies using RF models in the context of environmental analysis in addition 
to the ones cited in our manuscript are: 



Spekkers et al., 2014, doi:10.5194/nhess‐14‐2531‐2014; Catani et al., 2013, doi:10.5194/nhess‐13‐
2815‐2013 ; Appelhans et al., 2015, http://dx.doi.org/10.1016/j.spasta.2015.05.008; Rodriguez‐
Galiano et al., 2011, doi:10.1016/j.isprsjprs.2011.11.002; Hill et al., 2014, doi:10.1007/s10584‐014‐
1174‐4 

Also, we are worried about potentially misleading conclusions when we show individual trees. Each 
tree is based on only a subset of data and only a subset of splitting variables is tried. Hence, a single 
tree could look like not all indicators are being used.  

 

The authors may want to change some of the vocabulary used in the manuscript, namely the word 
“trigger” that led Referee #2 to comment on the relation of such a “trigger” to drought indicator 
threshold. I believe that the aim of the manuscript is not to define such actually drought response 
triggers, but to find drought indicator thresholds that would serve as proxys for these triggers. 

 This is exactly the way we see thresholds and their potential use. We re‐wrote section 5.2 (page 
21) and hope this better reflects our intention. We also added new text to the same effect to the 
conclusion section.  

 

Additionally, and following Referee #1 (but also Referee #2), I would suggest making the conclusion 
section a bit stronger, maybe by incorporating some material from the lengthy discussion section.  

 We added the details of the findings on best predictors, and on indicator threshold values.  

   



2 Response to Referee #1 
 

2.1 Response to major comments 
 

Length:  

The reviewer highlighted the need to shorten the manuscript, especially some parts of the methods, 
the results, and some discussion aspects. Thank you for making detailed suggestions on this. We 
moved parts of the description of the random forest methodology to an appendix. We also 
shortened the results and discussion sections, especially since the reviewer confirmed good 
interpretability of the figures. Previously, we had 25.5 pages up to the conclusion section; we 
reduced the length to 22 pages up to the conclusion section. Since the reviewer suggested to add 
more findings to the conclusion section this section is now slightly longer.  

 

“Too much at stake”: 

Regarding the suggestion to move parts of the paper (streamflow and groundwater as additional 
indicators; random forest (RF) predictions) to a separate paper, we prefer to leave the structure as is, 
which was found acceptable by the editor. We think that evaluating hydrological indicators in 
addition to SPI/SPEI provides further insights. We also think that that the RF predictions add further 
value by providing the opportunity to learn about the EDII data, yet this would not make a separate 
paper. After shortening the manuscript in the suggested way we are confident that the readability 
has improved despite keeping the overall structure.  

 

Uncertainty of EDII data: 

It is correct that the impact report data has several sources of uncertainty and the quantification of 
this information as well. We discussed this transparently as the reviewer confirmed and this is also 
reported in other papers that we refer to (Stahl et al. 2015, NHESS; Bachmair et al. 2015, NHESS). 
Since the paper was suggested to be shortened, we would not like to further expand on this issue. 
The point of the paper is to explore the value of impact report data for indicator validation despite 
the obviously uncertain impact data. Also, the RF method (bootstrap sampling) provides a way to 
incorporate the uncertainty of the impact data.  

Regarding other methodological choices (reviewer mentioned: regionalization, thresholds, 
aggregation, minimum number of events, indicators, etc.) we aimed to reduce the uncertainty of 
results. For instance, while the threshold of a minimum of 10 months with impact occurrence is 
arbitrary, it at least transparently discriminates areas with very little data, where the risk of drawing 
misleading conclusions may be higher. Regarding the aggregation of indicator data we would like to 
refer to a study by Bachmair et al. 2015 (NHESS) and additional work (as we already do in section 2.2. 
of the paper), where different metrics for spatial aggregation (mean, median, 10th percentile, 
maximum, % area in drought) were investigated and resulted in only minor differences. 

 

Quality checks of indicator data: 

The E‐OBS data used for SPI and SPEI calculation is a published data set and we refer to Haylock et al. 
(2008) for detailed information about this data. For Germany, streamflow and groundwater data 
used were the officially published data by the authorities that produced or provided the products or 
data and data were quality controlled and homogenized by the providers. For the sake of 
comparability with other studies it does not appear useful to apply further corrections in addition. 
For UK streamflow data, the National River Flow Archive staff quality control UK streamflow data as 
part of an annual data acquisition process, any queries are returned to measuring authorities to be 
resolved before data is loaded to the NRFA and released for general use. We therefore believe the 



indicator data are of good quality. Further, the spatial aggregation (mean) of indicator data over the 
NUTS1 regions will smooth the input data, meaning that any local discrepancies would be difficult to 
detect.  

 

2.2 Response to specific and technical comments 
 

Abstract  

 P9438 L14 You can remove "random forest", the general kind of method is enough in the 
abstract.  changed 

 P9438 L18 Two hydrological indicators: please, name them in the abstract.  changed 
 

Introduction  

 P9349 L7 Avoid words like "creeping" in a scientific paper.  drought has been referred to as 
“creeping” phenomenon in numerous papers following Gillette 1950, but we changed it to 
“insidious” 

 P9440 L18‐20 Some typo errors in this sentence.  we don’t see where 

 P9441 L16 Which other types? Briefly list them besides the citations.  we added “such as 
wildfires, or impacts on public water supply or the energy and industry sector” as examples (a 
comprehensive list of all impact types would be too lengthy)   

 

Data  

 P9443 L22‐23 These indicators are important, but you name them for the fist time after a few 
pages. I suggest to cite them also in the abstract or at least in the introduction.  added to the 
abstract 

 P9444 L1 The EOBS have been subsequently updated till version 12. Every version shows a not 
marginal improvement in terms of data quality and quantity. Have you just used the gridded data 
as they are or have you performed quality checks or homogeneity tests? Though the problems of 
earlier versions are mostly out of your areas of interest (i.e., UK and GER), some robust quality 
test before the use would be desirable.  We used the gridded data as is. The E‐OBS data used 
for SPI and SPEI calculation is a published data set and we refer to Haylock et al. (2008) for 
detailed information about this data. We added the following sentence, as suggested by the 
editor: “For the UK and Germany the underlying station density of the gridded data is relatively 
high within Europe, and the dataset is based on more European observing stations than in other 
European or global datasets (Haylock et al., 2008).” 

 P9444 L4‐10 Why didn’t you choose a common reference period? At least for each country.  
The reference period for the UK is in accordance with data coverage of the UK National River 
Flow Archive and thus differs from the reference period for SPI and SPEI, and streamflow and 
groundwater level percentiles in Germany. Both the rank correlation and the random forest 
approaches make use of the relative, rather than absolute, magnitude of the values, so the 
difference in reference period will not affect the results.  

 P9444 L13‐26 Have you checked the quality with your own tests? this would enhance the 
reliability of the outputs, as they strongly depend on the quality of input data.  see response to 
the more general comment on data quality checks  

 P9445 L15 How can you be completely sure that such impact (e.g., crop loss for that year) 
depends on drought, should it be partially or totally dependent? Because in a previous paragraph 
you said that it’s not easy to understand how drought impacts many sectors because the cause of 
such an impact (crop loss, for example) is often unclear or undetermined. I mean, your effort is 
relevant, but how you decide to use a document in the EDII in your calculations? Is there a 
selection? Are all the entries considered? Are some possible entries discarded before being 
included into the EDII database? It seems to me that you did a considerable effort in collecting 



the impacts, so you might want to briefly report about this selection also in this paper (not only 
citing the proper reference), in order to convince the readers that the input for the calculations 
shown in this manuscript are robust.  The text‐based impact reports in the EDII per definition 
contain information about a negative affect due to drought. There are guidelines for entering 
drought impact reports in the EDII. We do not want to add more text to the already lengthy 
paper. The cited paper Stahl et al. 2015, NHESS, provides more information about the drought 
impact data. Please also refer to the response to the general comment on the uncertainty of EDII 
data.   

 P9447 L14‐16 How do you think this lack of reported impact may affect your calculations? though 
you only selected regions with at least 10 months of impacts, do you think that this lack could 
bias the models or the outputs even for these regions?  Since we cannot be sure whether 
missing data is due to no impacts or no reports (or not finding these reports) we conducted the 
“RF Backwards Learning” analysis to get a better understanding about this issue. Please also refer 
to the response to the general comment on the uncertainty of EDII data.   

 Methods P9449 L15 ‐ P9450 L6 In my opinion you go too much in details with random forest 
steps. Just cite the method and summarize in a couple of short sentences how it works.  
Changed accordingly; we moved most of the RF methodology to an appendix, and deleted some 
text.  

 

Results  

 P9454 L8 what’s your opinion on this fact? Is it due to lack of reported impacts regarding other 
seasons? Lack of impacts? I’m interested in your opinion, I’m not arguing on this fact.  Most 
droughts in Germany represent summer droughts and thus only very few drought impacts in the 
fall/winter (e.g. see analyzed drought events in Bachmair et al. 2015, NHESS).  

 P9458 L1‐10 what do you exactly mean for "false‐positive impacts"? Predicted/modeled impacts 
that did not effectively occur? A simple point could be: no impacts occurred or no impact reports 
have been included into the EDII?  We defined what we mean by this in L2‐4: “They expose 
instances of potentially “false‐positive impacts”, i.e. a positive number of impacts is modeled 
while there are no observed impacts.” The reason for this likely is that impact reports are missing 
in the EDII. The RF Backwards Learning analysis was conducted to specifically scrutinize whether 
missing impacts in the EDII are likely due to missing data (indicated by such instances of “false‐
positive impacts”) or due to true absence of impacts.  

 P9458 L13‐ 14 So the aggregation at NUTS1 may be a limit? Moving to NUTS2 would limit the 
"false‐positive" records? This section seems a bit too long in my opinion.  1) Regarding the 
NUTS1 level issue: The second reviewer also highlighted the issue of spatial aggregation at the 
NUTS1 level. Please refer to the response to this general comment and respective changes in the 
manuscript. Moving to an even smaller scale could potentially lead to more instances of "false‐
positive" records since less data is available at this smaller scale. We added further information 
on reason for the choice of NUTS1 region level for analysis to section 2.1; 2) Regarding length: 
We followed the recommendation to cut length and deleted details about “false‐positive 
impacts” in Germany (section 4.4  removed last paragraph). 

 

Discussion  

 P9459 L12‐14 These potential EDII error sources seem the most limiting factor, despite the 
remarkable validity of your analyses.  please refer to the response to the general comment on 
the uncertainty of EDII data 

 P9461 L13‐29 your observations are interesting, but at this point it seems that studying 
meteorological drought indicators as the SPI and the SPEI and studying in parallel streamflow and 
groundwater drought indicators is a really difficult task and it may be considered a splitting of 
these two main kinds of indicators into two different papers. This is not a suggestion, but the 
results shown in this paper are too many and sometimes it’s not easy to follow a path during the 
long chapters.  We believe that keeping both meteorological and hydrological indicators adds 



further insights; the editor encouraged us to keep both types of indicators as well. We are 
confident that the shortening of the respective sections has improved readability.  

 P9462 L1‐5 However I do recognize the overall validity and complexity of your work and I agree 
with this comment.  we are glad the reviewer agrees with this 

 P9462 L20 Should you just choose one, which one would you suggest? Personal curiosity.  
Does this refer to the indicator thresholds? It depends on the purpose, e.g. whether to issue only 
a warning (the mean or the median in this case may be “a safe guess”), or to trigger some action 
(possibly better linked to stronger severity, e.g. 75th percentile). 

 P9463 L6 why? To simplify the calculations? To focus on "long seasonal events/impacts"?  Do 
you refer to the uncertain timing of the impacts? Many impact reports do not specifically state 
the end of the impact; also it is generally not easy to determine the termination of an impact, 
e.g. when have forestry drought impacts receded? We describe the procedure of assigning the 
temporal occurrence of impacts in the methods section. 

 P9463 L24‐ 25 This is crucial and maybe it is discussed a bit "too far" in the manuscript.  we 
deleted parts of this paragraph  

 P9465 5.3 Personal taste: learnt instead of learned.  left as is (subject to discretion of HESS 
house style) 

 P9467 L10 This subchapter 5.3 in my opinion is too long, you could evaluate the possibility to 
summarize the entire chapter in a couple of sentences in the conclusions and dedicate a brand 
new paper which preliminary explore the suitability of RF method applied to drought impacts. 
This kind of topic surely deserves a dedicated study and I would be really glad to read it.and I’m 
sure that I’d not be the only one sharing this opinion.  We significantly shortened this section 
as suggested. However, we prefer to keep the general structure as is and not transfer this part of 
the analysis to another paper. 

 

Conclusion(s) 

 Use plural, if you please.  changed to “conclusions” 

 P9467 L20‐23 I would say additional empirical evidence, because these findings are not new to 
scientific community. You might also add a couple of citations here.  added “additional” 
empirical evidence; we prefer to not add references here but we have references in the 
respective discussion part 

 P9648 L9 Compared to the length of chapters 4 and 5, the conclusions in my opinion are too 
short and do not effectively summarize the most relevant findings except of a fast recall of 
concepts analyzed. Improving conclusions might help the appeal of the paper, because some 
readers (let’s blame on them, by the way) just read the abstract, skip the core text, and jump to 
conclusions.  we added further relevant findings as suggested 

 
   



3 Response to Referee #2 
 

1) Choice of NUTS1 region level for analysis and impact/indicator aggregation:  

The reviewer is certainly right that the NUTS1 region level does not correspond to local‐scale 

information. However, it integrates that information at this scale. Many studies have shown that 

drought signals (e.g. compared to floods) are regional to large‐scale. There have been several studies 

for the UK and Germany that grouped regions affected by drought based on precipitation, 

streamflow and groundwater revealing homogenous responses across regions larger than the typical 

NUTS‐1 region (e.g. Hannaford et al. (2011), doi:10.1002/hyp.7725; Burke and Brown (2010), JOH; 

doi:10.1016/j.jhydrol.2010.10.003). Furthermore, most monitoring and early warning systems cover 

continental scales and are found useful by a range of users. The target for this study is not the local 

scale but represents a first attempt at an overview of “ground‐truthing” drought indicators with 

impact information.  

