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Abstract  11 

 12 

The applicability of six fine-resolution precipitation products, including precipitation radar, 13 

infrared, microwave and gauge-based products using different precipitation computation 14 

recipes, is evaluated using statistical and hydrological methods in northeastern China. In 15 

addition, a framework quantifying uncertainty contributions of precipitation products, 16 

hydrological models and their interactions to uncertainties in ensemble discharges is 17 

proposed. The investigated precipitation products are TRMM3B42, TRMM3B42RT, 18 

GLDAS/Noah, APHRODITE, PERSIANN and GSMAP-MVK+. Two hydrological models 19 

of different complexities, i.e., a water and energy budget-based distributed hydrological 20 

model and a physically-based semi-distributed hydrological model, are employed to 21 

investigate the influence of hydrological models on simulated discharges. Results show 22 

APHRODITE has high accuracy at a monthly scale compared with other products, and 23 

GSMAP-MVK+ shows huge advantage and is better than TRMM3B42 in RB, NSE, RMSE, 24 

CC, false alarm ratio and critical success index. These findings could be very useful for 25 
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validation, refinement and future development of satellite-based products (e.g., NASA Global 26 

Precipitation Measurement). Although large uncertainty exists in heavy precipitation, 27 

hydrological models contribute most of the uncertainty in extreme discharges. Interactions 28 

between precipitation products and hydrological models can have the simialr magnitude of 29 

contribution to discharge uncertainty as the hydrological models. A better precipitation 30 

product does not guarantee a better discharge simulation because of interactions. It is also 31 

found that a good discharge simulation depends on a good coalition of a hydrological model 32 

and a precipitation product, suggesting that, although the satellite-based precipitation 33 

products are not as accurate as the gauge-based product, they could have better performance 34 

in discharge simulations when appropriately combined with hydrological models. This 35 

information is revealed for the first time and very beneficial for precipitation product 36 

applications.  37 

 38 

1 Introduction 39 

 40 

Knowledge of precipitation plays an important role in the understanding of the water cycle, 41 

and thus in water resources management (Sellers, 1997;Sorooshian et al., 2005;Wang et al., 42 

2005;Ebert et al., 2007;Buarque et al., 2011;Tapiador et al., 2012;Yong et al., 2012;Gao and 43 

Liu, 2013;Peng et al., 2014a;Peng et al., 2014b). However, precipitation data are not available 44 

in many regions, particularly mountainous districts and rural areas in developing countries. 45 

For example, Northeast China, which plays an important role in food production to support 46 

the country’s population and is also an industrial region with many heavy industries, 47 

frequently suffers from drought, posing a threat to regional sustainable development. In such 48 

areas, due to insufficient gauge observations, alternative precipitation data are required for 49 

efficient water resources management.  50 
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 51 

In recent years, implementation of gauge-based and remote satellite-based precipitation 52 

products has become popular, particularly for ungauged catchments (Artan et al., 2007;Jiang 53 

et al., 2012;Li et al., 2013;Müller and Thompson, 2013;Maggioni et al., 2013;Xue et al., 54 

2013;Kneis et al., 2014;Meng et al., 2014;Ochoa et al., 2014). Numerous precipitation 55 

products have been developed to estimate rainfall, for example: Tropical Rainfall Measuring 56 

Mission (TRMM) products (Huffman et al., 2007), Global Land Data Assimilation System 57 

(GLDAS) precipitation products (Kato et al., 2007), Asian Precipitation - Highly-Resolved 58 

Observational Data Integration Towards Evaluation of Water Resources (APHRODITE) (Xie 59 

et al., 2007;Yatagai et al., 2012), Precipitation Estimation from Remotely Sensed Information 60 

using Artificial Neural Networks (PERSIANN) (Sorooshian et al., 2000;Sorooshian et al., 61 

2002), and Global Satellite Mapping of Precipitation product (GSMAP) (Kubota et al., 62 

2007;Aonashi et al., 2009).  63 

 64 

There are uncertainties in these products. Several studies have been carried out to analyze the 65 

uncertainty of TRMM in high latitude regions (Yong et al., 2010;Yong et al., 2012;Chen et al., 66 

2013a;Yong et al., 2014;Zhao and Yatagai, 2014), but studies in northeast China are few. 67 

Evaluation of GLDAS data has generally been limited to the United States and other 68 

observation-rich regions of the world (Kato et al., 2007); assessments and applications in 69 

other regions are rare (Wang et al., 2011;Zhou et al., 2013). The APHRODITE, PERSIANN 70 

and GSMAP products are seldom evaluated in northeast China using basin scale gauge data 71 

(Zhou et al., 2008). Owing to the high heterogeneity of rainfall across a variety of 72 

spatiotemporal scales, the uncertainty characteristics of precipitation products are variable 73 

(Asadullah et al., 2008;Dinku et al., 2008;Nikolopoulos et al., 2010;Pan et al., 2010). Thus, in 74 

northeast China, it is essential to completely evaluate the applicability of these precipitation 75 
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products. In addition, it is also worth comparing the performance of different precipitation 76 

computation recipes: for example, the artificial neural network function used in PERSIANN, 77 

the histogram matching approach used in TRMM3B42, and the cloud motion vectors used in 78 

GSMAP-MVK+, because the inter-comparison could reveal the strategies that could be used 79 

to obtain more accurate precipitation data.  80 

 81 

Researchers have implemented precipitation products in discharge simulations and reported 82 

discharge uncertainties (Hong et al., 2006;Pan et al., 2010;Serpetzoglou et al., 2010). Also, 83 

many uncertainty analysis approaches have been introduced to quantify the uncertainty 84 

(Beven and Binley, 1992;Freer et al., 1996;Kuczera and Parent, 1998;Beven and Freer, 85 

2001b;Peters et al., 2003;Heidari et al., 2006;Kuczera et al., 2006;Tolson and Shoemaker, 86 

2007;Blasone et al., 2008;Vrugt et al., 2009a;Vrugt et al., 2009b). In these prior approaches, 87 

one of the popular methods is the generalized likelihood uncertainty estimation (GLUE) 88 

technique, introduced by Beven and Binley (1992). This approach outputs probability 89 

distributions of model parameters conditioned on observed data, and the uncertainties in 90 

model inputs are represented by uncertain parameters. Similar to GLUE, Hong et al. (2006) 91 

proposed a Monte Carlo based method to quantify uncertainty in hydrological simulations 92 

using satellite precipitation data, in which flow simulation uncertainty is represented by 93 

ensemble simulation results.  94 

 95 

In addition to individual contributions from hydrological models and precipitation data, the 96 

interactions between precipitation products and hydrological models also contribute to 97 

uncertainty in simulated discharges. However, to the best of our knowledge, the previous 98 

studies have not quantified the respective contributions of precipitation products, 99 

hydrological models and their interactions to the total discharge simulation uncertainty.  100 
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 101 

