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Abstract  11 

 12 

The applicability of six fine-resolution precipitation products, including precipitation radar, 13 

infrared, microwave and gauge-based products using different precipitation computation 14 

recipes, is evaluated using statistical and hydrological methods in northeastern China. In 15 

addition, a framework quantifying uncertainty contributions of precipitation products, 16 

hydrological models and their interactions to uncertainties in ensemble discharges is 17 

proposed. The investigated precipitation products are TRMM3B42, TRMM3B42RT, 18 

GLDAS/Noah, APHRODITE, PERSIANN and GSMAP-MVK+. Two hydrological models 19 

of different complexities, i.e., a water and energy budget-based distributed hydrological 20 

model and a physically-based semi-distributed hydrological model, are employed to 21 

investigate the influence of hydrological models on simulated discharges. Results show 22 

APHRODITE has high accuracy at a monthly scale compared with other products, and 23 

GSMAP-MVK+ shows huge advantage and is better than TRMM3B42 in RB, NSE, RMSE, 24 

CC, false alarm ratio and critical success index. These findings could be very useful for 25 
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validation, refinement and future development of satellite-based products (e.g., NASA Global 26 

Precipitation Measurement). Although large uncertainty exists in heavy precipitation, 27 

hydrological models contribute most of the uncertainty in extreme discharges. Interactions 28 

between precipitation products and hydrological models contribute a lot to uncertainty in 29 

discharge simulations and a better precipitation product does not guarantee a better discharge 30 

simulation because of interactions. It is also found that a good discharge simulation depends 31 

on a good coalition of a hydrological model and a precipitation product, suggesting that, 32 

although the satellite-based precipitation products are not as accurate as the gauge-based 33 

product, they could have better performance in discharge simulations when appropriately 34 

combined with hydrological models. This information is revealed for the first time and very 35 

beneficial for precipitation product applications.  36 

 37 

1 Introduction 38 

 39 

Knowledge of precipitation plays an important role in the understanding of the water cycle, 40 

and thus in water resources management (Sellers, 1997;Sorooshian et al., 2005;Wang et al., 41 

2005;Ebert et al., 2007;Buarque et al., 2011;Tapiador et al., 2012;Yong et al., 2012;Gao and 42 

Liu, 2013;Peng et al., 2014a;Peng et al., 2014b). However, precipitation data are not available 43 

in many regions, particularly mountainous districts and rural areas in developing countries. 44 

For example, Northeast China, which plays an important role in food production to support 45 

the country’s population and is also an industrial region with many heavy industries, 46 

frequently suffers from drought, posing a threat to regional sustainable development. In such 47 

areas, due to insufficient gauge observations, alternative precipitation data are required for 48 

efficient water resources management.  49 

 50 
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In recent years, implementation of gauge-based and remote satellite-based precipitation 51 

products has become popular, particularly for ungauged catchments (Artan et al., 2007;Jiang 52 

et al., 2012;Li et al., 2013;Maggioni et al., 2013;Müller and Thompson, 2013;Xue et al., 53 

2013;Kneis et al., 2014;Meng et al., 2014;Ochoa et al., 2014). Numerous precipitation 54 

products have been developed to estimate rainfall, for example: 55 

• Tropical Rainfall Measuring Mission (TRMM) products (Huffman et al., 2007) 56 

• Global Land Data Assimilation System (GLDAS) precipitation products (Kato et al., 57 

2007) 58 

• Asian Precipitation - Highly-Resolved Observational Data Integration Towards 59 

Evaluation of Water Resources (APHRODITE) (Xie et al., 2007;Yatagai et al., 2012) 60 

• Precipitation Estimation from Remotely Sensed Information using Artificial Neural 61 

Networks (PERSIANN) (Sorooshian et al., 2000;Sorooshian et al., 2002)  62 

• Global Satellite Mapping of Precipitation product (GSMAP) (Kubota et al., 63 

2007;Aonashi et al., 2009) 64 

 65 

There are uncertainties in these products. Several studies have been carried out to analyze the 66 

uncertainty of TRMM in high latitude regions (Yong et al., 2010;Yong et al., 2012;Chen et al., 67 

2013a;Yong et al., 2014;Zhao and Yatagai, 2014), but studies in northeast China are few. 68 

Evaluation of GLDAS data has generally been limited to the United States and other 69 

observation-rich regions of the world (Kato et al., 2007); assessments and applications in 70 

other regions are rare (Wang et al., 2011;Zhou et al., 2013). The APHRODITE, PERSIANN 71 

and GSMAP products are seldom evaluated in northeast China using basin scale gauge data 72 