The NUTS1 region level (major socio‐economic regions) was chosen because of a lack of sufficient 

data for analysis with finer‐scale resolution. We initially explored the potential of using NUTS3 or 

NUTS2 level data but data availability did not permit the analyses we conducted in this study using 

NUTS1 level data. Upscaling to the NUTS1 region level was thus necessary. However, it needs to be 

pointed out that a large portion of impact reports only makes reference to the NUTS1 region and not 

to smaller scales. In the introduction we state that “the aim is to develop methods that can be 

extended to other geographical areas in future applications”. In fact, with potentially better data 

availability in the future the applied methods could be used for more local‐scale analyses in addition 

to further geographical areas. Further data may also allow more detailed analyses for different types 

of impacts. 

We acknowledge the recommendation to explore NUTS1‐2‐3 level interactions (review comment on 

“assessment of how many reports would have to actually be prepared (how larger a sample size) 

would be required in order to resolve some of these impacts at the NUTS2 and NUTS3 level”) but 

refrain from it given the already lengthy paper, as was stressed by reviewer 1. Please note that the 

numbers in the figures from the Stahl et al. (2012) DROUGHT‐R&SPI report, which were presented in 

the review comment, are outdated by now since many impact reports have been added to the 

European Drought Impact report Inventory. We also want to point out that we are aware of the 

effect of drought indicator aggregation to NUTS1 level, as evidenced by the paragraph discussing 

potential reasons for a low correlation between drought impacts and streamflow/groundwater levels 

(page 9461); hence we think we are sufficiently transparent about this. 

To address this review comment, we added further information regarding the reason for selecting 

the NUTS1 region level in the methods part (2.1.) and are grateful to the reviewer for pointing out 

the need to provide this information. 

2) Identification of indicator thresholds and their potential use: 

There are two points of criticism: first, that the used indicator thresholds solely represent single 

drought indicators, while a single indicator likely is not sufficient for capturing the multifaceted 

drought hazard; second, the potential use of the identified thresholds derived for the NUTS1 level 

may not be relevant for guidance in drought management plans because such triggers should be 

grounded at the local level.  

Regarding the first point of criticism it needs to be clarified that the figures indeed show splitting 

values during random forest (RF) construction for individual indicators, but this is for presentation 



purposes; however, we want to emphasize that the models are all based on multiple drought 

indicators. A tree approach with multiple indicators has, in our opinion, even an advantage over a 

pre‐defined combined drought index. It accounts for multiple conjunctional causality and allows us to 

describe different combinations of multiple indicators that eventually lead to an impact. Hence, the 

splitting values per indicator are extracted from models considering multiple predictors and possible 

interactions, e.g. while for the root node SPI‐3 with a certain splitting value may represent the best 

discriminator, for a finer‐split node a different SPI or SPEI accumulation period and corresponding 

threshold may be selected. Therefore the derived median of the splitting value distribution, which 

we regard as a threshold representative for impact occurrence, factors in multi‐predictor 

interactions. We hence disagree that the presented thresholds represent single indicators only and 

that they be omitted from the paper. Instead they represent splitting values that are conditional on 

other drought indicators as predictors. We thank the reviewer for the valuable comment because 

this shows that this point was not clear in the paper. We added this information to section 3.2 and 

4.3 (page 11 L13‐15 – page 14 L21‐22).  

Concerning the second point we want to emphasize that the purpose of identifying indicator 

thresholds representative for impact occurrence is to 1) complement and allow comparison with 

local‐scale decision making that is usually based on stakeholder knowledge or the experience of 

individuals, and 2) to provide an impact‐driven perspective of indicator thresholds in addition to 

common hazard intensity classes ‘passed‐on’ through time (e.g. SPI‐n < x demarking mild/moderate 

drought). We stress that the identified thresholds are by no means meant to replace (or “short cut”, 

as the reviewer stated) drought triggers identified by stakeholders. We re‐wrote section 5.2.  

The reviewer particularly articulated the concern that the thresholds for streamflow may not be 

useful because these often correspond to localized impacts. To address this concern we could 

potentially omit the plots showing streamflow and groundwater level thresholds. However, since 

neither the other reviewer nor the editor suggested this was necessary, we have left the plots in the 

paper. It is worth noting that the thresholds for meteorological indicators (especially for longer 

aggregation periods) will be informative for impacts that are less localized (e.g. not occurring just 

within a single river). 

3) Identified conclusion 

The reviewer noted that “The real main conclusion of their study is: “Agricultural and hydrological 

drought impacts were generally best linked to shorter and longer SPI (and SPEI) time scales, 

respectively. Here, shorter and longer refer to 1‐4 (Germany) and 7‐8 months (England).” We feel this 

paper covers more than this brief conclusion but in essence this particular issue is discussed in detail 

on pages 9460/9461.  

4) “The Groundwater Issue” 

It is correct that we did not standardize streamflow or groundwater level data but used percentiles 

instead. However, since we apply rank correlation this does not affect our results. We also discussed 

possible reasons for lower correlation between impacts and streamflow/groundwater levels in the 

paper (see comment above). 
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Abstract 10 

Drought monitoring and early warning is an important measure to enhance resilience towards 11 

drought. While there are numerous operational systems using different drought indicators, 12 

there is no consensus on which indicator best represents drought impact occurrence for any 13 

given sector. Furthermore, thresholds are widely applied in these indicators but, to date, little 14 

empirical evidence exists as to which indicator thresholds trigger impacts on society, the 15 

economy, and ecosystems. The main obstacle for evaluating commonly used drought 16 

indicators is a lack of information on drought impacts. Our aim was therefore to exploit text-17 

based data from the European Drought Impact report Inventory (EDII) to identify indicators 18 

which are meaningful for region-, sector-, and season-specific impact occurrence, and to 19 

empirically determine indicator thresholds. In addition, we tested the predictability of impact 20 

occurrence based on the best performing indicators. To achieve these aims we applied a 21 

correlation analysis and an ensemble regression tree approach (“random forest”),, using 22 

Germany and the UK (the most data-rich countries in the EDII) as a testbed. As candidate 23 

indicators we chose two meteorological indicators (Standardized Precipitation Index (SPI) 24 

and Standardized Precipitation Evaporation Index (SPEI)) and two hydrological indicators. 25 

(streamflow and groundwater level percentiles). The analysis revealed that accumulation 26 

periods of SPI and SPEI best linked to impact occurrence are longer for the UK compared 27 

with Germany, but there is variability within each country, among impact categories and, to 28 

some degree, seasons. The median of regression tree splitting values, which we regard as 29 



 

2 

 

estimates of thresholds of impact occurrence, was around -1 for SPI and SPEI in the UK; 1 

distinct differences between northern/northeastern versus southern/central regions were found 2 

for Germany. Predictions with the ensemble regression tree approach yielded reasonable 3 

results for regions with good impact data coverage. The predictions also provided insights 4 

into the EDII, in particular highlighting drought events where missing impact reports may 5 

reflect a lack of recording rather than true absence of impacts. Overall, the presented 6 

quantitative framework proved to be a useful tool for evaluating drought indicators, and to 7 

model impact occurrence. In summary, this study demonstrates the information gain for 8 

drought monitoring and early warning through impact data collection and analysis, and. It 9 

highlights the important role that quantitative analysis with impacts data can have in 10 

providing “ground truth” for drought indicators, alongside more traditional stakeholder-led 11 

approaches.  12 

 13 

1 Introduction 14 

Drought is less tangible than other natural hazards, such as earthquakes or floods, due to its 15 

slow onset, “creeping”insidious nature, and complex, often non-structural impacts (Gillette, 16 

1950; Wilhite et al., 2007). Nonetheless, drought is known to affect more people than any 17 

other hazard, and to cause high economic loss (Loayza et al., 2012; Wilhite et al., 2007). 18 

While droughts cannot be prevented, societal vulnerability can be reduced, with monitoring 19 

and early warning (hereafter, M&EW) being one important measure to enhance drought 20 

resilience. The aim of M&EW is to provide adequate and timely information on drought 21 

conditions to enable people and organizations to be better prepared and react accordingly 22 

(Svoboda et al., 2002; Wilhite and Svoboda, 2000). Such systems are usually based on several 23 

drought indicators representing different domains of the hydrological cycle, i.e. indicators for 24 

meteorological drought, soil moisture drought and vegetation stress, hydrological drought, 25 

and groundwater drought.  26 

A recent trend has been the design of “combined” or “multivariate” indicators consisting of a 27 

blend of individual ones. The rationale behind the construction of blended indictors is that a 28 

single indicator is not sufficient to adequately capture different types of drought, and the 29 

corresponding multiplicity of drought impacts that differ markedly in response time (Hao and 30 

Singh, 2015). There have been several studies assessing the link between indicators of 31 

different types of droughts, e.g. between meteorological drought and streamflow, soil 32 
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moisture, or remotely sensed vegetation stress indicators (Haslinger et al., 2014; Ji and Peters, 1 

2003; Martínez-Fernández et al., 2015; Vicente-Serrano and López-Moreno, 2005; Vicente-2 

Serrano et al., 2012). These are useful when there is an assumption that the lag between, say, 3 

meteorological and hydrological drought represents the response time for impact occurrence 4 

in, say, riverine ecosystems. Drought indicator choices can be substantiated by stakeholder 5 

consultation or expert judgement, as has been implemented for the operational US Drought 6 

Monitor (Svoboda et al., 2002). Similar initiatives have been developed in research project 7 

settings in southwest Germany (Stölzle and Stahl, 2011) and Switzerland (Kruse et al., 2010). 8 

However, while indicators representing different types of drought are commonly used as 9 

proxies for impact occurrence, there is, to date, little empirical evidence as to which indicator 10 

best represents drought impact occurrence for any given sector. Lackstrom et al. (2013) 11 

identified an impact-driven perspective as the “missing piece” of drought monitoring; what is 12 

of ultimate interest is knowledge of when and where a precipitation shortfall or low 13 

streamflow or groundwater level will translate into impacts on society, the economy, and 14 

ecosystems. A direct, empirical evaluation of drought indicators with impact information 15 

would obviate the need for assumptions based on intercomparing different drought indicators. 16 

Aside from identifying indicators important for drought impacts, there is a need for a better 17 

understanding of the meaning of indictor thresholds used for drought declaration and as 18 

triggers for management actions in drought plans. Such thresholds are mostly based on hazard 19 

intensity classes corresponding to a certain frequency of occurrence, e.g. following the widely 20 

accepted Standardized Precipitation Index scheme, with classes ranging from 0 to -0.99 (mild 21 

drought), -1 to -1.49 (moderate drought), -1.5 to -2 (severe drought), and < -2 (extreme 22 

drought) (McKee et al., 1993). The US Drought Monitor (USDM) differentiates between five 23 

drought severity classes based on several indicators and corresponding thresholds (Svoboda et 24 

al., 2002). Different thresholds again are used for delineating alert classes of the Combined 25 

Drought indicator of the European Drought Observatory (European Drought Observatory, 26 

2013).  27 

Common to all thresholds is that they are arbitrary cut-off points (e.g. McKee et al., 1993; 28 

Svoboda et al., 2002). A survey among drought managers in the US on drought plans and 29 

respective indicators and triggers revealed that there is large uncertainty in the selection of 30 

thresholds, with one survey reply uncovering that most states selected their indicators “out of 31 

a hat” without knowing whether they “worked” (Steinemann, 2014). There is currently no 32 
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consensus on appropriate drought indicators and thresholds meaningful for practitioners of 1 

different sectors.  2 

Regarding drought prediction, a substantial body of research has been dedicated to forecasting 3 

drought indicators with sufficient lead time (e.g. Dutra et al., 2014; Mehta et al., 2014; 4 

Trambauer et al., 2014; Wetterhall et al., 2015). However, while the models used for 5 

forecasting may propagate the climate signal into soils and hydrology, they do not include a 6 

further link to the tangible negative environmental and socio-economic impacts of a particular 7 

drought. Models bridging the gap between drought indicators and impacts are rare. While 8 

predictions of crop yield are more common (e.g. Hlavinka et al., 2009; Mavromatis, 2007; 9 

Quiring and Papakryiakou, 2003), very few studies have tested approaches for modeling other 10 

types of drought impacts (e.g.such as wildfires, or impacts on public water supply or the 11 

energy and industry sector (e.g. Blauhut et al. (2015), Stagge et al. (2014), Gudmundsson et 12 

al. (2014), and Vicente-Serrano et al. (2012)). The complexity of processes and the 13 

interconnectedness of the multitude of drought impacts, which may occur with much delay 14 

and even outside of the hazard affected area (Logar and van den Bergh, 2013; Wilhite et al., 15 

2007), may be one reason why few drought impact models have been presented.  16 

The most important obstacle, however, is a paucity of information on drought impacts. 17 