The overall objectives of this paper are: (1) to investigate the applicability of six 102 

fine-resolution precipitation products using both statistical and hydrological evaluation 103 

methods in a small river basin in northeast China; (2) to propose a framework to quantify the 104 

contributions of various uncertainties from precipitation products, hydrological models and 105 

their interactions to uncertainty in simulated discharges. The precipitation products 106 

investigated are TRMM3B42, TRMM3B42RT, GLDAS/Noah (GLDAS_Noah025SUBP_3H), 107 

APHRODITE, PERSIANN and GSMAP-MVK+. Two hydrological models of different 108 

complexities - a water and energy budget-based distributed hydrological model (WEB-DHM) 109 

(Wang et al., 2009a;Wang et al., 2009b;Wang et al., 2009c) and a physically-based 110 

semi-distributed hydrological model TOPMODEL (Beven and Kirkby, 1979) - were 111 

employed to investigate the influence of hydrological models on discharge simulations. The 112 

respective uncertainties from precipitation products, hydrological models and the combined 113 

uncertainties from the interactions between products and models are quantified using a global 114 

sensitivity analysis approach, i.e., the analysis of variance approach (ANOVA). A river basin 115 

with a series of 8-year data is used to demonstrate the methodology.  116 

 117 

The paper is organized as follows. Section 2 introduces the study region, precipitation 118 

products, hydrological models and the proposed framework. Section 3 presents the statistical 119 

evaluation results. Hydrological evaluations and the implementation of the proposed 120 

framework are given in section 4. Discussion is given in section 5. Summary and conclusions 121 

are presented in section 6.  122 

 123 
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2 Materials and methodology 124 

2.1 Biliu basin 125 

 126 

Biliu basin (2814 km2), located in the coastal region between the China Bohai Sea and the 127 

China Huanghai Sea, covers longitudes 122.29°E to 122.92°E and latitudes 39.54°N to 128 

40.35°N. This basin is characterized by a snow - winter dry - hot summer climate (Koppen 129 

climate classification) and the average annual temperature is 10.6°C. Summer (July to 130 

September) is the major rainy season. There are 11 rainfall stations and one discharge gauge 131 

which have historical data from January 2000 to December 2007. The average elevation is 132 

240 meters. The gauge distribution in Biliu is shown in Fig. 1. The basin slopes vary from 0 133 

to 38 degrees. Land-use data are obtained from the USGS 134 

(http://edc2.usgs.gov/glcc/glcc.php). The land-use types have been reclassified to SiB2 135 

land-use types for this study (Sellers et al., 1996). There are six land-use types, with 136 

broadleaf and needle leaf trees and short vegetation being the main types. Soil data are 137 

obtained from the Food and Agriculture Organization (FAO) (2003) Global data product, and 138 

there are two types of soil in the basin: clay loam-luvisols and loam-phaeozems.  139 

 140 

2.2 Precipitation products 141 

 142 

The selected precipitation products are shown in Table 1. These data are all freely available. 143 

In these selected precipitation products, APHRODITE is wholly based on gauge data; 144 

TRMM3B42 and GLDAS are remote satellite estimation with gauge data corrections; while 145 

others are remote satellite estimation without gauge data corrections. Remote-based 146 

precipitation estimation has many weaknesses, e.g., microwave estimation could miss 147 

convective rainfall and typhoon rain because of its sparse time interval resolution; infrared 148 
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estimation has a higher time interval resolution, but it cannot penetrate thick clouds. Ground 149 

rain gauge-based interpolation products are limited by interpolation algorithms, gauge density 150 

and gauge data quality (Xie et al., 2007). The details of data sources used in each 151 

precipitation product can be found in Table 1. The detailed introductions of these products are 152 

as follows.  153 

 154 

TRMM is a joint mission between NASA and Japan Aerospace Exploration Agency designed 155 

to monitor and study tropical rainfall (Kummerow et al., 2000;Huffman et al., 2007). Three 156 

instruments - a visible infrared radiometer, a TRMM microwave imager and a precipitation 157 

radar - are employed to obtain accurate precipitation estimation. The TRMM precipitation 158 

radar is the first space-based precipitation radar and operates between 35°N and 35°S. 159 

Outside this band, the microwave imager is used between 40°N and 40°S, and the visible 160 

infrared radiometer data are used between 50°N to 50°S. Usually the precipitation radar is 161 

considered to give the most accurate estimation from satellite, and data from it are often used 162 

for calibration of passive microwave data from other instruments (Ebert et al., 2007). The 163 

post-real-time product used in this study is the TRMM3B42, which utilizes three data sources: 164 

the TRMM combined instrument estimation using data from both TRMM precipitation radar 165 

and the microwave imager; the GPCP monthly rain gauge analysis developed by the Global 166 

Precipitation Climatology Center; and the Climate Assessment and Monitoring System 167 

monthly rain gauge analysis. TRMM3B42 applies an infrared to rain rate relationship using 168 

histogram matching, while TRMM3B42RT merges microwave and infrared precipitation 169 

estimation.  170 

 171 

PERSIANN is a product that, using an artificial neural network function, estimates 172 

precipitation by combining infrared precipitation estimation and the TRMM combined 173 
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instrument estimation (which assimilates with TRMM precipitation radar and microwave 174 

data). GSMAP-MVK+ uses microwave and infrared precipitation data together and combines 175 

cloud motion vectors to generate fine-resolution precipitation estimation.  176 

 177 

The Global Land Data Assimilation System (GLDAS) project is an extension of the existing 178 

and more mature North American Land Data Assimilation System (Rodell et al., 2004). It 179 

integrates satellite- and ground-based data sets for parameterizing, forcing and constraining a 180 

few offline land surface models for generating optimal fields of land surface states and fluxes. 181 

At present, GLDAS drives four Land Surface Models: Mosaic (Koster and Suarez, 1992), 182 

Noah (Chen et al., 1996;Betts et al., 1997;Koren et al., 1999;Ek, 2003), the Community Land 183 