(Zhou et al., 2008). Owing to the high heterogeneity of rainfall across a variety of 73 

spatiotemporal scales, the uncertainty characteristics of precipitation products are variable 74 

(Asadullah et al., 2008;Dinku et al., 2008;Nikolopoulos et al., 2010;Pan et al., 2010). Thus, in 75 
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northeast China, it is essential to completely evaluate the applicability of these precipitation 76 

products. In addition, it is also worth comparing the performance of different precipitation 77 

computation recipes: for example, the artificial neural network function used in PERSIANN, 78 

the histogram matching approach used in TRMM3B42, and the cloud motion vectors used in 79 

GSMAP-MVK+, because the inter-comparison could reveal the strategies that could be used 80 

to obtain more accurate precipitation data.  81 

 82 

Many researchers have implemented precipitation products in discharge simulations and 83 

reported discharge uncertainties (Hong et al., 2006;Pan et al., 2010;Serpetzoglou et al., 2010). 84 

Also, many uncertainty analysis approaches have been introduced to quantify the uncertainty 85 

(Beven and Binley, 1992;Freer et al., 1996;Kuczera and Parent, 1998;Beven and Freer, 86 

2001b;Peters et al., 2003;Heidari et al., 2006;Kuczera et al., 2006;Tolson and Shoemaker, 87 

2007;Blasone et al., 2008;Vrugt et al., 2009a;Vrugt et al., 2009b). In these prior approaches, 88 

one of the popular methods is the generalized likelihood uncertainty estimation (GLUE) 89 

technique, introduced by Beven and Binley (1992). This approach outputs probability 90 

distributions of model parameters conditioned on observed data, and the uncertainties in 91 

model inputs are represented by uncertain parameters. Similar to GLUE, Hong et al. (2006) 92 

proposed a Monte Carlo based method to quantify uncertainty in hydrological simulations 93 

using satellite precipitation data, in which flow simulation uncertainty is represented by 94 

ensemble simulation results.  95 

 96 

In addition to individual contributions from hydrological models and precipitation data, the 97 

interactions between precipitation products and hydrological models also contribute to 98 

uncertainty in simulated discharges. However, to the best of our knowledge, the previous 99 

studies have not quantified the respective contributions of precipitation products, 100 
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hydrological models and their interactions to the total discharge simulation uncertainty.  101 

 102 

The overall aim of this paper is to develop a framework to quantify the contributions of 103 

uncertainties from precipitation products, hydrological models and their interactions to 104 

uncertainty in simulated discharges. To achieve the aim, the first step is to understand the 105 

performance of the selected precipitation products including TRMM3B42, TRMM3B42RT, 106 

GLDAS/Noah (GLDAS_Noah025SUBP_3H), APHRODITE, PERSIANN and 107 

GSMAP-MVK+, when applied to the chosen hydrological models. Two hydrological models 108 

of different complexities - a water and energy budget-based distributed hydrological model 109 

(WEB-DHM) (Wang et al., 2009a;Wang et al., 2009b;Wang et al., 2009c) and a 110 

physically-based semi-distributed hydrological model TOPMODEL (Beven and Kirkby, 1979) 111 

- were employed to investigate the influence of hydrological models on discharge simulations. 112 

Building on the assessment of the precipitation products, the second step is to quantify the 113 

respective uncertainties from the precipitation products and hydrological models, and the 114 

combined uncertainties from the interactions between products and models. This is achieved 115 

using a global sensitivity analysis approach, i.e., the analysis of variance approach (ANOVA). 116 

A river basin in northern China with a series of 8-year data is used to demonstrate the 117 

methodology.  118 

 119 

The paper is organized as follows. Section 2 introduces the study region, precipitation 120 

products, hydrological models and the proposed framework. Section 3 presents the statistical 121 

evaluation results. Hydrological evaluations and the implementation of the proposed 122 

framework are given in section 4. Discussion is given in section 5. Summary and conclusions 123 

are presented in section 6.  124 

 125 



6 
 

2 Materials and methodology 126 

2.1 Biliu basin 127 

 128 

Biliu basin (2814 km2), located in the coastal region between the China Bohai Sea and the 129 

China Huanghai Sea, covers longitudes 122.29°E to 122.92°E and latitudes 39.54°N to 130 

40.35°N. This basin is characterized by a snow - winter dry - hot summer climate (Koppen 131 

climate classification) and the average annual temperature is 10.6°C. Summer (July to 132 

September) is the major rainy season. There are 11 rainfall stations and one discharge gauge 133 

which have historical data from January 2000 to December 2007. The average elevation is 134 

240 meters. The gauge distribution in Biliu is shown in Fig. 1.  135 

 136 

2.2 Precipitation products 137 

 138 

The selected precipitation products are shown in Table 1. These data are all freely available. 139 