Initiatives to rectify this include the US Drought Impact Reporter (DIR) (Wilhite et al., 2007), 18 

and the more recently developed European Drought Impact report Inventory (EDII) (Stahl et 19 

al., 20122015a). Both provide text-based, categorized information on reported drought 20 

impacts. The majority of impacts of the US DIR stem from online media clipping (Wilhite et 21 

al., 2007), meaning that it can be used as a real-time monitoring tool. In contrast, the EDII is 22 

designed as a research database with a focus on past drought events. Other potential sources 23 

of drought impact data are reported crop yields, or losses assembled in the Emergency Events 24 

Database EM-DAT (www.emdat.be) or by re-insurance companies. Nevertheless, crop yield 25 

reductions may not necessarily be due to drought and loss data mostly provides aggregated 26 

information on large events without details on the temporal and spatial evolution of impacts, 27 

which is essential for empirically validating indicators and developing drought impact 28 

models.   29 

Only very few studies to date have exploited text-based impact datasets. Dieker at al. (2010) 30 

qualitatively and quantitatively compared the USDM to impact data from the US DIR. Stagge 31 

et al. (2014) and Blauhut et al. (2015) both worked with EDII data at the country- or macro-32 
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region-scale across Europe, with impacts coded as a binary response variable (impact versus 1 

no impact) to determine the likelihood of impact occurrence for different impact types. 2 

Bachmair et al. (2015) also used EDII data to test the feasibility of evaluating drought 3 

indicators with impacts at smaller spatial scales in Germany. As an extension to Stagge et al. 4 

(2014) and Blauhut et al. (2015), they replaced the binary data with the number of impact 5 

occurrences, thus providing a measure of impact severity. A correlation analysis and 6 

extraction of indicator values concurrent with past impact onset showed variability in 7 

indicator performance and onset thresholds at the sub-country scale and between drought 8 

events. The effect of different impact categories or types was not assessed (Bachmair et al., 9 

2015). 10 

Building on these previous efforts, the aim of this study is to exploit the EDII to link drought 11 

indicators to impacts using quantitative methodologies. Germany (DE) and the UK were 12 

selected as a test-bed, since they represent the countries with most impact data in the EDII 13 

database, but the aim is to develop methods that can be extended to other geographical areas 14 

in future applications. Specifically, the aims are to 15 

 evaluate different drought indicators using text-based impact information to identify 16 

indicators that are meaningful for region-, sector-, and season-specific impact occurrence, 17 

 to empirically determine indicator thresholds representative for impact occurrence, as an 18 

alternative to using the default, arbitrarily selected hazard class thresholds intrinsic to 19 

indicators such as the SPI,  20 

 to model impact occurrence via machine learning to assess the potential for predictive 21 

purposes (i.e. predicting impacts based on indicators alone), and exploit the relationships 22 

between indicators and text-based impact data to “backwards learn” about the nature of 23 

the impact data itself.  24 

 25 

2 Data  26 

2.1 Spatial and temporal resolution 27 

As temporal and spatial resolution of the drought indicator and impact data we selected 28 

monthly time series for the period 1970-2012, aggregated at the NUTS1 level (level 1 of the 29 

Nomenclature of Units for Territorial Statistics, a spatial unit used in the European Union). 30 
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NUTS1 regions represent major socio-economic regions. In Germany theyThis level of spatial 1 

aggregation was chosen because of a lack of sufficient data for analysis with finer-scale 2 

resolution. However, studies have shown that drought signals typically cover areas larger than 3 

NUTS1 regions (e.g. Hannaford et al. (2011)). In Germany NUTS1 regions correspond to the 4 

federal states. In the UK there are 12 NUTS1 regions, in Germany 16 (see Table 1 for a list of 5 

NUTS1 regions considered for analysis and abbreviations used in this study)., and Figure 1 6 

for the size of NUTS1 regions). Note that two NUTS1 regions in the UK and three in 7 

Germany were excluded from the analysis due to having insufficient impact data (see section 8 

2.3 for details).  9 

2.2 Drought indicators 10 

As drought indicators we selected the Standardized Precipitation Index (SPI) (McKee et al., 11 

1993), the Standardized Precipitation Evaporation Index (SPEI) (Vicente-Serrano et al., 12 

2010), and streamflow percentiles (Q). In addition, groundwater level percentiles (G) were 13 

included for Germany. For the SPI and SPEI, accumulation periods of 1-8, 12, and 24 months 14 

were chosen. Gridded SPI and SPEI data were calculated based on E-OBS gridded data 15 

(version 9.0; 0.25° regular spatial grid (Haylock et al., 2008)) using the R Package ‘SCI’ 16 

(Stagge et al., 2015).2014). For the UK and Germany the underlying station density of the 17 

gridded data is relatively high within Europe, and the dataset is based on more European 18 

observing stations than in other European or global datasets (Haylock et al., 2008). The 19 

gamma distribution was used for the computation of the SPIs and the generalized logistic 20 

distribution for the SPEIs (reference period: 1971-2010). Potential evapotranspiration for the 21 

SPEI was estimated using the Hargreaves method (Hargreaves, 1994). For each NUTS1 22 

region, regional averages of mean monthly SPI-n or SPEI-n were calculated. Here, n denotes 23 

the accumulation period. The mean was chosen since Bachmair et al. (2015) found little 24 

differences between the performance of different  indicator metrics per spatial unit (e.g. mean 25 

vs. minimum, or 10th percentile vs. percent area with SPI or SPEI below a threshold). The 26 

reference period for calculation of streamflow percentiles is 1960-2012 in the UK, and 1970-27 

2011 in Germany (also for groundwater).  28 

The monthly streamflow percentiles are based on monthly mean streamflows. In Germany 29 

these are calculated from daily streamflow records for several gauging stations per federal 30 

state; monthly groundwater percentiles come from weekly to monthly readings of 31 
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groundwater levels or spring discharge for several monitoring stations per state (data 1 

provision by different agencies of the German federal states, see Kohn et al. (2014)). Many of 2 

these stations are used for the federal states’ hydrological forecasting systems and thus 3 

represent stations with good data quality. Monthly streamflow records for the UK were taken 4 

from daily river flow records held on the UK National River Flow Archive (NRFA) 5 

(wwwhttp://nrfa.ceh.ac.uk/data/nrfa/index.html)./). The UK Benchmark Network (Bradford 6 

and Marsh, 2003) of near-natural catchments was used, alongside the network of sites used in 7 

the National Hydrological Monitoring Programme (NHMP: 8 

http://wwwnrfa.ceh.ac.uk/data/nrfa/nhmp/nhmp.html). No groundwater measurements were 9 

used from the UK due to the limited number of NHMP borehole records available in many 10 

NUTS regions, reflecting the concentration of productive aquifers in the south and east of the 11 

country. 12 

The streamflow gauging stations in the UK and Germany encompass both near-natural and 13 

anthropogenically influenced catchmentsstreamflow records. Figure 1 displays the spatial 14 

location of Q and G measurement stations and the boundaries of the NUTS1 regions in the 15 

UK and Germany. The number of stations per NUTS1 region is displayed in Table 1. 16 

Regional average mean monthly Q and G values were calculated for each NUTS1 region, 17 

provided there was at least one station with non-missing observations in the region. As further 18 

predictors that may modify the drought indicators’ power to explain drought impact 19 

occurrence we also selected the month of impact occurrence (M) and the year of impact 20 

occurrence (Y). For this purpose the series of months (1-12) was transformed into a sinusoidal 21 

curve shifted by four months (peak in July and lowest value in January). 22 

2.3 Drought impacts  23 

Drought impact data come from the European Drought Impact report Inventory (EDII) (Stahl 24 

et al., 20122015a), which can be viewed online at http://www.geo.uio.no/edc/droughtdb/ (data 25 

extraction for this study: October 2014). The EDII defines a “drought impact” as a negative 26 

environmental, economic or social effect experienced under drought conditions. Examples of 27 

drought impacts are crop losses, water supply shortages and hosepipe bans, increased 28 

mortality of aquatic species, reduced production at thermal or nuclear power plants due to a 29 

lack of cooling water, or impaired navigability of streams, to name a few. Drought conditions 30 

themselves (anomaly in precipitation, soil moisture, streamflow, groundwater levels etc.), 31 
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without a negative consequence or at least evoking serious concerns, are not considered an 1 

impact. The source of EDII entries is text-based reports on drought impacts, e.g. 2 

governmental or NGO reports, books, newspapers, digital media or scientific papers. Each 3 

impact report in the EDII contains the following information: 1) a spatial reference (different 4 

levels of geographical regionalization, including the European Union NUTS regions 5 

standard), 2) a temporal reference (at least the year of occurrence), and 3) an assigned impact 6 

category. The 15 categories, e.g. agriculture, water supply, etc., are shown in Figure 2. Each 7 

category subsumes several impact type subcategories (see Stahl et al. (20122015a) for 8 

details).  9 

For the analysis the qualitative information on drought impacts was transformed into monthly 10 

time series of number of drought impact occurrences per NUTS1 region. The same 11 

methodology as in Bachmair et al. (2015) was applied during the conversion of a “drought 12 

impact report” (EDII entry) into “drought impact occurrence” (hereafter termed I). In short, 13 

this entails the following (see Bachmair et al. (2015) for details):  14 

 Each impact report was assigned to a NUTS1 region. Impact reports with country-level 15 

information only were omitted from the analysis. An impact report was converted into 16 

several I if 1) the impact report stated impact occurrence in several NUTS1 regions or 2) 17 

an impact fell into several impact subtypes. 18 

 Each I is temporally referenced by specifying a start and end month. Impact reports only 19 

stating the year of occurrence were omitted from the analysis. In case only the season was 20 

provided in the report, we assumed the drought impact occurred during each month of this 21 

season (winter= DJF, spring= MAM, summer= JJA, fall= SON).  22 

For each NUTS1 region and month the total number of I was determined, hereafter termed NI. 23 

Table 1 shows the NI per NUTS1 region included in the analysis, which sum up to 4551 NI 24 

(UK) and 1534 NI (DE) in total for each country. Some analyses were undertaken for impacts 25 

separated into the 15 impact categories. However, a different kind of split of the data was also 26 

made, into two larger groups: 27 

 hydrological drought impacts (Ih), i.e. impacts resulting from drought conditions of 28 

surface waters or groundwater, 29 

 impacts due to other types of drought (Io), i.e. impacts associated with meteorological and 30 

soil moisture drought and concurrent extremes (e.g. heat waves). 31 
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The differentiation between Ih and Io is based on a keyword search of the impact description 1 

field in the database and therefore does not strictly follow any impact category or impact 2 

subtype. Examples of Ih include impaired navigability of streams, increased temperature in 3 

surface waters negatively affecting aquatic species, drying up of reservoirs, or reduced fishery 4 

production. Io comprises most agricultural and forestry impacts, impacts on recreation or 5 

human health, soil subsidence, or wildfire. Figure 2 shows the total number of I, Ih and Io per 6 

NUTS1 region and season, as well as their categorical distributions.  7 

2.4 Selection of years for analysis 8 

For each NUTS1 region separately, a subset of years within 1970-2012 were selected for 9 

analysis based on drought impact occurrence. Years with at least one impact occurrence in the 10 

region were selected. All months of the selected years were included in this censored time 11 

series. The censoring was undertaken to exclude years with drought conditions yet no impact 12 

reports in the EDII, similar to Bachmair et al. (2015). The search for impact reports in both 13 

countries focused on known drought events; the absence of impact reports in the EDII for 14 

years with drought conditions may therefore be attributable to either a lack of impact 15 

occurrence or simply a lack of drought impact reports, whether through not being discovered 16 

or not being published in the first place. Table 1 shows the length of time series per region 17 

and the percentage of months with impact occurrence in this censored time series. Despite the 18 

above-described censoring approach a considerable percentage of months with zero impact 19 

occurrence remained. The data analysis was only applied to regions with at least 10 months 20 

with impact occurrence, which led to the exclusion of Northern Ireland and Scotland (UK), 21 

and the Hanseatic City of Bremen, Hanseatic City of Hamburg, and Thuringia (DE). 22 

 23 

3 Methods linking indicators and impacts 24 

3.1 Correlation analysis  25 

First, we carried out a cross-correlation analysis between different drought indicators and the 26 

number of impacts, accounting for temporal autocorrelation in the indicator and/or impact 27 

time series. Spearman rank correlation coefficients (ρ) were calculated between time series of 28 

drought indicators and number of impact occurrences, for each NUTS1 region separately. 29 

Rank correlation was chosen over Pearson correlation since the counts of the impact data are 30 
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not normally distributed. Correlations were undertaken between time series of different 1 

indicators on the one hand (mean SPI and SPEI for 1-8, 12, and 24 months; Q; G (DE only); 2 

month (M) and year (Y) of impact occurrence), and time series of number of impact 3 

occurrences for different impact subsets on the other: 4 

 total impacts (NI) 5 

 hydrological drought impacts (NIh) 6 

 impacts due to other types of drought (NIo) 7 

 impacts per impact category, and 8 

 impacts per season (DJF, MAM, JJA, SON).  9 

A subset of impact data was only included in the analysis if there were at least 10 months with 10 

impact occurrence. Since there was temporal autocorrelation present in the time series of SPI 11 

and SPEI of longer accumulation periods, in time series of Q and G, and in the impact time 12 

series for most UK and some German NUTS1 regions, significance levels of the cross-13 

correlation analysis had to be corrected. Temporal autocorrelation of time series used in cross-14 

correlation analysis violates the assumption of serial independence and increases the 15 

likelihood of type I error (Hurlbert, 1984; Jenkins, 2005). We applied the “Modified Chelton 16 

method” by Pyper and Peterman (1998), which adjusts the “effective” number of degrees of 17 

freedom used for determining significance levels. While we use Spearman’s ρ for the cross-18 

correlation analysis, autocorrelation coefficients represent Pearson’s r (based on square root 19 

transformed data for the counts of impact occurrence). We define strength of correlation as 20 

follows: 0-0.1 (no correlation), >0.1-0.3 (weak), >0.3-0.6 (moderate), >0.6-0.9 (strong), and 21 