Model (Dai et al., 2003) and Variable Infiltration Capacity model (Liang et al., 1994). Among 184 

them, the GLDAS/Noah Land Surface Model product (GLDAS_NOAH025SUBP_3H) has a 185 

3-h 0.25° ×  0.25° resolution, which is desirable for basin scale research. The GLDAS 186 

precipitation data combine microwave and infrared, and also assimilate gauge observations.  187 

 188 

2.3 Criteria for accuracy assessment  189 

 190 

Uncertainties of precipitation products are evaluated on the basis of basin-averaged rainfall 191 

observations. Four evaluation criteria are used in rainfall amount error assessment: 192 

correlation coefficient (CC), root mean square error (RMSE), Nash-Sutcliffe coefficient of 193 

efficiency (NSE) and relative bias (RB). These are calculated as follows:   194 
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where Xoi represents observed data; Xpi represents estimated data; n is the total number of data 198 

points. A perfect fit should have CC and NSE values of one. The lower the RMSE and RB, 199 

the better the estimation. These comparison criteria have been used by many studies (Ebert et 200 

al., 2007;Wang et al., 2011;Yong et al., 2012), so they are used in this study.  201 

 202 

Probability distributions by occurrence and volume are also analyzed, which can provide us 203 

with the information on the frequency and on the product error dependence on precipitation 204 

intensity (Chen et al., 2013a;Chen et al., 2013b). The critical success index (CSI), probability 205 

of detection (POD) and false alarm ratio (FAR) are used to quantify the ability of 206 

precipitation products to detect observed rainfall events. These are defined as follows: 207 

 CSI H
H M F

=
+ +

  (4) 208 

 POD H
H M

=
+

  (5) 209 

 FAR F
H F

=
+

  (6) 210 

where H is the total number of hits; M is the total number of misses; F is the total number of 211 

false alarms (Ebert et al., 2007;Su et al., 2008). A perfect detection should have CSI and POD 212 

values equal to one and a FAR value of zero.  213 

 214 
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2.4 Hydrological models and data 215 

2.4.1 WEB-DHM 216 

 217 

The distributed biosphere hydrological model, WEB-DHM (Wang et al., 2009a;Wang et al., 218 

2009b;Wang et al., 2009c), was developed by coupling a simple biosphere scheme (Sellers et 219 

al., 1986) with a geomorphology-based hydrological model (Yang, 1998) to describe water, 220 

energy and 2CO  fluxes at a basin scale. WEB-DHM has been used in several evaluations 221 

and applications (Wang et al., 2010a;Wang et al., 2010b;Wang et al., 2012;Shrestha et al., 222 

2013).  223 

 224 

WEB-DHM input data include precipitation, temperature, downward solar radiation, long 225 

wave radiation, air pressure, wind speed and humidity. With the exception of precipitation, all 226 

input data are obtained from automatic weather stations. There are three automatic weather 227 

stations near Biliu, and observations from these are obtained from the China Meteorological 228 

Data Sharing Service System (downloaded from http://cdc.cma.gov.cn/home.do). Hourly 229 

precipitation data are downscaled from daily rain gauge observations using a stochastic 230 

method (Wang et al., 2011). Hourly temperatures are calculated from daily maximum and 231 

minimum temperatures using the TEMP model (Parton and Logan, 1981). The estimated 232 

temperatures are also further evaluated using daily average temperature. Downward solar 233 

radiation is estimated from sunshine duration, temperature and humidity using a hybrid 234 

model (Yang et al., 2006). Long wave radiation is obtained from the GLDAS/Noah (Rodell et 235 

al., 2004). Air pressure is estimated according to altitude (Yang et al., 2006). These 236 

meteorological data are then interpolated to 300 m × 300 m model cells through an 237 

inverse-distance weighting approach. Because of the elevation differences among model cells 238 

and meteorological gauges, the interpolated surface air temperatures are further modified 239 
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with a lapse rate of 6.5K/km. Gauge rainfall data are also interpolated to 300 m × 300 m 240 

model cells and basin-averaged gauge rainfall data are calculated on the basis of interpolation 241 

results. In addition to the above, the leaf area index and fraction of photosynthetically active 242 

radiation data are obtained from level-4 MODIS global products-MOD11A2. Digital 243 

Elevation Model (DEM) is from the NASA SRTM (Shuttle Radar Topographic Mission) with 244 

a resolution of 30 m × 30 m. We resampled the resolution to 300 m in model calculation to 245 

reduce computation cost, while the model processed finer DEM (30 m grid) to generate 246 

sub-grid parameters (such as hillslope angle and length).  247 

 248 

2.4.2 TOPMODEL 249 

 250 

TOPMODEL is a physically-based, variable contributing area model of basin hydrology 251 

which attempts to combine the advantages of a simple lumped parameter model with 252 

distributed effects (Beven and Kirkby, 1979). Fundamental to TOPMODEL’s 253 

parameterization are three assumptions: (1) saturated-zone dynamics can be approximated by 254 

successive steady-state representations; (2) hydrological gradients of the saturated zone can 255 

be approximated by the local topographic surface slope; and (3) the transmissivity profile 256 

whose form declines exponentially with increasing vertical depth of the water table or storage 257 

is spatially constant. On the basis of the above mentioned assumptions, the index of 258 

hydrological similarity is represented as the topographic index, ln( / tan )a β , for which a  259 

is the area per unit contour length and ß is the local slope angle. More detailed descriptions of 260 

TOPMODEL and its mathematical formulation can be found in Beven et al. (1979). 261 

TOPMODEL has been popularly utilized in research across the world (Blazkova and Beven, 262 

1997;Cameron et al., 1999;Hossain and Anagnostou, 2005;Bastola et al., 2008;Gallart et al., 263 

2008;Bouilloud et al., 2010;Qi et al., 2013), because of its relatively simple model structure. 264 
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The input data of TOPMODEL mainly includes basin averaged precipitation and topographic 265 

data which can be estimated from DEM.  266 

 267 

2.5 The proposed framework 268 

 269 

Fig. 2 shows the diagrammatic flowchart of the proposed framework for quantification of 270 

uncertainty contributions to ensemble discharges simulated using precipitation products. This 271 

framework includes four parts: (a) selection of precipitation products; (b) selection of 272 

hydrological models; (c) ensemble discharge simulations using the hydrological models and 273 

precipitation products; and (d) quantification of individual and interactive contributions using 274 

the analysis of variance (ANOVA) approach including contributions from precipitation 275 

products, hydrological models and interactions between models and products. Because the 276 

spatial resolution of selected precipitation products does not correspond with WEB-DHM 277 

model cells, the following procedures were carried out for basin averaged rainfall 278 

calculations: (1) resampling 0.25o or 0.1o precipitation product grids into 300 m × 300 m cells 279 