In these selected precipitation products, APHRODITE is fully based on gauge data; 140 

TRMM3B42 and GLDAS are remote satellite estimation with gauge data corrections; while 141 

others are remote satellite estimation without gauge data corrections. Remote-based 142 

precipitation estimation has many weaknesses, e.g., microwave estimation could miss 143 

convective rainfall and typhoon rain because of its sparse time interval resolution; infrared 144 

estimation has a higher time interval resolution, but it cannot penetrate thick clouds. Ground 145 

rain gauge-based interpolation products are limited by interpolation algorithms, gauge density 146 

and gauge data quality (Xie et al., 2007). The details of data sources used in each 147 

precipitation product can be found in Table 1. The detailed introductions of these products are 148 

as follows.  149 

 150 
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TRMM is a joint mission between NASA and Japan Aerospace Exploration Agency designed 151 

to monitor and study tropical rainfall (Kummerow et al., 2000;Huffman et al., 2007). Three 152 

instruments - a visible infrared radiometer, a TRMM microwave imager and a precipitation 153 

radar - are employed to obtain accurate precipitation estimation. The TRMM precipitation 154 

radar is the first space-based precipitation radar and operates between 35°N and 35°S. 155 

Outside this band, the microwave imager is used between 40°N and 40°S, and the visible 156 

infrared radiometer data are used between 50°N to 50°S. Usually the precipitation radar is 157 

considered to give the most accurate estimation from satellite, and data from it are often used 158 

for calibration of passive microwave data from other instruments (Ebert et al., 2007). The 159 

post-real-time product used in this study is the TRMM3B42, which utilizes three data sources: 160 

the TRMM combined instrument estimation using data from both TRMM precipitation radar 161 

and the microwave imager; the GPCP monthly rain gauge analysis developed by the Global 162 

Precipitation Climatology Center; and the Climate Assessment and Monitoring System 163 

monthly rain gauge analysis. TRMM3B42 applies an infrared to rain rate relationship using 164 

histogram matching, while TRMM3B42RT merges microwave and infrared precipitation 165 

estimation.  166 

 167 

PERSIANN is a product that, using an artificial neural network function, estimates 168 

precipitation by combining infrared precipitation estimation and the TRMM combined 169 

instrument estimation (which assimilates with TRMM precipitation radar and microwave 170 

data). GSMAP-MVK+ uses microwave and infrared precipitation data together and combines 171 

cloud motion vectors to generate fine-resolution precipitation estimation.  172 

 173 

The Global Land Data Assimilation System (GLDAS) project is an extension of the existing 174 

and more mature North American Land Data Assimilation System (Rodell et al., 2004). It 175 
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integrates satellite- and ground-based data sets for parameterizing, forcing and constraining a 176 

few offline land surface models for generating optimal fields of land surface states and fluxes. 177 

At present, GLDAS drives four Land Surface Models: Mosaic (Koster and Suarez, 1992), 178 

Noah (Chen et al., 1996;Betts et al., 1997;Koren et al., 1999;Ek, 2003), the Community Land 179 

Model (Dai et al., 2003) and Variable Infiltration Capacity model (Liang et al., 1994). Among 180 

them, the GLDAS/Noah Land Surface Model product (GLDAS_NOAH025SUBP_3H) has a 181 

3-h 0.25° ×  0.25° resolution, which is desirable for basin scale research. The GLDAS 182 

precipitation data combine microwave and infrared, and also assimilate gauge observations.  183 

 184 

2.3 Criteria for accuracy assessment  185 

 186 

Uncertainties of precipitation products are evaluated on the basis of basin-averaged rainfall 187 

observations. Four evaluation criteria are used in rainfall amount error assessment: 188 

correlation coefficient (CC), root mean square error (RMSE), Nash-Sutcliffe coefficient of 189 

efficiency (NSE) and relative bias (RB). These are calculated as follows:   190 
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where Xoi represents observed data; Xpi represents estimated data; n is the total number of data 194 

points. A perfect fit should have CC and NSE values of one. The lower the RMSE and RB, 195 

the better the estimation. These comparison criteria have been used by many studies (Ebert et 196 
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al., 2007;Wang et al., 2011;Yong et al., 2012), so they are used in this study.  197 

 198 

Probability distributions by occurrence and volume are also analyzed, which can provide us 199 

with the information on the frequency and on the product error dependence on precipitation 200 

intensity (Chen et al., 2013a;Chen et al., 2013b). The critical success index (CSI), probability 201 

of detection (POD) and false alarm ratio (FAR) are used to quantify the ability of 202 

precipitation products to detect observed rainfall events. These are defined as follows: 203 