>0.9 (very strong).  22 

3.2 Random forest modeling 23 

Second, we employed a machine learning approach utilizing an ensemble regression tree 24 

approach called “random forest” (Breiman, 2001). Similar to the cross-correlation analysis, 25 

the random forest approach also identifies drought indicators best linked to impact 26 

occurrence. In addition to extracting predictor importance, the random forest approach is used 27 

for obtaining splitting values as estimates of thresholds of impact occurrence, and to model 28 

drought impact occurrence. 29 

A “random forest” (Breiman, 2001) is a machine learning algorithm, which constructs a large 30 

number of classification or regression trees (CARTs) on bootstrapped subsamples of the data. 31 
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Non-parametric regression using random forest (RF) consists of the following steps (see Liaw 1 

and Wiener (2002) for details): 1) ntree bootstrap samples are used. The individual cases 2 

making up the sample are drawn randomly with replacement from the original data, 3 

preserving each month’s pairing of predictand and predictors. The size of each sample is 4 

about two-thirds of the size of the total dataset; 2) for each bootstrap sample, an unpruned tree 5 

is grown. That is, for each node in turn, a split-in-two of the data is performed for each of mtry 6 

randomly chosen predictor variables, and the predictor whose split results in the two most 7 

homogeneous groups (minimizing the residual sum of squares) of the predictand is chosen as 8 

the splitting variable for that node; 3) new data is predicted by averaging predictions over ntree 9 

regression trees (Liaw and Wiener, 2002). The user-defined variable ntree was set to 1000. The 10 

model parameter mtry (number of predictors randomly sampled as candidates at each split) was 11 

left as default: one third of the total number of predictors (Liaw and Wiener, 2002). For all 12 

other parameters the default was kept as well. The model error is determined by predicting the 13 

excluded data (“out-of-bag” data according to Breiman (2001)) at each bootstrap iteration 14 

using the tree grown with the bootstrap sample and averaging all errors (Liaw and Wiener, 15 

2002).  16 

For our analysis we applied the R package ‘randomForest’ developed by Liaw and Wiener 17 

(2002). Details about the random forest (RF) methodology and model parameterization are 18 

given in the appendix. The RF predictors for each NUTS1 region included the same indicators 19 

as used in the correlation analysis. The response variable is the square root transformed 20 

monthly counts of impact data per NUTS1 region. The transformation yielded a near normal 21 

distribution of the non-zero data in many regions. Some British NUTS1 regions, however, 22 

showed a bi-modal distribution of NI (NEE, NEW, YHU, and SEE with varying extent), and 23 

in some German states the distribution of NI remained positively skewed after the square root 24 

transformation. Results for a log-transform were similar. We then ran models for the same 25 

subsets of impacts as in the correlation analysis if there were at least 10 months with impact 26 

occurrence: total impacts (NI), hydrological drought impacts (NIh), non-hydrological drought 27 

impacts (NIo), and impacts per impact category.  28 

To identify the drought indicators best linked to impact occurrence we a used the “variable 29 

importance” feature of the RF algorithm. For each predictor it is assessed by how much the 30 

prediction error increases when the “out-of-bag” data for that predictor are permuted while all 31 

others are left unchanged (Liaw and Wiener, 2002). We described in Liaw and Wiener (2002), 32 
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which enabled us to use the ranks of percent decrease in accuracy as variable importance 1 

measure (e.g. Strobl et al., 2009). Another output from the RF analysis are the splitting values 2 

for each predictor. The construction of each regression tree is based on recursively splitting 3 

the data into more homogenous groups (nodes). At each node, the best splitting variable and 4 

splitting value are determined, with multiple splits possible for the same variable (Strobl et al., 5 

2009). For our analysis we extracted the splitting values corresponding to each predictor, 6 

considering all trees and nodes, and visualized their distribution as boxplot. We regard these 7 

splitting values as estimates of thresholds of impact occurrence. All RF models are based on 8 

multiple indicators. Therefore, indicator thresholds of individual indicators are conditional on 9 

predictor interactions.  10 

The predictive potential of the random forest models was assessed in two ways. First, the 11 

overall model performance was evaluated based on a 10-fold cross-validation. The goal of 12 

this assessment (hereafter “RF Predictions”) is to test the performance of RF models as a 13 

potential tool for predictive purposes, and to learn about the indicator-impact relationship. 14 

The data for cross-validation is the censored time series for each NUTS1 region, i.e. the time 15 

series based on the sub-selection of years with drought impact occurrence within 1970-2012. 16 

For each of the ten model runs the censored time series was split into 90% for training and 17 

10% for prediction; impact occurrence of the left-out 10% is predicted with a random forest 18 

model constructed on the training data. The cross-validation procedure allows evaluation of 19 

the predictive performance for “unseen” data excluded from model fitting. As model 20 

performance metrics we computed mean absolute error (MAE), root mean squared error 21 

(RMSE), and error components according to the Kling-Gupta-Efficiency (Gupta et al., 2009) 22 

modified by Gudmundsson (2012): relative difference in mean (∆µ), relative difference in 23 

standard deviation (∆σ), and strength of correlation between observed versus modeled number 24 

of impacts (r). Zero is the optimal value of ∆µ and ∆σ; negative and positive values indicate 25 

under- and over-prediction, respectively (Gudmundsson et al., 2012).  26 

The second assessment (hereafter “RF Backwards Learning”) is the application of the RF 27 

models that were fitted to the censored time series to predict NI per NUTS1 region to those 28 

years that had been excluded, i.e. the years within 1970-2012 that have zero impact 29 

occurrence. The purpose of this second assessment is to scrutinize the impact data in the EDII 30 

database to backwards learn where a year without impacts may either be due to no impacts or 31 
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due to the lack of reporting or finding reports. As the observations themselves are examined 1 

no model performance metrics are presented. 2 

 3 

4 Results  4 

4.1 Correlation of indicators with impacts 5 

In the UK the strength of correlation between times series of NI and different indicators ranges 6 

between -0.65 and 0.51 (Figure 3). Lower indicator values coincide with higher NI (negative 7 

correlation) for all drought indicators except for M, where positive values in summer concur 8 

with a higher NI (positive correlation). Overall, SPI and SPEI are very similar in terms of 9 

strength of correlation. For southern and central UK, accumulation periods of SPI and SPEI 10 

exceeding about 6 months show the strongest correlation with NI, whereas the more northern 11 

regions show the strongest correlation for short to intermediate accumulation periods. SPI-24 12 

and SPEI-24 are the indicators with the strongest correlation for half of the NUTS1 regions 13 

(WAL, CWE, EE, SWE, and SEE), with ρ ranging between -0.38 and -0.65. Streamflow 14 

percentiles display a moderate and significant ρ in parts of eastern England: SEE (-0.46), EE 15 

(-0.47), and CEE (-0.32). For, but for the other regions the correlation is weak to moderate 16 

and not significant at the 5% level (two-sided test). There is mainly no or a weak (non-17 

significant) correlation with Y, which varies in sign.  18 

A split into Ih versus Io, and a split by impact category reveal distinct differences in 19 

correlation patterns for some impact subsets (Figure 3). The difference between I and Ih is 20 

rather minor. As can be seen in Figure 2, Ih is the dominant impact type in the UK. Other 21 

drought impacts (Io) show a distinctly different pattern. With weak to moderate ρ for all 22 

indicators, no best SPI and SPEI time scale can be singled out. For agriculture, which mostly 23 

represents Io, only CEE and CWE show strong relationships, but for all accumulation periods. 24 

While the correlation patterns for water supply and freshwater ecosystem impacts are similar 25 

to Ih, shorter to intermediate accumulation periods of SPI and SPEI (4 to 8 months, for a few 26 

cases also 12 months) show highest correlation with water quality impacts. For other impact 27 

categories correlation could only be determined for very few regions (wildfire, tourism, 28 

waterborne transportation), or not at all due to too few months with impact occurrence.  29 
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A split by season (Figure 4) also shows distinct differences, yet could not be determined for 1 

all regions given limited impact data if partitioned seasonally. In winter and spring the general 2 

trend stays the same as for the full series (higher ρ for longer accumulation periods of SPI and 3 

SPEI, 12 and 24 months dominating). In the fall, in contrast, there is a notable shift towards 4 

intermediate SPI and SPEI time scales as best indicators in many regions. In summer, the 5 

correlation pattern is more diverse, but in general is dominated by strong correlations across 6 

the majority of indicators and accumulation periods. Also, the correlation with streamflow 7 

percentiles in summer is higher and more often significant when compared with year-round 8 

data.  9 

In Germany, the overall strength of correlation between times series of NI and different 10 

indicators is in a similar range as in the UK (-0.62 to 0.74). Contrary to the UK, shorter to 11 

intermediate accumulation periods of SPI and SPEI best correlate with impact occurrence 12 

(Figure 5). Eleven of the 13 analyzed regions show the highest ρ for SPEI-2 to SPEI-4; for 13 

SPI-24 and SPEI-24 a non-significant correlation in inverse direction is found. The difference 14 

between SPI and SPEI is slightly more pronounced in Germany, with SPEI performing 15 

somewhat better (absolute difference in ρ up to 0.13). Q performs similar to SPI in many 16 

cases. Groundwater level percentiles show no or non-significant weak correlation with NI. In 17 

contrast, the sine expression of the month shows a higher and often significant ρ, especially in 18 

the northern NUTS1 regions. Similar to the UK, there is no or only a weak correlation with Y. 19 

As in the UK, there are regional differences, yet mostly regarding the strength of correlation. 20 

Most regions in the north and northeast of Germany display a noticeably lower strength of 21 

correlation (mostly weak ρ) than the central and southern regions.  22 

Similar to the UK, a split into Ih and Io reveals differences in correlation patterns compared 23 

with I, yet the picture for Ih and Io is the opposite: while the correlation pattern for NIo is rather 24 

similar to NI, there is a noticeable shift towards higher correlation with longer SPI and SPEI 25 

time scales for Ih. NIo dominates over NIh in some German regions, in contrast to the situation 26 

in the UK (Figure 2). For several states the correlation between Q and NIh is higher than 27 

between Q and NI. A further split by impact category uncovered the following: agricultural 28 

impacts show highest ρ for SPI and SPEI time scales of 1-4 months, yet most correlations are 29 

weak and not significant; there is a shift towards higher correlation with longer SPI and SPEI 30 

timescales for impacts on waterborne transportation in some NUTS1 regions; for all other 31 

impact categories correlations could only be determined for one or two regions (BV or BW or 32 
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RP) due to too little impact data. A seasonal split was also not possible to assess due to too 1 

few months with I in spring, fall, and winter; the majority of impacts in Germany occurred in 2 

summer (Figure 2). 3 

4.2 Indicator importance in random forest models 4 

For the UK, the general picture from the random forest approach is very similar to the 5 

findings from the correlation analysis, both regarding I and different impact subsets (Ih, Io, and 6 

I per impact category) (Figure 6). Long accumulation periods of SPI and SPEI (12 and 24 7 

months) appear as the highest ranking predictors for most regions, except the more northern 8 

regions NEE, NEW and YHU. Q does not show up as important predictor. Distinct 9 

differences compared with the correlation analysis include the following: 1) Y plays an 10 

important role for I and most impact subsets; 2) for Io, the RF predictor importance shows a 11 

shift to intermediate accumulation periods of SPI and SPEI (7/8 months). This shift is not as 12 

clearly discernible in the correlation patterns. The same holds true for the agricultural impacts.  13 

In contrast to the UK, where the RF predictor importance plots look very similar to the 14 

correlation analysis plots, there is more variation for Germany (Figure 7). The RF predictor 15 

importance patterns are spottier than the correlation analysis patterns with less smooth 16 

transitions between adjacent indicators. Nevertheless, the general tendency of best predictors 17 

is confirmed. Short to intermediate accumulation periods of SPI and SPEI are highest ranking 18 

predictors; the sine expression of the month is top-scoring in the northern states for I, Io, and 19 

agricultural impacts. Also, there is a shift towards higher correlation with longer SPEI 20 

accumulation periods (7/8 months) for Ih and impacts on waterborne transportation. Y shows 21 

lower importance than for RF models of UK regions. 22 

4.3 Indicator thresholds in random forest models 23 

While splitting values of all indicators for all impact subsets (I, Ih, Io, different impact 24 

categories) were extracted, we only show the threshold distribution, i.e. splitting value 25 

distribution, for selected SPI and SPEI time scales of 8, 12, and 24 months (best performance 26 

for different regions and/or impact subsets) and streamflow and groundwater level percentiles 27 

(Figures 8 and 9). While we display the threshold distribution of individual indicators, it is 28 

important to remember they are conditional on multi-predictor interactions in the RF model. 29 
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For the UK, the threshold distribution for both meteorological indicators generally shows a 1 

considerable range, which decreases with increasing accumulation period (roughly +2 to -2 