(the grid size used in WEB-DHM simulations); (2) calculating basin-averaged precipitation 280 

using 300 m precipitation product grids located within the basin boundary. Diagrammatic 281 

descriptions of these procedures are shown in Fig. 1d. Because WEB-DHM needs hourly 282 

input data, for the 3-hour resolution precipitation products, we assumed rainfall is uniformly 283 

distributed within each 3-hour period. For daily resolution products, we used the same 284 

approach as downscaling observed precipitation data. This downscaling approach may affect 285 

uncertainty in simulated discharge. However, Wang et al. (2011) have already successfully 286 

applied the downscaling approach, and showing that the influence is negligible.  287 

 288 

The total ensemble uncertainty Y is the variance of discharges. To relate Y to the uncertainty 289 
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sources, the superscripts j and k in j ,kY  represent a combination of precipitation product j 290 

and hydrological model k  291 

 j k j ,kj ,k P M PMY = + +   (7) 292 

where P represents the effect of jth precipitation product, M represents the effect of kth 293 

hydrological model, and PM  represents the interaction effect. In this study, j varies from 294 

one to six, and k varies from one to two. Details of the quantification are explained in the 295 

follow sections.  296 

 297 

2.5.1 Subsampling approach 298 

 299 

ANOVA could underestimate variance when the sample size is small (Bosshard et al., 2013). 300 

To reduce the effect of the sample size, Bosshard et al. (2013) proposed a subsampling 301 

method, which was used in this paper. In the subsampling method, the superscript j in Eq. (7) 302 

is replaced with ( )h,ig . According to Bosshard et al. (2013), in each subsampling iteration i, 303 

data from two products should be selected out of all the six products, and thus 15 304 

combinations can be obtained. Therefore, the superscript g  becomes a 2 × 15 matrix:  305 

 
1 1 1 2 2 4 4 5
2 3 6 3 4 5 6 6
 

=  
 

g
 

 

  (8) 306 

 307 

2.5.2 Uncertainty contribution decomposition 308 

 309 

Based on the ANOVA theory (Bosshard et al., 2013), total error variance (SST) can be 310 

divided into sums of squares due to the individual effects as: 311 

 SST = SSA + SSB + SSI   (9) 312 

where SSA is the error contribution of precipitation products, SSB is the error contribution of 313 
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hydrological models and SSI is the error contribution of their interactions.  314 

 315 

The terms can be estimated using the subsampling procedure as follows: 316 
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where symbol o indicates averaging over a particular index; H is the number of precipitation 321 

products (six in this study) and K is the number of hydrological models (two in this study). 322 

Then the variation fraction 2η  is calculated as follows: 323 

 2
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2η  has a value between 0 and 1, which represent 0% and 100% contributions to the overall 327 

uncertainty of simulated discharges respectively. I equals 15 in this study. As shown in Eqs. 328 

14-16, the subsampling approach is necessary because it guarantees that every contributor has 329 

the same denominator I. This same denominator makes sure that the inter-comparison among 330 

precipitation contribution, model contribution and interaction contribution is free of influence 331 

from the sampling number of precipitation products and hydrological models.  332 

 333 
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3 Statistical evaluations  334 

3.1 Daily and monthly scales 335 

 336 

Comparison of precipitation product data and gauge observations at a daily scale is shown in 337 

Fig. 3. Observations are shown on the x-axis and precipitation product data are shown on the 338 

y-axis. Four criteria, RMSE, CC, NSE and RB, are also shown. GSMAP-MVK+ is the best 339 

product and PERSIANN has the poorest performance with respect to RMSE and NSE. 340 

GSMAP-MVK+ is also the best with respect to CC, while GLDAS has the poorest 341 

performance with a CC value of 0.55. With respect to RB, APHRODITE performs best and 342 

GSMAP-MVK+ the second best, while TRMM3B42RT the least best with an RB value of 343 

-38%. None of the products can outperform others in terms of all the statistical criteria. This 344 

may be due to the different limitations of satellite sensors and inverse algorithms of 345 

precipitation products. This situation shows that the selection of the best precipitation 346 

products is difficult.  347 

 348 

TRMM3B42RT and TRMM3B42 underestimate precipitation amounts. This underestimation 349 

may be because convective rainfall always happens in summer in northeast China (Shou and 350 

Xu, 2007a, b;Yuan et al., 2010), and indicates the limitation of TRMM algorithms in high 351 

latitude regions with convective rainfall. This type of rainfall has a large rainfall amount 352 

within a short time period and, therefore, cannot be captured by microwave imager. This type 353 

of rainfall may also have a thick cloud that is impenetrable by infrared (Ebert et al., 2007). 354 

Thus microwave and infrared estimation could underestimate rainfall. Compared with 355 

TRMM3B42RT, TRMM3B42 provides an improvement in RB. This improvement may be 356 

attributed to the assimilation with gauge data and histogram matching. Compared with 357 

APHRODITE and GSMAP-MVK+, TRMM3B42 has low accuracy as represented by RB. 358 
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This implies that the retrieval algorithm used by TRMM3B42 still needs to be improved with 359 

respect to RB. The reason why APHRODITE outperforms TRMM3B42 is that APHRODITE 360 

is a gauge-based product. GSMAP-MVK+ outperforms TRMM3B42 in terms of RB may be 361 

due to the cloud motion vectors it uses. Compared with GSMAP-MVK+, GLDAS/Noah 362 

precipitation shows low accuracy in all the criteria even though they use similar data sources: 363 

IR and MW.  364 

 365 

Comparison of precipitation product data and gauge observations at a monthly scale is shown 366 

in Fig. 4. Here, the APHRODITE product (Fig. 4d) performs best based on RMSE, CC, NSE 367 

and RB. GLDAS/Noah is the poorest in terms of RMSE and NSE. With respect to CC, 368 

GLDAS and TRMM3B42 are equally poor, with CC values of 0.81. The results also show 369 

that PERSIANN overestimates precipitation amount, while Li et al. (2013) found 370 

PERSIANN underestimates rainfall in south China. This may be attributed to the different 371 

latitudes of the study regions.  372 

 373 

Fig. 5 shows time series of average monthly precipitation data against gauge observations 374 

during the period 2000-2007. Each curve represents a different precipitation product. GLDAS 375 

data (Fig. 5a) seriously underestimate high rainfall. Similarly, TRMM3B42RT underestimates 376 

peak precipitation intensity also. Comparatively, APHRODITE, PERSIANN, TRMM3B42 377 

and GSMAP-MVK+ have better performances.  378 

 379 

3.2 Inter-annual evaluations 380 

 381 

Fig. 6 shows the inter-annual average monthly precipitation. Each curve represents a different 382 

product data. PERSIANN overestimates in all the 12 months, while others underestimate, 383 