2.5/-3.5 for SPI-8, +1.5 to -2.5/-3 for SPI-12, and +1 to -2.5 for SPI-24).. For the same 3 

accumulation periods of SPEI the range extends to less negative values. Apart from this, the 4 

differences between SPI and SPEI are negligible with interquartile ranges (IQR) 5 

predominantly between 0 and -2. When only focusing on the median of the distribution, SPI-8 6 

and SPEI-8 values scatter around -1 for most NUTS1 regions. For SPI and SPEI of 12 and 7 

especially 24 months duration the scatter around -1 is slightly more variable, and differences 8 

among NUTS1 regions are somewhat stronger.. Regarding streamflow percentiles the 9 

splitting values cover almost the entire range, the IQR is distinctly larger than for SPI and 10 

SPEI, and the median ranges between 0.2 and 0.37. The split by impact category results in 11 

slightly narrower ranges of threshold distributions for many impact categories, and often a 12 

more negative median (not shown). This is not the case for Ih and water supply impacts; yet, 13 

there is much variation among indicators.  All indicators show regional differences, however 14 

without systematic patterns.  15 

For Germany, SPI and SPEI of 3 and 6 months accumulation period are generally well linked 16 

to NI or impact numbers in different impact subsets. Figure 9 shows thatFor Germany, the 17 

splitting values in the different federal states range from roughly +1.5 to -2/-3 for both SPI 18 

and SPEI. (Figure 9). Absolute values of the IQR of German regions are similar to the UK. 19 

Contrary to the UK, a regional pattern exists regarding the median of the SPI and SPEI 20 

threshold distributions. The southern and most central federal states display a more negative 21 

median (mainly between -1 and -1.5) than the northern/northeastern states (with a median 22 

between 0 and -1). A small but noticeable gradient from SH to BV can be seen in Figure 9. A 23 

further difference to the UK is the more pronounced differences between SPI and SPEI 24 

thresholds, with more negative threshold values for SPEI. Streamflow percentiles show a 25 

similarly large spread of splitting values to the UK, yet the IQR is mostly smaller and the 26 

median is slightly lower (0.14-0.29). Regional differences occur as well, but, similar to the 27 

situation for SPI and SPEI, these differences are less pronounced in Germany than in the UK. 28 

No pattern is found forFor groundwater level percentiles. The, the median per region ranges 29 

between 0.2 and 0.68. The split by impact category often resulted in less negative splitting 30 

values for Io and agricultural impacts compared with Ih (not shown). Too little; no regional 31 

pattern is found. The low amount of impact data for the RF analysis for several impact 32 

categories prevented a systematic intercomparison among impact categories.  33 
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4.4 Impact predictions with random forest models 1 

RF Predictions for the UK show that observed and modeled impacts agree well for the 2 

NUTS1 regions SWE, SEE, and EE (Figure 10). In most central regions and LND there is 3 

more spread. The northern regions NEE and NEW show least agreement. The R² ranges 4 

between 0.16 (NWE) and 0.73 (WAL) (Table 2). Due to the random component in the RF 5 

algorithm, model performance varies marginally for replications. Regional differences more 6 

or less reflect the length of each time series and the percentage of months with impact 7 

occurrence. That is, regions with R² > 0.6 generally have longer time series and a higher 8 

percentage of months with I than regions with lower R² (Tables 1 and 2). For Germany, 9 

observed and modeled impacts agree less well than for many UK regions (Table 2). However, 10 

much fewer data points for Germany than for the UK make a comparison difficult (Figures 10 11 

and 11). Among the federal states of Germany, BV and BB show better agreement than other 12 

regions. The majority of federal states showsyielded an R² between 0.33 and 0.54 (Table 2). 13 

Only four states show an R² > 0.6. Overall, the lower agreement between observations and 14 

predictions than in the UK concurs with the shorter time series of indicator and impact time 15 

series in Germany, and a smaller percentage of months with NI > 0 (Table 1).  16 

The generally small difference in the mean (Δμ) of observed versus modeled impacts for both 17 

the UK and Germany (Table 2) suggests that the central tendency is well modeled. However, 18 

a closer look at the time series of observed and modeled number of impact occurrences 19 

(Figure 12, time series with gray background (RF Predictions)) reveals that small values are 20 

generally over-predicted and large values often under-predicted. Notable under-predictions of 21 

peak values include, for example, events in 2003 in Germany, and in 2011/12 for many 22 

regions in the UK. The under-prediction of NI causes lower standard deviations for the 23 

modelled values than for the observed (∆σ between -0.22 and -0.52, see Table 2).  24 

Furthermore, Figure 12 shows that predictions and observations in the UK and Germany 25 

generally agree well both regarding initiation of impact occurrence and its subsequent 26 

temporal evolution. This is also reflected by a moderate to strong correlation between 27 

predictions and observations (Table 2). The blue line in Figure 12 represents an impact 28 

threshold of one, as guidance for interpretation: modeled impacts smaller than one may be 29 

regarded as an absence of impacts. Taking this into account the temporal dynamics agree even 30 

better, especially regarding impact onset. An obvious disagreement between dynamics of 31 

observations and predictions is found in many regions in the UK in 1991/1992, where 32 
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modeled NI is more dynamic than the observed static “block” of NI following an impact peak. 1 

The block-shaped data represent impacts due to a contraction of the stream network in large 2 

parts of the south and east of the UK during these years. In Germany, states with larger 3 

amplitude of NI (BV, BW, RP, and NW) tend to have a better agreement of temporal 4 

dynamics, especially when only focusing on values above the one-impact-threshold line. For 5 

states with low amplitude of NI, which often concurs with less negative splitting values (see 6 

section 4.3), the temporal dynamics are less well modeled (not shown).  7 

The RF Backwards Learning predictions for all years with zero impact occurrence according 8 

to the EDII database are shown on white background in Figure 12. They expose instances of 9 

potentially “false-positive impacts”, i.e. a positive number of impacts is modeled while there 10 

are no observed impacts. A clear example for the UK is the period 1972-74, when drought 11 

conditions occurred, which would have caused impacts in many UK regions according to the 12 

RF model trained on the censored time series. Another example of false-positive impacts in 13 

the UK is found for many southern and central regions in the second half of the 1990s after a 14 

peak of NI in 1995. While for the UK two major, spatially coherent cases of false-positive 15 

impacts exist, the pattern for Germany is more diverse and region-specific. In BW, for 16 

instance, the impact data in the EDII appears to well represent true impact occurrence (no 17 

significant false-positive impacts). IN BV and BB, in contrast, false-positive impact events 18 

are noticeable in 1971/1972 (BV) and 1976 (BB; not shown). During these periods drought 19 

impacts are present in the EDII for other states in the vicinity. Remarkable as well is that 20 

states with low amplitude of NI and less negative splitting values (see section 4.3) are 21 

characterized through frequent false-positive impacts with small NI (e.g. LS, not shown).  22 

  23 
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5 Discussion 1 

5.1 Performance of drought indicators  2 

The correlation analysis and the random forest approach revealed the following insights about 3 

the performance of drought indicators, which will be discussed in the context of expectations 4 

and literature: 1) the best-performing drought indicators are region and impact category 5 

specific, and in the UK season specific to some degree. While in the UK generally long 6 

accumulation periods of SPI and SPEI (12-24 months) performed best, short to intermediate 7 

accumulation periods (2-4 months) were best linked with drought impacts in Germany. 8 

However, there is spatial variability within each country, and differences among impact 9 

categories. 2) A comparison among indicators (SPI vs. SPEI vs. Q (vs. G in Germany)) 10 

uncovered that in the UK SPI and SPEI perform similarly to each other, and Q performs less 11 

well. In Germany SPEI often performed slightly better than SPI, the linkage with Q is better 12 

than in the UK, and there is low agreement between G and impact occurrence. 3) The largely 13 

congruent findings from the two different statistical approaches independently validate the 14 

results.  15 

While much can be speculated about the drivers of region-, impact type-, and season-specific 16 

variability, it is nonetheless necessary to explore the underlying mechanisms for the observed 17 

differences to rule out purely data-driven, yet physically meaningless, indicator-impact-18 

relationships. Regional differences can result from both 1) “real” physical, spatial differences 19 

in geographic properties (e.g. climate, geology, soil, land use), vulnerability towards drought, 20 

and hazard characteristics, triggering impacts differing in type and response time, and 2) 21 

differences due to inherent spatial and temporal biases in the impact data (see Bachmair et al. 22 

(2015) on potential EDII error sources).  23 

In the UK we found differences in best SPI and SPEI accumulation periods between most 24 

southern/central regions (long periods) versus more northern regions (shorter periods). This 25 

corresponds well to known differences in the nature of the drought hazard, and impacts. 26 

Strong regional contrasts in drought occurrence across the UK have been noted previously, 27 

with a particular contrast between the upland northern and western UK, which is susceptible 28 

to short-term (6 month) summer half-year droughts, and the lowlands of the south-eastern UK 29 

that are susceptible to longer-term (18 month or greater) multi-annual droughts (Jones and 30 

Lister, 1998; Marsh et al., 2007; Parry et al., 2011). These findings reflect both the 31 
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climatological rainfall gradient across the UK and the predominance of groundwater 1 

dominated catchments in the south-east (Folland et al., 2015). While we also found regional 2 

differences in indicator-impact-linkage patterns in Germany, they mostly relate to differences 3 

in strength of correlation (weaker correlation in northern/northeastern states). The smaller 4 

amplitude of impact time series in these states may explain weaker correlation in contrast to 5 

southern/central states with predominantly larger amplitude, i.e. pronounced impact peaks, as 6 

hypothesized by Bachmair et al. (2015). In contrast to the UK, which has seen a limited 7 

number of multi-annual droughts, most droughts in Germany have been of shorter duration, 8 

although such short (typically summer) droughts are fairly frequent. (e.g. Bradford, 2000).  9 

The differences in indicator-impact-relationships between the UK and Germany, and some of 10 

the within-country variability, are also very likely a result of the regional composition of 11 

drought impact types. It is common knowledge that impacts caused by different types of 12 

drought have different response times due to propagation through the hydrological cycle (e.g. 13 

Mishra and Singh, 2011; National Drought Mitigation Center, 2015; Wilhite and Glantz, 14 

1985). Some impacts develop quickly (e.g. agricultural impacts) during a precipitation 15 

shortfall or heatwave and thus show shorter response times than impacts triggered by more 16 

slowly evolving streamflow or groundwater drought. In the UK impacts associated with 17 

drought conditions of surface waters and groundwater (Ih) clearly dominate (see Figure 2). 18 

This agrees well with longer SPI and SPEI accumulation periods as best predictors in the UK 19 

compared with Germany. While hydrological drought impacts still make up the larger part of 20 

impacts in GermanyThere, the fraction of non-hydrological drought impacts (Io) is distinctly 21 

larger than in the UK. Agricultural and forestry impacts in Germany account for roughly 20-22 

70 percent of impacts depending on the region, and this may explain why short to 23 

intermediate SPI and SPEI accumulation periods are the best predictors. In British regions 24 

these two impact categories sum up to a maximum of 20 percent. A subdivision of Ih  reveals 25 

that in the UK impacts on water supply and freshwater ecosystems are most prominent, 26 

whereas in Germany impacts on waterborne transportation and water quality dominate in 27 

most regions.  28 

The identification of best-performing indicators for specific impact types is a key outcome of 29 

this study. While the absolute values of best SPI and SPEI accumulation periods were not 30 

identical in both countries, we found commonalities in the relative shift from total impacts to 31 

different impact types. For instance, agricultural and hydrological drought impacts were 32 
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generally best linked to shorter and longer SPI and SPEI time scales, respectively. Here, 1 

“shorter” and “longer” refers to different absolute values: 1-4 (DE) and 7-8 months (UK) for 2 

agriculture, and 7/8 (DE) and 12/24 months (UK) for Ih. Perhaps unsurprisingly, a universal 3 

recommendation about best indicators hence cannot be inferred. However, the similar relative 4 

shift in best SPI and SPEI time scales suggests that there are likely to be typical patterns of 5 

response for given impact types, but that these are mediated by regional cause-effect-6 

mechanisms. This is in line with tworesults of the studies introduced earlier, which 7 

investigated likelihood of impact occurrence specific to particular impact types across 8 

different European countries (by Blauhut et al., . (2015;) and Stagge et al., . (2014). Seasonal 9 

variation in linkage patterns as observed in our study for the UK further complicates 10 

recommendations regarding a single best drought indicator. Part of the variation across the 11 

seasons is likely to reflect differences in impact type distribution between the seasons (see 12 

Figure 2). For example, the long SPI and SPEI time scales for winter and spring in permeable 13 

catchments in the southeastern lowlands (Figure 4) reflect long groundwater droughts, which 14 

in turn affects groundwater-fed rivers. The winter half-year is the main recharge season and 15 

failure to recharge will trigger water use restrictions, while shrinking headwaters will result in 16 

freshwater ecosystem impacts. However, less permeable catchments are likely to respond 17 

more readily to winter rainfall as the evapotranspiration is low in this season. For the bulk of 18 

rivers, the SPI and SPEI time scales are therefore shorter, with impacts related to low absolute 19 

water levels mainly in summer and fall, although effects can be long-lasting.  20 

A surprising result is that streamflow did not appear as an important drought indicator in the 21 

UK, even after a separation of hydrological drought impacts. In Germany, groundwater level 22 

percentiles played only a minor role. There are several possible reasons for these 23 

discrepancies. For groundwater level percentiles the mismatch is likely attributable to a 24 

lagged groundwater response (Bachmair et al., 2015); cross-correlation for different time lags 25 

would be a way to assess if and which delay period is linked to impacts.). One probable 26 

reason for the lack of relationship between I and Q ismay be the nature of the spatially 27 

aggregated streamflow data, which represents different catchments varying in size and 28 

characteristics (including degree of human influence), lumped over a large administrative 29 

area, which does not coincide with catchment boundaries. A further reason may be the nature 30 

of the EDII data, especially regarding the subdivisions of Ih. While in Germany the fraction of 31 

instream impacts of Ih is larger (e.g. impaired navigability of streams, water quality, and 32 

reduced power plant production due to a lack of cooling water), water supply impacts 33 
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dominate Ih in the UK. For groundwater or reservoir-fed water supply systems these impacts 1 

are, to a certain extent, disconnected from river flows (the purpose of reservoirs being to 2 

smooth out variations in instream water availability).  3 

Overall, despite a rather complex picture in terms of best drought indicator for impact 4 

occurrence, the empirical evaluation of drought indicators with text-based impact information 5 

proved to be a feasible approach. Given the minor differences in the outcomes of the 6 

correlation and the random forest analysis for the UK, both methods appear recommendable. 7 

Generally, the strength of the random forest algorithm is that it can handle interactions and 8 

nonlinearities among variables, and thus identify non-intuitive relationships (Evans et al., 9 

2011; Hastie et al., 2009). Furthermore, random forests are robust to noise (Breiman, 2001; 10 

Hastie et al., 2009), and the bootstrap sampling provides a way to account for the uncertainty 11 

of the impact data. Nevertheless, the “black-box” nature of the RF model (Breiman, 2001) 12 

may not be as useful when an intuitive method for the choice of best drought indicator is 13 

needed (e.g. when working with a wide range of stakeholders from different backgrounds). 14 

For Germany, systematic differences in indicator-impact-linkage patterns were easier to 15 

perceive in the correlation plots than in the RF predictor importance plots. For large data sets 16 

the RF algorithm has the potential to detect relatively complex structures; for small data sets, 17 

however, this is unlikely to be the case (Maindonald and Braun, 2006). The generally shorter 18 

time series for German regions and stronger zero-inflation of the data may therefore explain 19 

the “spottier” pattern of RF predictor importance. The correlation analysis thus yielded more 20 

powerful results for Germany. However, this method does not provide further information 21 

such as on thresholds of impact occurrence, in contrast to the RF algorithm (see section 4.3). 22 

Both approaches therefore complemented each other in our study. 23 

5.2 Indicator thresholds for impact occurrence 24 

The analysis of splitting values used in the random forest construction highlighted a large 25 

spread. Yet, when focusing on the median there are differences between the countries and 26 

among the regions (medians around -1 for SPI and SPEI of different accumulation periods in 27 

the UK, and in DE between ca. 0 and -1 (north/northeast) and -1 and -1.5 (southern/central 28 

states)), and, to some extent, impact categories.  29 

We regard splitting values during recursive partitioning as estimates of thresholds of impact 30 

occurrence because they provide guidance on critical predictor values triggering a 31 
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consequence. Nevertheless, the uncertainty of the text-based impact data clearly must be 1 

taken into account in the search for meaningful thresholds. One cause of the large spread of 2 

the threshold distributions is the uncertain timing of actual impact occurrence, especially 3 

regarding its termination. First, when only the season was provided in the impact report, the 4 

assumption was made that impacts lasted during all months of this season. This may cause a 5 

mismatch in cases where drought conditions recede within the course of the season. Second, 6 

in the UK there are impacts appearing as “blocks” following an impact peak in 1990. They 7 

arise from EDII reports citing long-lasting impacts without an exact known end-point or 8 

temporal evolution of the severity of the impact (i.e. low flow anomalies in eastern and 9 

southern Britain causing contraction of the stream network and thus impacts on aquatic 10 

species reported for the years 1990 to 1992). Third, hosepipe bans and drought orders do not 11 

represent direct impacts of drought, but are triggered (and canceled) by an 12 

administrative/political decision as an intermediate step. The onset and termination of the 13 

impacts they are meant to reflect may therefore be more uncertain than those for other, more 14 

direct impacts. We tested this by removing all the drought orders from the database and 15 

reanalyzing the data, showing that the SPI-24 and SPEI-24 become less dominant and the 16 

strongest correlations are shifted towards slightly shorter accumulation durations. These 17 

issues highlight the necessity to separately consider phases of drought development and 18 

recovery for drought M&EW (Parry et al., in review; Steinemann and Cavalcanti, 2006).  19 

DifferencesFourth, differences in impact reporting between Germany and the UK also need to 20 

be considered. In the UK, a significant proportion of impacts for later droughts (2004-2006 21 

and 2010-2012) were sourced from weekly Drought Management Briefs by the Environment 22 

Agency (EA). In Germany there is no continuous information on drought impacts, and no 23 

unifying impact reporting scheme exists within the federal state structure. In both countries, 24 

reporting mechanisms may put more weight on specific impact categories. For example, the 25 

EA Drought Management Briefs have an emphasis on water supply and freshwater 26 

ecosystems while for other impact categories such information is sparse, or not routinely 27 

published.  28 

A reason why we consider tree splitting values as meaningful thresholds of impact occurrence 29 

is because Bachmair et al. (2015) found similar threshold patterns for Germany using the 30 

same impact data but a different methodological approach based on extracting indicator 31 

values concurrent with past impact onset. Both approaches revealed differences in indicator 32 
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thresholds between northern/northeastern versus southern/central German federal states. 1 

These differences were speculated to result from differences in geographic properties and thus 2 

different vulnerability to drought (Bachmair et al., 2015). The northern/north-eastern states 3 

tend to have more sandy soils with lower water holding capacity than in the south, and lower 4 

natural water availability (Bundesamt für Gewässerkunde, 2003; Bundesanstalt für 5 

Geowissenschaften und Rohstoffe, 2007). This could explain impact occurrence for less 6 

negative SPI and SPEI thresholds. Why we did not find systematic differences in thresholds 7 

among British regions despite obvious regional differences in geographic properties is not 8 

clear.  9 

Despite possible shortcomings of EDII data and the method to derive indicator thresholds, we 10 

recommend further efforts to empirically validate indicator thresholds with impact data. The 11 

use ofDrought indicator thresholds to issue informed by impact data may complement and 12 

allow comparison with local-scale decision making on drought warnings or to trigger 13 

management actions of drought planstriggers, which is widespread (Shukla et al., 2011; 14 

Steinemann and Cavalcanti, 2006;usually based on past hydrological data, stakeholder 15 

knowledge and the experience of individuals (e.g. Steinemann, 2014). As pointed out in the 16 

introduction section there is no consensus on what a meaningful threshold is. In our study the 17 

median of the SPI and SPEI threshold distribution ranged around -1 in the UK, which 18 

correspond to the transition between mild and moderate drought according to the SPI 19 

classification by McKee (1993). At the same time, the differences in median of the SPI and 20 

SPEI threshold distributions for Germany (lower values for SPEI) demonstrate that, despite 21 

the standardized nature of such indices, the same thresholds (and corresponding statistical 22 

return periods) are not necessarily equally meaningful for drought impact occurrence. To 23 

ourimprove that knowledge, there are hardly any publicized base, more studies should 24 

systematically evaluatingevaluate and make public the delineation rules of different drought 25 

severity classes by using drought impacts (as e.g. Sepulcre-Canto et al., 2012) or by 26 

stakeholders’ experience (as e.g. Steinemann and Cavalcanti, 2006). Our analysis and 27 

previous findings on indicator thresholds for impact onset in Germany (Bachmair et al., 2015) 28 

demonstrate the potential of text-based impact data to do this.  29 
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5.3 Lessons learned from random forest predictions  1 

The two parts of the random forest modeling exercise exposed that: 1) there are differences 2 

among regions in terms of predictive power, with RF models for regions with better impact 3 

data (longer censored time series, a higher percentage of non-zero data, and larger amplitude 4 

of the impact time series) showing good agreement between observations and predictions. 2) 5 

While the temporal dynamics of impact occurrence were reasonably reproduced, over- and 6 

under-prediction of small and large values, respectively, are an issue. 3) Backwards leaning 7 

about impact occurrence for years with no observations (through RF models trained on 8 

drought years) provided valuable insights into time periods which potentially lack impact data 9 

in the EDII.  10 

Overall, the analysis revealed that RF models generally represent a suitable tool for drought 11 

M&EW, yet further model tuning is possible (e.g. reduction of predictors, grouping several 12 

regions for increasing the number of observations, and impact category specific models). The 13 

finding that there is good agreement between observed and predicted number of drought 14 

impact occurrences for regions with good data availability is promising. It also underlines the 15 

benefit of spending time and resources on impact data collection. Currently the process of 16 

impact data collection is not automated but labor intensive. Good model performance for 17 

South West England, for example, which is characterized by better data availability than in 18 

other regions, makes a strong argument for the value of impact monitoring. The necessity of 19 

expanding impact data collection and its benefit for drought M&EW has also been reported 20 

by others (Lackstrom et al., 2013; Stahl et al., 20152015b; Wilhite et al., 2007).  21 

Despite the promising predictive capability of RF models for some regions, the under-22 

prediction of peaks is an issue. There are several possible reasonsOne reason for this. First, 23 

there seems to may be an inherent bias of the random forest algorithm with high values being 24 

under-predicted and low values being over-predicted, as observed by others (Ordoyne and 25 

Friedl, 2008). This is because the RF algorithm computes averages over a large number of 26 

model predictions and hence reduces the range and variance of predictions compared with 27 

observed values (Liaw and Wiener, 2002; Ordoyne and Friedl, 2008). Second, thereAnother 28 

reason may be an impact-reporting bias caused by impact-reporting increasing during peaks 29 

of events. We hypothesize that drought impacts may go unreported during the early stages of 30 

a drought, but once a certain threshold of public attention and media coverage is exceeded 31 

there is a tendency for more complete reporting. Also, the chances of finding information on 32 
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drought impacts are higher for recent events due to better online availability of reports and 1 

new media channels compared with decades ago. The above-described reasons may explain 2 

the high number of impacts in the EDII for Germany in 2003 compared with 1976, and the 3 

dominance of 2010 - 2012 in the UK. To account for the strong weight of the 2003 drought 4 

event, a predictor representing the reporting bias would be needed, which is very difficult to 5 

determine or to find proxies for. However, the predictor year may cater for the reporting bias 6 

to a certain degree. Another way would be to normalize the number of impacts per drought 7 

event but this would distort differences among events. For some UK NUTS1 regions the 8 

under-prediction of NI may also stem from impact reports appearing as static “blocks” 9 

following an impact peak in 1990, which was discussed earlier (section 5.2). The modeled 10 

time series, which is more dynamic than the observed one, could potentially be more 11 

representative of the true impact occurrence (although this is speculative).  12 

The RF Backwards Learning assessment provided additionala way to scrutinize whether an 13 

absence of data in the EDII for certain time periods reflects a true absence of drought impacts, 14 

or simply missing data. For the UK, we discovered two prominent examples of wheredroughts 15 

that are more severe in modeled impacts are likely to be more representative of the true 16 

impact occurrence than the absent impact data in the EDII. For the UK there is an interesting 17 

contrast between the false-positive impacts ofobserved EDII impacts: the early 1970s, and 18 

those of the late 1990s. Both are well documented droughts, but previous studies suggest the 19 

former genuinely had less impacts (Cole and Marsh, 2006), in part due to a wet summer in 20 

1973. In contrast, the late 1990s is likely to represent missing impact data. For the 1995-1997 21 

drought, only impacts from the hot, dry summer of 1995 are captured in the EDII, as; the 22 

summer drought had very severe water supply impacts, triggering public enquiries, and was 23 

thus very extensively reported due to water supply failures and government responses. 24 

However, a protracted groundwater drought, with water restrictions in some areas, extended 25 

into 1997 (Cole and Marsh, 2006). However no “formal” drought report was written issued on 26 

the latter phases of the drought so these later impacts have not been captured by the EDII. 27 

Such discrepancies support our choice of time series censoring via drought impact occurrence. 28 

Altogether, false-positive impacts identified with the RF Backwards Learning assessment 29 

provide guidance on which time periods to focus on when searching for additional impact 30 

information. This may, in turn, result in more reliable predictions or impact thresholds based 31 

on more drought events.  32 

 33 
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6 ConclusionConclusions  1 

The broad goal of our analysis was two-fold: to learn about the relationship between drought 2 

indicators and text-based impact information, to advance drought monitoring and early 3 

warning, practices; and to test methodologies that can be extended to other locations in a next 4 

step.future applications. We found that drought indicators best linked to impact occurrence 5 

are regiongenerally SPI and impact category specific. InSPEI with long accumulation periods 6 