17 
 

especially during the summer. This may result from the artificial neural network function and 384 

limitations of infrared and microwave estimation. APHRODITE data are relatively close to 385 

observations. Compared with TRMM3B42RT, TRMM3B42 is better, which indicates the 386 

gauge corrections and histogram matching used by TRMM3B42 impact positively on 387 

accuracy. During the summer, discrepancies between products become larger. With a decrease 388 

of rainfall magnitude, the discrepancies between products reduce. This information implies 389 

that the differences in precipitation estimation algorithms are related to precipitation 390 

magnitudes: the larger the rainfall magnitudes, the greater the differences.  391 

 392 

3.3 Probability distribution evaluations 393 

 394 

Fig. 7 shows cumulative probability distribution functions (CDF) by occurrence (CDFc) and 395 

by volume (CDFv) for precipitation products. Probabilities are shown on the y axis, and the x 396 

axis shows rainfall intensity with a 1 mm/day interval log space.  397 

 398 

PERSIANN is the best by both occurrence and volume. However, for CDFc, TRMM3B42RT 399 

is the least best, and, for CDFv, TRMM3B42RT and GLDAS/Noah are comparable and 400 

worse than others. All precipitation products overestimate occurrence and volume 401 

probabilities except rainfall intensities of larger than 63mm/day and 53mm/day for 402 

occurrence and volume probabilities, respectively. This may be because the precipitation 403 

products overestimate the intensity of some heavy rainfall (recall the results in section 3.1). 404 

The results differ from those of Li et al. (2013), in which PERSIANN has the poorest 405 

performance. This may result from differences in study region (in the study of Li et al. (2013), 406 

south China was studied).  407 

 408 
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3.4 Contingency statistics 409 

 410 

Fig. 8 shows the false alarm ratio, probability of detection and critical success index for each 411 

precipitation product.  412 

 413 

PERSIANN has the highest false alarm ratio among the products, while TRMM3B42RT has 414 

the lowest. The false alarm ratio of TRMM3B42 is larger than TRMM3B42RT, which 415 

indicates that the gauge corrections and histogram matching used by TRMM3B42 do not 416 

provide positive effects on false alarm ratio and may give rise to uncertainty in false alarm 417 

ratio. GSMAP-MVK+ has a lower false alarm ratio than TRMM3B42. 418 

 419 

No obvious trends are observed for the false alarm ratio overall (compared with the 420 

probability of detection and critical success index), which means the false alarm ratio 421 

dependence on rainfall magnitude is weak. However, Chen et al. (2013a) found the false 422 

alarm ratios of TRMM3B42 and TRMM3B42RT to increase with an increase in rainfall 423 

intensity. The differences are attributed mainly to observed data. In the study of Chen et al. 424 

(2013a), national rain gauge data were employed, whereas in this study more detailed basin 425 

data are used.  426 

 427 

Among all selected products, GLDAS/Noah has the lowest probability of detection and 428 

critical success index during periods of high rainfall intensity, while APHRODITE retains a 429 

high probability of detection and critical success index. This is because APHRODITE uses 430 

gauge observations, and implies that the APHRODITE algorithm is effective. PERSIANN 431 

has comparable probability of detection with APHRODITE. The critical success index of 432 

GSMAP-MVK+ is also comparable with APHRODITE. Compared with TRMM3B42RT, 433 
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TRMM3B42 has greater probability of detection and comparable critical success index. This 434 

information implies that retrieval algorithm of TRMM3B42 provides positive effects on 435 

probability of detection, but no obvious positive impacts on critical success index.  436 

 437 

Decreasing trends are observed for all products in terms of probability of detection and 438 

critical success index, matching the results of Chen et al. (2013a) for TRMM3B42 and 439 

TRMM3B42RT. This indicates that probability of detection and critical success index have 440 

relatively strong dependence on rainfall magnitude, and implies microwave and infrared 441 

precipitation estimation may have relatively strong dependence on rainfall magnitude in 442 

terms of probability of detection and critical success index.  443 

 444 

4 Hydrological evaluations 445 

4.1 Assessment of hydrological models  446 

WEB-DHM was calibrated against observed discharges of Biliu. Six main parameters were 447 

selected to calibrate using a trial and error approach due to the model’s computational burden. 448 

Model parameter multipliers were calibrated, similar to the study by Wang et al. (2011). The 449 

‘Trial and error’ approach has two steps. First, all the multiplier values are set to 1 which 450 

represents the default parameter values from Food and Agriculture Organization (FAO) (2003) 451 

and SiB2 model. Second, varying the multiplier values until acceptable discharge simulation 452 

accuracy is obtained. The calibrated parameter values are listed in Table 2. The simulated 453 

daily, monthly and inter-annual results are shown in Figs. 9a, 9c and 9e.  454 

 455 
TOPMODEL uses basin-averaged parameter values, and these parameter values are estimated 456 

by experience or observation. However, these methods do not give precise parameter values. 457 

Therefore, the parameter values are considered as uncertain and provided with ranges based 458 

on experience (Beven and Kirkby, 1979;Beven and Freer, 2001a, b;Peters et al., 2003). Six 459 
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parameters of TOPMODEL were calibrated using the dynamically dimensioned search 460 

algorithm (Tolson and Shoemaker, 2007), and the results are given in Table 3. The simulated 461 

daily, monthly and inter-annual results are shown in Figs. 9b, 9d and 9f.  462 

 463 

Note that the parameters of TOPMODEL and WEB-DHM were calibrated using observed 464 

precipitation data, and the accuracy of simulated discharges was validated using gauge 465 

observations. Comparison with the rainfall-runoff model parameter values reported for the 466 

case study catchment in previous research shows the parameter values are appropriate. (Qi et 467 

al., 2013;Qi et al., 2015, 2016).  468 

 469 

4.2 Daily scale discharges 470 

 471 

Figs. 10 and 11 display scatterplots of discharges during the period 2000-2007 simulated 472 

using WEB-DHM and TOPMODEL against gauge observations at a daily scale. Two criteria, 473 