(12-24 months) for the UK they are additionally season specific, and with short to some 7 

degree. However, we identified several common traits, allowingintermediate accumulation 8 

periods (2-4 months) for Germany. Additionally, the potential grouping of regions and/or 9 

impact categories according to their indictorindicator-impact-response varies within the 10 

countries. This calls for evaluating continental drought M&EW systems at smaller spatial 11 

scales. Also, our analysis provided additional empirical evidence that impacts associated with 12 

different types of drought (e.g. agricultural versus hydrological drought) have different 13 

response times, as reflected by distinct differences in indicator-impact-linkage patterns for 14 

each impact category. Regarding methodologiesFor regions with sufficient data, a random 15 

forest machine learning approach proved to be a suitable tool for objectively identifying 16 

indicator thresholds for impact occurrence, and to predict the number of drought impact 17 

occurrences for regions with sufficient data. We therefore suggest validating any chosen 18 

triggers in drought M&EW with impact data as a complementary approach to, for example,of 19 

impact occurrence, and for predicting the number of drought impact occurrences. The 20 

regression tree splitting values, which we regard as estimates of thresholds of impact 21 

occurrence, showed a considerable spread, yet the median revealed differences among regions 22 

and, to a lesser extent, impact categories. In the UK the median of threshold values was 23 

around -1 for SPI and SPEI. For Germany, distinct differences in threshold values were found 24 

between northern/northeastern versus southern/central regions. Such insight into indicator 25 

thresholds could provide guidance when designing and validating drought triggers, and 26 

complements existing approaches like stakeholder consultation. While there are certainly 27 

caveats given the uncertainty in exact timing, number, and severity of impacts, the utilized 28 

datatext-based reports served as a reasonable basis for quantifying impacts. A comparison of 29 

time series of observed versus modeled impacts additionally yielded valuable insights into the 30 

naturecontents of the European Drought Impact report Inventory contents and allowed us to 31 

identify potential gaps in the temporal coverage of the impact database. Overall, the 32 

information gain from evaluating commonly applied drought indicators with impacts 33 
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underlines the strong benefits of impact data collection, and closesis an important step 1 

towards closing the gap between knowledge about hazard intensity and on-the-ground drought 2 

conditions. 3 
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Appendix 3 

Details about the applied random forest methodology: Non-parametric regression using 4 

random forest (RF) consists of the following steps (see Liaw and Wiener (2002) for details): 5 

1) ntree bootstrap samples are used. The individual cases making up the sample are drawn 6 

randomly with replacement from the original data, preserving each month’s pairing of 7 

predictand and predictors. The size of each sample is about two-thirds of the size of the total 8 

dataset; 2) for each bootstrap sample, an unpruned tree is grown. That is, for each node in 9 

turn, a split-in-two of the data is performed for each of mtry randomly chosen predictor 10 

variables, and the predictor whose split results in the two most homogeneous groups 11 

(minimizing the residual sum of squares) of the predictand is chosen as the splitting variable 12 

for that node; 3) new data is predicted by averaging predictions over ntree regression trees 13 

(Liaw and Wiener, 2002). The user-defined variable ntree was set to 1000. The model 14 

parameter mtry (number of predictors randomly sampled as candidates at each split) was left as 15 

default: one third of the total number of predictors (Liaw and Wiener, 2002). For all other 16 

parameters the default was kept as well. The model error is determined by predicting the 17 

excluded data (“out-of-bag” data according to Breiman (2001)) at each bootstrap iteration 18 

using the tree grown with the bootstrap sample and averaging all errors (Liaw and Wiener, 19 

2002).  20 

In this study, the response variable is the square root transformed monthly counts of impact 21 

data per NUTS1 region. This transformation yielded a near normal distribution of the non-22 

zero data in many regions. Some British NUTS1 regions, however, showed a bi-modal 23 

distribution of NI (NEE, NEW, YHU, and SEE with varying extent), and in some German 24 

states the distribution of NI remained positively skewed after the square root transformation. 25 

Results for a log-transform were similar. 26 

  27 



 

30 

 

References 1 

Bachmair, S., Kohn, I. and Stahl, K.: Exploring the link between drought indicators and 2 

impacts, Nat. Hazards Earth Syst. Sci., 15(6), 1381–1397, doi:10.5194/nhess-15-1381-2015, 3 

2015. 4 

Blauhut, V., Gudmundsson, L. and Stahl, K.: Towards pan-European drought risk maps: 5 

quantifying the link between drought indices and reported drought impacts, Environ. Res. 6 

Lett., 10(1), 014008, doi:10.1088/1748-9326/10/1/014008, 2015. 7 

Bradford, R. B.: Drought Events in Europe, in Drought and Drought Mitigation in Europe, 8 

vol. 14, edited by J. V. Vogt and F. Somma, pp. 7–20, Springer Netherlands, Dordrecht., 9 

2000., Marsh, T. J.: Defining a network of benchmark catchments for the UK. P. I. Civil Eng. 10 

– Water & Mar. En., 156(WM2), 109-116. 11 

Breiman, L.: Random Forests, Mach. Learn., 45(1), 5–32, doi:10.1023/A:1010933404324, 12 

2001. 13 

Bundesamt für Gewässerkunde: Hydrologischer Atlas von Deutschland., 2003. 14 

Bundesanstalt für Geowissenschaften und Rohstoffe: Bodenarten in Oberböden Deutschlands 15 

1:1000000, Hannover., 2007. 16 

Cole, G. A. and Marsh, T. J.: Major droughts in England and Wales from 1800 and evidence 17 

of impact, Environment Agency, Bristol., 2006. 18 

Dieker, E., van Lanen, H. A. J. van and Svoboda, M.: Comparison., and Svoboda, M.: 19 

Compari son of three drought monitoring tools in the USA.,, WATCH Technical Report No. 20 

25, available at: http://www.eu-watch.org/publications/technical-reports/3, last access: 11 21 

September 2015, 2010. 22 

Dutra, E., Pozzi, W., Wetterhall, F., Di Giuseppe, F., Magnusson, L., Naumann, G., Barbosa, 23 

P., Vogt, J. and Pappenberger, F.: Global meteorological drought – Part 2: Seasonal forecasts, 24 

Hydrol. Earth Syst. Sci., 18(7), 2669–2678, doi:10.5194/hess-18-2669-2014, 2014. 25 



 

31 

 

European Drought Observatory: PRODUCT FACT SHEET: Combined Drought Indicator – 1 

EUROPE, available at: http://edo.jrc.ec.europa.eu/edov2/php/index.php?id=1101 (last access: 2 

20 August 2015), 2013. 3 

Evans, J. S., Murphy, M. A., Holden, Z. A. and and Cushman, S. A.: Modeling Species 4 

Distribution and Change Using Random Forest, in Predictive Species and Habitat Modeling 5 

in Landscape Ecology, edited by C. A. Drew, Y. F. Wiersma, and F. Huettmann, p. 313, 6 

Springer New York, New York, NY., 2011. 7 

Folland, C. K., Hannaford, J., Bloomfield, J. P., Kendon, M., Svensson, C., Marchant, B. P., 8 

Prior, J. and Wallace, E.: Multi-annual droughts in the English Lowlands: a review of their 9 

characteristics and climate drivers in the winter half-year, Hydrol. Earth Syst. Sci., 19(5), 10 

2353–2375, doi:10.5194/hess-19-2353-2015, 2015. 11 

Gillette, H.: A creeping drought under way, Water Sew. Work., 97, 104–105, 1950. 12 

Gudmundsson, L., Rego, F. C., Rocha, M. and Seneviratne, S. I.: Predicting above normal 13 

wildfire activity in southern Europe as a function of meteorological drought, Environ. Res. 14 

Lett., 9(8), 084008, doi:10.1088/1748-9326/9/8/084008, 2014. 15 

Gudmundsson, L., Wagener, T., Tallaksen, L. M. and Engeland, K.: Evaluation of nine large-16 

scale hydrological models with respect to the seasonal runoff climatology in Europe, Water 17 

Resour. Res., 48(11), n/a–n/a, doi:10.1029/2011WR010911, 2012. 18 

Gupta, H. V., Kling, H., Yilmaz, K. K. and Martinez, G. F.: Decomposition of the mean 19 

squared error and NSE performance criteria: Implications for improving hydrological 20 

modelling, J. Hydrol., 377(1-2), 80–91, doi:10.1016/j.jhydrol.2009.08.003, 2009. 21 

Hannaford, J., Lloyd-Hughes, B., Keef, C., Parry, S. and Prudhomme, C.: Examining the 22 

large-scale spatial coherence of European drought using regional indicators of precipitation 23 

and streamflow deficit, Hydrol. Process., 25(7), 1146–1162, doi:10.1002/hyp.7725, 2011. 24 

Hao, Z. and Singh, V. P.: Drought characterization from a multivariate perspective: A review, 25 

J. Hydrol., 527, 668–678, doi:10.1016/j.jhydrol.2015.05.031, 2015. 26 



 

32 

 

Hargreaves, G. H.: Defining and Using Reference Evapotranspiration, J. Irrig. Drain. Eng., 1 

120(6), 1132–1139, doi:10.1061/(ASCE)0733-9437(1994)120:6(1132), 1994. 2 

Haslinger, K., Koffler, D., Schöner, W. and Laaha, G.: Exploring the link between 3 

meteorological drought and streamflow: Effects of climate�catchment interaction, Water 4 

Resour. Res., 50(3), 2468–2487, doi:10.1002/2013WR015051, 2014. 5 

Hastie, T., Tibshirani, R. and Friedman, J.: The Elements of Statistical Learning, Springer 6 

New York, New York, NY., 2009. 7 

Haylock, M. R., Hofstra, N., Klein Tank, A. M. G., Klok, E. J., Jones, P. D. and New, M.: A 8 

European daily high-resolution gridded data set of surface temperature and precipitation for 9 

1950–2006, J. Geophys. Res., 113(D20), D20119, doi:10.1029/2008JD010201, 2008. 10 

Hlavinka, P., Trnka, M., Semerádová, D., Dubrovský, M., Žalud, Z. and Možný, M.: Effect of 11 

drought on yield variability of key crops in Czech Republic, Agric. For. Meteorol., 149(3-4), 12 

431–442, doi:10.1016/j.agrformet.2008.09.004, 2009. 13 

Hurlbert, S. H.: Pseudoreplication and the Design of Ecological Field Experiments, Ecol. 14 

Monogr., 54(2), 187, doi:10.2307/1942661, 1984. 15 

Jenkins, G.: The influence of climate on the fishery recruitment of a temperate, seagrass-16 

associated fish, the King George whiting Sillaginodes punctata, Mar. Ecol. Prog. Ser., 288, 17 

263–271, 2005. 18 

Ji, L. and Peters, A. J.: Assessing vegetation response to drought in the northern Great Plains 19 

using vegetation and drought indices, Remote Sens. Environ., 87(1), 85–98, 2003. 20 

Jones, P. D. and Lister, D. H.: Riverflow reconstructions for 15 catchments over England and 21 

Wales and an assessment of hydrologic drought since 1865, Int. J. Climatol., 18(9), 999–22 

1013, doi:10.1002/(SICI)1097-0088(199807)18:9<999::AID-JOC300>3.0.CO;2-8, 1998. 23 

Kohn, I., Rosin, K., Freudiger, D., Belz, J. U., Stahl, K. and Weiler, M.: Niedrigwasser in 24 

Deutschland 2011, Hydrol. und Wasserbewirtschaftung, 58(1), 4–17, 25 

doi:10.5675/HyWa_2014, 2014. 26 



 

33 

 

Kruse, S., Seidl, I. and Staehli, M.: Informationsbedarf zur Früherkennung von Trockenheit in 1 

der Schweiz, Wasser Energ. Luft, 102(4), 4, 2010. 2 

Lackstrom, K., Brennan, A., Ferguson, D., Crimmins, M., Darby, L., Dow, K., Ingram, K., 3 

Meadow, A., Reges, H., Shafer, M. and Smith, K.: The Missing Piece: Drought Impacts 4 

Monitoring. Workshop report produced by the Carolinas Integrated Sciences & Assessments 5 

program and the Climate Assessment for the Southwest., 2013. 6 

Liaw, A. and Wiener, M.: Classification and Regression by randomForest, R news, available 7 

at: ftp://131.252.97.79/Transfer/Treg/WFRE_Articles/Liaw_02_Classification and regression 8 

by randomForest.pdf (last access: 20 August 2015), 2002. 9 

Loayza, N. V., Olaberría, E., Rigolini, J. and Christiaensen, L.: Natural Disasters and Growth: 10 

Going Beyond the Averages, World Dev., 40(7), 1317–1336, 11 

doi:10.1016/j.worlddev.2012.03.002, 2012. 12 

Logar, I. and van den Bergh, J. C. J. M.: Methods to Assess Costs of Drought Damages and 13 

Policies for Drought Mitigation and Adaptation: Review and Recommendations, Water 14 

Resour. Manag., 27(6), 1707–1720, doi:10.1007/s11269-012-0119-9, 2013. 15 

Maindonald, J. and Braun, J.: Data analysis and graphics using R: an example-based 16 

approach, Third Edit., Cambridge University Press., 2006. 17 

Marsh, T., Cole, G. and Wilby, R.: Major droughts in England and Wales, 1800–2006, 18 

Weather, 62(4), 87–93, doi:10.1002/wea.67, 2007. 19 

Martínez-Fernández, J., González-Zamora, A., Sánchez, N. and Gumuzzio, A.: A soil water 20 

based index as a suitable agricultural drought indicator, J. Hydrol., 522, 265–273, 21 

doi:10.1016/j.jhydrol.2014.12.051, 2015. 22 

Mavromatis, T.: Drought index evaluation for assessing future wheat production in Greece, 23 

Int. J. Climatol., 27(7), 911–924, 2007. 24 

McKee, T. B., Doesken, N. J. and Kleist, J.: The relationship of drought frequency and 25 

duration to time scales, in Preprints, 8th Conference on Applied Climatology, pp. 179–184, 26 

Anaheim, California., 1993. 27 



 

34 

 

Mehta, V. M., Wang, H., Mendoza, K. and Rosenberg, N. J.: Predictability and prediction of 1 

decadal hydrologic cycles: A case study in Southern Africa, Weather Clim. Extrem., 3, 47–53, 2 

doi:10.1016/j.wace.2014.04.002, 2014. 3 

Mishra, A. K. and Singh, V. P.: Drought modeling–A review, J. Hydrol., 403(1), 157–175, 4 