NSE and RB, are shown. It should been noted that the start dates are different for 474 

precipitation products, and observed data were used when product data are not available: 475 

from 1 January 2000 to 29 February 2000 for TRMM3B42RT, GSMAP-MVK+ and 476 

PERSIANN; from 1 January 2000 to 23 February 2000 for GLDAS/Noah. These time 477 

periods were not considered for accuracy comparison.  478 

 479 

In the case of WEB-DHM simulations, the best NSE (0.41) corresponds with APHRODITE 480 

(Fig. 10d), while the best value for RB (1%) corresponds with GLDAS/Noah. In the case of 481 

TOPMODEL simulations, the best NSE (0.41) corresponds with APHRODITE, and the best 482 

value for RB (-24%) corresponds with APHRODITE also. Although the best NSE is the same 483 

for both WEB-DHM and TOPMODEL simulations and corresponding product is also the 484 
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same, there is a large difference in the best RB values. At the daily scale precipitation amount 485 

evaluation, the least best RB is -38%, corresponding with TRMM3B42RT (Fig. 3c). However, 486 

in WEB-DHM discharge simulation, the least best RB (218%) corresponds with PERSIANN, 487 

and, in TOPMODEL simulation, the least best RB (-62%) corresponds with TRMM3B42RT. 488 

These differences stem from differences in hydrological models and interactions between 489 

hydrological models and precipitation product data.  490 

 491 

All RB criteria at the daily scale precipitation evaluations (recall the results in Fig. 3) are 492 

amplified by TOPMODEL, while in the case of WBE-DHM, some are amplified and the 493 

others are decreased. For example, for GLDAS and PERSIANN, the RB criteria at the daily 494 

scale precipitation evaluations are -27% and 28%, but they are -50% and 31% in 495 

TOPMODEL simulations; they are 1% and 218% in WEB-DHM simulations. These 496 

differences result from the influence of hydrological models and interactions between 497 

precipitation products and hydrological models. These results reveal that a hydrological 498 

model can amplify uncertainties in input data but also reduce uncertainties, which may be due 499 

to the nonlinear runoff generation process in hydrological models. This finding is consistent 500 

with the research by Yong et al. (2010).  501 

 502 

4.3 Monthly scale discharges 503 

 504 

Figs. 12 and 13 display scatterplots of discharges during the period 2000-2007 simulated 505 

using WEB-DHM and TOPMODEL against gauge observations at a monthly scale.  506 

 507 

In the case of WEB-DHM, the best NSE and RB values are 0.73 and 1%, which 508 

corresponding with TRMM3B42 and GLDAS respectively. In the case of TOPMODEL, they 509 
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are 0.58 and -24%, corresponding with PERSIANN and APHRODITE respectively. The 510 

combination of WEB-DHM and TRMM3B42 shows a satisfactory performance, with NSE 511 

and RB values of up to 0.73 and -7%, even though TRMM3B42 is not the best in monthly 512 

scale precipitation data evaluation. This reveals the influence of different combinations of 513 

hydrological models and precipitation data on discharge simulation, implying that accurate 514 

discharge simulation does not solely depend on the accuracy of a precipitation product.  515 

 516 

At the monthly scale, although APHRODITE is the best precipitation product and 517 

WEB-DHM model has better performance than TOPMODEL in calibration (Figs. 9c and 9d), 518 

the combination of APHRODITE and WEB-DHM is not better in the discharge simulation, 519 

which can be shown by comparing Fig. 12d with Fig. 13d (the RB and NSE of WEB-DHM 520 

and APHRODITE combination are -37% and 0.5, but they are -24% and 0.51 for the 521 

combination of TOPMODEL and APHRODITE). This could be due to the interactive 522 

influence between hydrological models and precipitation products, and implies that the 523 

interactions between models and products could be large and have a big influence on 524 

discharge simulations. In addition, comparison of Figs. 12d and 12b shows that discharge 525 

simulation of APHRODITE is worse than TRMM3B42, even though APHRODITE is the 526 

best precipitation product in terms of all the selected criteria at a monthly scale precipitation 527 

amount evaluation. This information shows that better precipitation products do not guarantee 528 

better discharge simulations. These results imply that, although the satellite-based 529 

precipitation products are not as accurate as gauge-based products in rainfall amount 530 

estimation, they could have a better performance in discharge simulations if the combination 531 

of precipitation product and hydrological model is good.  532 

 533 
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4.4 Inter-annual average monthly discharges 534 

 535 

Fig. 14 shows inter-annual average monthly discharges of all selected precipitation products 536 

during the period 2000-2007. In the case of TOPMODEL, PERSIANN agrees well with 537 

gauge observations, and all products underestimate discharges in August. In the case of 538 

WEB-DHM, GLDAS data and TRMM3B42 data have a better performance than other data 539 

but, with the exception of PERSIANN, all products underestimate peak discharge in August. 540 

The simulation results show huge differences even though Figs. 9e and 9f show TOPMODEL 541 

and WEB-DHM have almost the same performance using observed data; this is because of 542 

the impacts of interactive influence between hydrological models and precipitation products.  543 

 544 

4.5 Uncertainty source quantification 545 

 546 

All above results suggest that discharge simulations are influenced by precipitation products, 547 

hydrological models and interactions between hydrological models and precipitation products. 548 

Thus it is essential to quantify the respective influence. Figs. 15a and 15b show contributions 549 

of precipitation products, hydrological models and their interactions to uncertainties in 550 

monthly average discharges and different flow quantiles respectively. Fig. 15b shows 551 

quantiles computed at a daily time step. The contributions of uncertainty sources are 552 

represented by stripes.  553 

 554 

Fig. 15a shows that precipitation data contribute most of the uncertainty in discharges, and 555 

contribute more than hydrological models. Interactions between hydrological models and 556 

precipitation products have large contributions, at a similar level to those from hydrological 557 

models. In summer (July to September), the contribution of precipitation data is less than 558 
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most other months except March. However, the uncertainty in precipitation intensity 559 

increases in summer (recall the results in section 3.2). In non-summer months except March, 560 

the uncertainty contribution from precipitation products is larger than in summer. These 561 

differences maybe result from the nonlinear propagation of uncertainty through hydrological 562 

models. In March, the contribution of hydrological models is larger than in other months, 563 

which may result from the decrease in influences of interactions and precipitation products, 564 

and from the nonlinear influence of the hydrological models.  565 

 566 

Fig. 15b shows that, for small discharges (smaller than 25% quantile which corresponds to an 567 

observed discharge value of 1.79m3/s) and large discharges (larger than 99% quantile which 568 

corresponds to an observed discharge value of 157m3/s), hydrological models contribute most 569 

of the uncertainties. For middle magnitude flows (between 25% and 99% quantiles), 570 

precipitation products contribute the majority, and the contribution of interactions is not 571 

negligible and of similar magnitude to the contribution from hydrological models. The 572 

contribution of interactions is larger for middle magnitude flows than for small and large 573 

discharges. The different contributions of interactions for various magnitude flows may be 574 

because different magnitude rainfall data could trigger different hydrological processes 575 