2011. 5 

National Drought Mitigation Center: Types of Drought, available at: 6 

http://drought.unl.edu/DroughtBasics/TypesofDrought.aspx (last access: 20 August 2015), 7 

2015. 8 

Ordoyne, C. and Friedl, M.: Using MODIS data to characterize seasonal inundation patterns 9 

in the Florida Everglades, Remote Sens. Environ., 112, 4107–4119, 10 

doi:10.1016/j.rse.2007.08.027, 2008. 11 

Parry, S., Hannaford, J., Prudhomme, C., Lloyd-Hughes, B. and Williamson, J.: Objective 12 

drought and high flow catalogues for Europe. [online] Available from: http://www.eu-13 

watch.org/publications/technical-reports, 2011. 14 

Parry, S., Prudhomme, C., Wilby, R. L. and Wood, P. J.: Drought termination: concept and 15 

characterisation, Prog. Phys. Geogr., in review. 16 

Pyper, B. J. and Peterman, R. M.: Comparison of methods to account for autocorrelation in 17 

correlation analyses of fish data, Can. J. Fish. Aquat. Sci., 55, 2127–2140, 1998. 18 

Quiring, S. M. and Papakryiakou, T. N.: An evaluation of agricultural drought indices for the 19 

Canadian prairies, Agric. For. Meteorol., 118(1), 49–62, 2003. 20 

Sepulcre-Canto, G., Horion, S., Singleton, A., Carrao, H. and Vogt, J.: Development of a 21 

Combined Drought Indicator to detect agricultural drought in Europe, Nat. Hazards Earth 22 

Syst. Sci., 12(11), 3519–3531, doi:10.5194/nhess-12-3519-2012, 2012. 23 

Shukla, S., Steinemann, A. C. and Lettenmaier, D. P.: Drought Monitoring for Washington 24 

State: Indicators and Applications, J. Hydrometeorol., 12(1), 66–83, 25 

doi:10.1175/2010JHM1307.1, 2011. 26 



 

35 

 

Stagge, J. H., Kohn, I., Tallaksen, L. M. and Stahl, K.: Modeling drought impact occurrence 1 

based on climatological drought indices for Europe., J. Hydrol., 2014. 2 

Stagge, J. H., Tallaksen, L. M., Gudmundsson, L., Van Loon, A. F. and Stahl, K.: Candidate 3 

Distributions for Climatological Drought Indices (SPI and SPEI), Int. J. Climatol., n/a–n/a, 4 

doi:10.1002/joc.4267, 2015. 5 

Stahl, K., Kohn, I., Blauhut, V., Urquijo, J., Kohn, I., Acácio, V., Assimacopoulos, D., 6 

Bifulco, C., De Stefano, L., Acacio, V., Dias, S., Eilertz, D., Frielingsdorf, B., Hegdahl, T., 7 

Kampragou, E., Kourentzis, V., Melsen, L., Van Lanen, H., Van Loon, A., Massarutto, A., 8 

Musolino, D., De Paoli, L., Senn, L., Stagge, J. H., Tallaksen, L. M., Kampragou, E., Van 9 

Loon, A. F., Barker, L. J., Melsen, L. A., Bifulco, C., Musolino, D., de Carli, A., Massarutto, 10 

A., Assimacopoulos, D., and Urquijo,Van Lanen, H. A. J.: AImpacts of European Drought 11 

Impact Report Inventory (EDII): Design and Test for Selected Recent Droughts in Europe, 12 

DROUGHT-R& SPI Technical Report No. 3, available at: http://www.eu-13 

drought.org/technicalreports/ events: insights from an international database of text-based 14 

reports, Nat. Hazards Earth Syst. Sci. Discuss., 3, 5453–5492, doi:10.5194/nhessd-3 (last 15 

access: 20 August-5453 2015), 2012, 2015a. 16 

Stahl, K., Kohn, I., De Stefano, L., Tallaksen, L. . ., Rego, F. C., Seneviratne, S. I., Andreu, J. 17 

and Van Lanen, H. A. .: An impact perspective on pan-European drought sensitivity, in 18 

Drought: Research and Science-Policy Interfacing, edited by Joaquin Andreu, A. Solera, J. 19 

Paredes-Arquiola, D. Haro-Monteagudo, and H. van Lanen, pp. 329–334, CRC press., 20 

2015Press, London, 2015b. 21 

Steinemann, A.: Drought Information for Improving Preparedness in the Western States, Bull. 22 

Am. Meteorol. Soc., 95(6), 843–847, doi:10.1175/bams-d-13-00067.1, 2014. 23 

Steinemann, A. C. and Cavalcanti, L. F. N.: Developing multiple indicators and triggers for 24 

drought plans, J. Water Resour. Plan. Manag., 132(3), 164–174, 2006. 25 

Stölzle, M. and Stahl, K.: Wassernutzung und Trockenheitsindikatoren in Baden-26 

Württemberg, Standort-Zeitschrift für Angew. Geogr., 35(3), 94–101, 2011. 27 



 

36 

 

Strobl, C., Malley, J. and Tutz, G.: An introduction to recursive partitioning: rationale, 1 

application, and characteristics of classification and regression trees, bagging, and random 2 

forests., Psychol. Methods, 14(4), 323–348, 2009. 3 

Svoboda, M., LeComte, D., Hayes, M., Heim, R., Gleason, K., Angel, J., Rippey, B., Tinker, 4 

R., Palecki, M. and Stooksbury, D.: The drought monitor, Bull. Am. Meteorol. Soc., 83(8), 5 

1181–1190, 2002. 6 

Trambauer, P., Werner, M., Winsemius, H. C., Maskey, S., Dutra, E. and Uhlenbrook, S.: 7 

Hydrological drought forecasting and skill assessment for the Limpopo river basin, Southern 8 

Africa, Hydrol. Earth Syst. Sci. Discuss., 11(8), 9961–10000, doi:10.5194/hessd-11-9961-9 

2014, 2014. 10 

Vicente-Serrano, S. M., Beguería, S. and López-Moreno, J. I.: A multiscalar drought index 11 

sensitive to global warming: the standardized precipitation evapotranspiration index, J. Clim., 12 

23(7), 1696–1718, 2010. 13 

Vicente-Serrano, S. M., Beguería, S., Lorenzo-Lacruz, J., Camarero, J. J., López-Moreno, J. 14 

I., Azorin-Molina, C., Revuelto, J., Morán-Tejeda, E. and Sanchez-Lorenzo, A.: Performance 15 

of drought indices for ecological, agricultural, and hydrological applications, Earth Interact., 16 

16(10), 1–27, 2012. 17 

Vicente-Serrano, S. M. and López-Moreno, J. I.: Hydrological response to different time 18 

scales of climatological drought: an evaluation of the Standardized Precipitation Index in a 19 

mountainous Mediterranean basin, Hydrol. Earth Syst. Sci., 9(5), 523–533, 2005. 20 

Wetterhall, F., Winsemius, H. C., Dutra, E., Werner, M. and Pappenberger, E.: Seasonal 21 

predictions of agro-meteorological drought indicators for the Limpopo basin, Hydrol. Earth 22 

Syst. Sci., 19(6), 2577–2586, doi:10.5194/hess-19-2577-2015, 2015. 23 

Wilhite, D. A., Svoboda, M. D. and Hayes, M. J.: Understanding the complex impacts of 24 

drought: A key to enhancing drought mitigation and preparedness, Water Resour. Manag., 21, 25 

763–774, doi:10.1007/s11269-006-9076-5, 2007. 26 



 

37 

 

Wilhite, D. and Glantz, M.: Understanding: the drought phenomenon: the role of definitions, 1 

Water Int., 10(3), 111–120, doi:10.1080/02508068508686328, 1985. 2 

Wilhite, D. and Svoboda, M.: Drought early warning systems in the context of drought 3 

preparedness and mitigation, in Early Warning Systems for Drought Preparedness and 4 

Drought Management, edited by D. A. Wilhite, M. V. K. Sivakumar, and D. A. Wood, pp. 1–5 

21, World Meteorological Organization, Geneva., 2000.  6 

  7 



 

38 

 

Table 1. Information on NUTS1 regions in the UK and Germany (DE) considered for analysis 1 

Country NUTS1 region name 
NUTS1 
region 
abbr. 

NI 

Length of 
censored 

timeseries 
(months) 

Percentage 
of months 
with NI > 0 

No. 
streamflow 

stations 

No. 
groundwater 

stations 

UK North East NEE 28 48 22.9 9  - 

UK North West NWE 400 120 35.8 16  - 

UK Yorkshire and the Humber YHU 213 108 32.4 11  - 

UK East Midlands CEE 345 120 37.5 13  - 

UK Wales WAL 884 156 35.9 20  - 

UK West Midlands CWE 310 96 42.7 12  - 

UK East of England EE 545 156 50.0 12  - 

UK South West  SWE 456 156 57.1 23  - 

UK South East  SEE 1079 168 57.1 23  - 

UK London LND 291 144 45.1 1  - 

DE Schleswig-Holstein  SH 34 60 25.0 9 9 

DE 
Mecklenburg-Western 
Pomerania MP 54 96 28.1 7 4 

DE Lower Saxony LS 107 132 28.0 38 42 

DE Saxony-Anhalt  ST 46 96 22.9 16 14 

DE Brandenburg BB 114 96 30.2 21 18 

DE Berlin BE 57 72 23.6  -  - 

DE North Rhine-Westphalia NW 143 84 34.5 23 18 

DE Hesse HE 95 60 43.3 19 18 

DE Saxony SX 50 96 31.3 23 10 

DE Rhineland-Palatinate  RP 182 84 35.7 20 18 

DE Saarland SL 42 36 30.6 3  - 

DE Baden-Wuerttemberg BW 228 84 39.3 28 15 

DE Bavaria BV 382 72 33.3 69 26 
  2 
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Table 2. Model performance metrics of cross-validated random forest models per NUTS1 1 

region. 2 

Country NUTS1 MAE RMSE ∆µ ∆σ r R² 

UK NEE 0.44 0.58 0.03 -0.49 0.51 0.26 

UK NWE 1.01 1.48 0.06 -0.51 0.40 0.16 

UK YHU 0.57 0.77 0.00 -0.32 0.76 0.58 

UK CEE 0.72 0.96 -0.01 -0.31 0.74 0.54 

UK WAL 0.82 1.25 -0.01 -0.42 0.85 0.73 

UK CWE 0.59 0.88 0.00 -0.22 0.79 0.62 

UK EE 0.71 0.92 -0.02 -0.40 0.79 0.62 

UK SWE 0.55 0.70 0.01 -0.25 0.84 0.70 

UK SEE 0.92 1.23 0.01 -0.38 0.79 0.62 

UK LND 0.67 0.84 0.02 -0.42 0.67 0.45 

DE SH 0.19 0.31 0.08 -0.25 0.90 0.81 

DE MP 0.35 0.48 0.05 -0.46 0.68 0.46 

DE LS 0.38 0.56 0.04 -0.45 0.73 0.53 

DE ST 0.30 0.45 0.10 -0.40 0.68 0.46 

DE BB 0.43 0.62 -0.02 -0.40 0.78 0.61 

DE BE 0.26 0.50 0.08 -0.30 0.79 0.62 

DE NW 0.57 0.87 0.00 -0.52 0.69 0.48 

DE HE 0.61 0.82 0.08 -0.51 0.61 0.37 

DE SN 0.31 0.43 0.00 -0.41 0.71 0.50 

DE RP 0.68 1.03 0.06 -0.44 0.58 0.34 

DE SL 0.56 0.72 0.13 -0.48 0.65 0.42 

DE BW 0.74 1.16 0.02 -0.32 0.58 0.34 

DE BV 0.68 1.21 0.04 -0.27 0.82 0.67 
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 1 

Figure 2: Number of impact occurrences and distribution of impacts per impact category per 2 

NUTS1 region and season for the UK (top four plots) and Germany (bottom four plots). 3 
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 1 

Figure 3: UK: rank correlation coefficients (ρ) between drought indicators and number of 2 

impact occurrences for total impacts, hydrological drought impacts (Ih), impacts due to other 3 

types of drought (Io), and selected impact categories per NUTS1 region.  4 
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1 

2 
Figure 4: UK: rank correlation coefficients (ρ) between drought indicators and number of 3 

impact occurrences per NUTS1 region and season.  4 
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 1 

Figure 5: Germany: rank correlation coefficients (ρ) between drought indicators and number 2 

of impact occurrences for total impacts, hydrological drought impacts (Ih), impacts due to 3 

other types of drought (Io), and selected impact categories per NUTS1 region. 4 
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 1 

Figure 6: UK: ranks of predictor importance during random forest construction for total 2 

impacts, hydrological drought impacts (Ih), impacts due to other types of drought (Io), and 3 

selected impact categories per NUTS1 region.  4 
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 1 

Figure 7: Germany: ranks of predictor importance during random forest construction for total 2 

impacts, hydrological drought impacts (Ih), impacts due to other types of drought (Io), and 3 

selected impact categories per NUTS1 region.   4 
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 1 

Figure 10: RF Predictions for different regions in the UK (transformed variables).  2 
  3 
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 1 
 2 
Figure 11: RF Predictions for different regions in Germany (transformed variables).  3 
  4 
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1 

Figure 12: Time series of observed and modeled number of impact occurrences for a selection 2 

of NUTS1 regions in the UK and Germany (transformed variables). Grey background: RF 3 

Predictions, white background: RF Backwards Learning. The blue line indicates an impact 4 

threshold of one: modeled impacts smaller than one should be regarded as absent impact. 5 
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