(Herman et al., 2013). Small discharges mainly come from base flows which are relatively 576 

stable and do not need much rainfall to be triggered, and large discharges are mainly 577 

controlled by overland flows when heavy precipitation occurs. Middle magnitude discharges 578 

consist of contributions from base flows, lateral subsurface flows and overland flows, and can 579 

be triggered by rainfalls of various magnitudes - thus interactions are more variable.  580 

 581 

Although heavy rainfall data have high uncertainty (recall the results in section 3.1), 582 

precipitation products have a small contribution to uncertainty in large discharges (Fig. 15b). 583 
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This implies that the uncertainty in high precipitation is compensated by the high nonlinearity 584 

in hydrological models.  585 

 586 

In this study, because hydrological model parameters were calibrated using gauge 587 

observations, the hydrological model parameter uncertainty was not considered. Although the 588 

uncertainty contribution results in this study may not be transferable to other basins, the 589 

proposed framework provides a useful tool for quantifying uncertainty contributions in 590 

discharge simulations using precipitation products.  591 

 592 

5 Discussion  593 

The spatial variations in precipitation are not considered in this study. The study region is a 594 

small river basin, as shown in Fig. 1, there are only 11 grids inside the basin boundary for the 595 

precipitation products with a spatial resolution of 0.25 degree. Within a grid of 0.25 degree, 596 

there are no differences in precipitation amount between the 300 m × 300 m grids used in 597 

hydrological models, and differences exist at the level of 0.25 degree grids only. 598 

Sapriza-Azuri et al. (2015) suggested that the spatial variability of precipitation has little 599 

influence on rapidly responding river discharges; this study is the case because the flow 600 

transport time from the most upper part of the basin to the downstream discharge gauge is 6 601 

hours, which is shorter than the daily and monthly time steps of discharges investigated. 602 

Therefore, the spatial distributions of precipitation products with a resolution of 0.25 degree 603 

in the relatively small river basin have little influence on the simulated discharges. However, 604 

the assumption of uniform distribution can be regarded as another uncertainty source against 605 

spatial variability, and its influence can be assessed using the proposed uncertainty 606 

quantification framework. This will allow us to compare the relative contributions of the 607 

assumption to those from other sources such as hydrological models, which will be 608 
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investigated using a much larger river basin in future work.  609 

 610 

In addition to improving the accuracy of precipitation products, a good coalition could help to 611 

achieve the performance in discharge simulations. Our approach provides a way to assess the 612 

different coalitions, i.e., the overall uncertainties in simulated discharges from different 613 

combinations of hydrological models and precipitation products. More precipitation products 614 

and hydrological models should be included and tested in future work.  615 

 616 

It should be noted that other input data including temperature, downward solar radiation, long 617 

wave radiation, air pressure, wind speed and humidity may also have uncertainties. However, 618 

Fig. 9 shows that the simulated discharge data are acceptable particularly at monthly and 619 

inter-annual scales using these data. Research has shown that the land surface temperatures 620 

are highly accurate compared with MODIS satellite land surface temperature observations 621 

(Wang et al., 2011;Qi et al., 2015). Thus, the uncertainties from the other inputs are not 622 

considered in our case study river basin.  623 

 624 

In this study, the parameter values calibrated using gauge observations are not tuned to a 625 

specific product. That is, there is little compensation by model parameters for the errors in 626 

input precipitation data. The differences in modeling accuracy mainly results from the 627 

different representations of hydrological processes. That is, the errors in precipitation 628 

products are primarily compensated by the different representations of model processes.  629 

 630 

6 Summary and conclusions 631 

 632 

This research assesses the applicability of six precipitation products with fine spatial and 633 
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temporal resolutions at a high latitude region in northeast China using both statistical and 634 

hydrological evaluation methods at multi-temporal scales. A framework is proposed to 635 

quantify uncertainty contributions of precipitation products, hydrological models and their 636 

interactions to simulated discharges. These products are TRMM version 7 products 637 

(TRMM3B42 and TRMM3B42RT), GLDAS, APHRODITE, PERSIANN and 638 

GSMAP-MVK+. The fully distributed WEB-DHM and semi-distributed TOPMODEL were 639 

employed to investigate the influence of hydrological models on simulated discharges. The 640 

results show the uncertainty characteristics of the six products, and reveal strategies that 641 

could improve precipitation products. This information could provide references for future 642 

precipitation product development. The proposed framework can reveal hydrological 643 

simulation uncertainties using precipitation products: thus provides useful information on 644 

precipitation product applications. The following conclusions are presented on the basis of 645 

this study.  646 

 647 

First, at daily scale, selecting the best precipitation products is very difficult, while, at a 648 

monthly scale, APHRODITE has the best performance in terms of NSE, RB, RMSE, and CC, 649 

and also retains a high probability of detection and critical success index. This information 650 

implies that the APHRODITE algorithm is effective, and APHRODITE could be a very good 651 

data set to refine and validate satellite-based precipitation products.  652 

 653 

Second, GSMAP-MVK+ show huge advantage, and is better than TRMM3B42 in RB, NSE, 654 

RMSE, CC, false alarm ratio and critical success index, while PERSIANN is better than 655 

TRMM3B42 in probability of detection and precipitation probability distribution estimation. 656 

At present, the NASA Global Precipitation Measurement (GPM) mission combines the 657 

artificial neural network function of PERSIANN and precipitation radar-matching of TRMM 658 



28 
 

Multi-satellite Precipitation Analysis. However, the above finding implies that incorporating 659 

GSMAP-MVK+ estimation approach into GPM could be useful as well.  660 

 661 

Third, it is found that, although high uncertainty exists in heavy rainfall, hydrological models 662 

contribute mostly to the uncertainty in extreme discharges. This may result from the 663 

nonlinear propagation of uncertainty through hydrological models enlarges the influence of 664 

hydrological models, and implies that high uncertainties in extreme rainfall do not mean high 665 

uncertainties in extreme discharges.  666 

 667 

Fourth, interactions between hydrological models and precipitation products contribute a lot 668 

to uncertainty in discharge simulations, and interactive impacts are influenced by discharge 669 

magnitude. Because of interactive effects, for hydrological models with similar performances 670 

in calibration, using the same precipitation products for discharge simulations does not 671 

provide a similar level of accuracy in discharge simulations, and in fact very different 672 

predictions could be obtained. In addition, this finding implies that only considering 673 

precipitation products or hydrological model uncertainties could result in overestimation of 674 

precipitation product contribution and hydrological model contribution to discharge 675 

uncertainty.  676 

 677 

Fifth, a good discharge simulation depends on a good coalition of a hydrological model and a 678 

precipitation product, and a better precipitation product does not necessarily guarantee a 679 

better discharge simulation. This suggests that, although the satellite-based precipitation 680 

products are not as accurate as the gauge-based product, they could have better performance 681 

in discharge simulations when appropriately combined with hydrological models. It should be 682 

noted that this finding should be further tested with more river basins, in particular large river 683 
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basins accounting for spatial variability in precipitation products.  684 

 685 

In the future, calculating deterministic discharge simulations considering precipitation 686 

product uncertainties and hydrological model uncertainties together should be studied 687 

because above results show product uncertainties and model uncertainties all are important. 688 

In addition, recalibrating hydrological models using precipitation products may reduce the 689 

interactive influence between hydrological models and precipitation products on simulated 690 

discharges, and this may explain why recalibration can improve discharge simulation 691 

accuracy. This should be verified in future work. Further, future research is encouraged to 692 

incorporate GSMAP-MVK+ estimation approach into GPM because of the good performance 693 

of GSMAP-MVK+.  694 
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Table 1 Precipitation products 1023 

Product 
Spatial 

resolution 
Temporal 
resolution 

Areal coverage Start date Type 

TRMM3B42 0.25o 3h Global 50°N-S 1 Jan 1998 
PR+IR+MW+gauge

+HM 

TRMM3B42RT 0.25o 3h Global 50oN-S 1 Mar 2000 IR+MW 

GLDAS/Noah 0.25o 3h 
Global 

90oN-60oS 
24 Feb 2000 IR+MW+gauge 

GSMAP-MVK+ 0.1o 1h Global 60°N-S 1 Mar 2000 IR+MW+CMV 

PRRSIANN 0.25o 3h Global 60°N-S 1 Mar 2000 PR+IR+MW+ANN 

APHRODITE 0.25° 1day 
60°E-150°E, 
15°S-55°N 

1 Jan 1961 to 
2007 

gauge 

PR: precipitation radar; IR: infrared estimation; MW: microwave estimation; HM: histogram 1024 

matching; CMV: cloud motion vectors; ANN: artificial neural network.  1025 
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Table 2 WEB-DHM parameters 1027 

Symbol (unit) Brief description  Basin‐averaged value 

KS (mm/h) Saturated hydraulic conductivity for soil 
surface  26.43 

Anik Hydraulic conductivity anisotropy ratio  11.49 
Sstmax (mm) Maximum surface water storage  42.75 
Kg (mm/h) Hydraulic conductivity for groundwater  0.36 

alpha van Genuchten parameter  0.01 
n van Genuchten parameter  1.88 

  1028 
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Table 3 TOPMODEL parameters  1029 

Name (unit) Description Lower 
bound 

Upper  
bound Calibration 

SZM (m) form of the exponential 
decline in conductivity 0.01 0.04 0.019 

LNT0 (m2 h-1) 
log value of effective 

lateral saturated 
transmissivity 

-25 1 -11.911 

RV (m h-1) hill slope routing 
velocity 2000 5000 2608.4 

SRmax (m) maximum root zone 
storage 0.001 0.01 0.006 

SR0 (m) initial root zone deficit 0 0.01 0.005 

TD (m h-1) unsaturated zone time 
delay per unit deficit 2 4 2.885 

 1030 
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 1032 

Fig. 1 Biliu basin: (a) the location of Liaoning province within China; (b) the location of 1033 

Biliu basin within Liaoning province; (c) the distributions of rain gauges, discharge gauge, 1034 

automatic weather stations, digital elevation model, and diagrammatic 0.25-degree 1035 

precipitation cells; and (d) diagrammatic description of downscaling the 0.25-degree 1036 

precipitation cells to 300 m × 300 m cells, and retrieving the 300 m × 300 m cells located 1037 

within the basin boundary.  1038 
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 1040 

Fig. 2 Diagrammatic flowchart of the proposed framework for quantification of uncertainty 1041 

contributions to ensemble discharges simulated using precipitation products on the basis of 1042 

the analysis of variance (ANOVA) approach.  1043 
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 1045 

Fig. 3 Scatterplots of basin-averaged precipitation products versus gauge observations at a 1046 

daily scale.  1047 
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 1049 

Fig. 4 Scatterplots of basin-averaged precipitation products versus gauge observations at a 1050 

monthly scale. 1051 
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 1053 

Fig. 5 Time series plots of basin-averaged precipitation product values versus gauge 1054 

observations at monthly scale.  1055 

  1056 



53 
 

 1057 

Fig. 6 Inter-annual basin-averaged monthly precipitation.  1058 
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 1060 

Fig. 7 Probability distributions of the six precipitation products by occurrence (CDFc) and 1061 

volume (CDFv).  1062 
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 1064 

Fig. 8 False alarm ratio, probability of detection and critical success index for the six 1065 

precipitation products.  1066 
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 1068 

Fig. 9 Observed and simulated flows using WEB-DHM and TOPMODEL from 2000 to 2007: 1069 

(a), (c) and (e) are daily, monthly and inter-annual simulations using WEB-DHM respectively; 1070 

(b), (d) and (f) are daily, monthly and inter-annual simulations using TOPMODEL 1071 

respectively.  1072 
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 1074 

Fig. 10 Scatterplots of simulated discharges with WEB-DHM against gauge observations at a 1075 

daily scale.  1076 
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 1078 

Fig. 11 Scatterplots of simulated discharges with TOPMODEL against gauge observations at 1079 

a daily scale.  1080 
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 1082 

Fig. 12 Scatterplots of simulated flows with WEB-DHM against gauge observations at a 1083 

monthly scale. 1084 
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 1086 

Fig. 13 Scatterplots of simulated discharges with TOPMODEL against gauge observations at 1087 

a monthly scale.  1088 
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 1090 

Fig. 14 Inter-annual average monthly discharges.  1091 
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 1093 

Fig. 15 Contributions of uncertainty sources to (a) average monthly discharges and (b) 1094 

discharge quantiles based on daily scale simulated results.  1095 
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