 CSI H
H M F

=
+ +

  (4) 204 

 POD H
H M

=
+

  (5) 205 

 FAR F
H F

=
+

  (6) 206 

where H is the total number of hits; M is the total number of misses; F is the total number of 207 

false alarms (Ebert et al., 2007;Su et al., 2008). A perfect detection should have CSI and POD 208 

values equal to one and a FAR value of zero.  209 

 210 

2.4 Hydrological models and data 211 

2.4.1 WEB-DHM 212 

 213 

The distributed biosphere hydrological model, WEB-DHM (Wang et al., 2009a;Wang et al., 214 

2009b;Wang et al., 2009c), was developed by coupling a simple biosphere scheme (Sellers et 215 

al., 1986) with a geomorphology-based hydrological model (Yang, 1998) to describe water, 216 

energy and 2CO  fluxes at a basin scale. WEB-DHM has been used in several evaluations 217 

and applications (Wang et al., 2010a;Wang et al., 2010b;Wang et al., 2012;Shrestha et al., 218 

2013).  219 
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 220 

WEB-DHM input data include precipitation, temperature, downward solar radiation, long 221 

wave radiation, air pressure, wind speed and humidity. With the exception of precipitation, all 222 

input data are obtained from automatic weather stations. There are three automatic weather 223 

stations near Biliu, and observations from these are obtained from the China Meteorological 224 

Data Sharing Service System (downloaded from http://cdc.cma.gov.cn/home.do). Hourly 225 

precipitation data are downscaled from daily rain gauge observations using a stochastic 226 

method (Wang et al., 2011). Hourly temperatures are calculated from daily maximum and 227 

minimum temperatures using the TEMP model (Parton and Logan, 1981). The estimated 228 

temperatures are also further evaluated using daily average temperature. Downward solar 229 

radiation is estimated from sunshine duration, temperature and humidity using a hybrid 230 

model (Yang et al., 2006). Long wave radiation is obtained from the GLDAS/Noah (Rodell et 231 

al., 2004). Air pressure is estimated according to altitude (Yang et al., 2006). These 232 

meteorological data are then interpolated to 300 m × 300 m model cells through an 233 

inverse-distance weighting approach. Because of the elevation differences among model cells 234 

and meteorological gauges, the interpolated surface air temperatures are further modified 235 

with a lapse rate of 6.5K/km. Gauge rainfall data are also interpolated to 300 m × 300 m 236 

model cells and basin-averaged gauge rainfall data are calculated on the basis of interpolation 237 

results. In addition to the above, the leaf area index and fraction of photosynthetically active 238 

radiation data are obtained from level-4 MODIS global products-MOD11A2. Digital 239 

Elevation Model (DEM) is from the NASA SRTM (Shuttle Radar Topographic Mission) with 240 

a resolution of 30 m × 30 m. We resampled the resolution to 300 m in model calculation to 241 

reduce computation cost, while the model processed finer DEM (30 m grid) to generate 242 

sub-grid parameters (such as hillslope angle and length). The grid slopes vary from 0 to 38 243 

degrees. Land-use data are obtained from the USGS (http://edc2.usgs.gov/glcc/glcc.php). The 244 
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land-use types have been reclassified to SiB2 land-use types for this study (Sellers et al., 245 

1996). There are six land-use types, with broadleaf and needle leaf trees and short vegetation 246 

being the main types. Soil data are obtained from the Food and Agriculture Organization 247 

(FAO) (2003) Global data product, and there are two types of soil in the basin: clay 248 

loam-luvisols and loam-phaeozems.  249 

 250 

2.4.2 TOPMODEL 251 

 252 

TOPMODEL is a physically-based, variable contributing area model of basin hydrology 253 

which attempts to combine the advantages of a simple lumped parameter model with 254 

distributed effects (Beven and Kirkby, 1979). Fundamental to TOPMODEL’s 255 

parameterization are three assumptions: (1) saturated-zone dynamics can be approximated by 256 

successive steady-state representations; (2) hydrological gradients of the saturated zone can 257 

be approximated by the local topographic surface slope; and (3) the transmissivity profile 258 

whose form declines exponentially with increasing vertical depth of the water table or storage 259 

is spatially constant. On the basis of the above mentioned assumptions, the index of 260 

hydrological similarity is represented as the topographic index, ln( / tan )a β , for which a  261 

is the area per unit contour length and ß is the local slope angle. More detailed descriptions of 262 

TOPMODEL and its mathematical formulation can be found in Beven et al. (1979). 263 

TOPMODEL has been popularly utilized in research across the world (Blazkova and Beven, 264 

1997;Cameron et al., 1999;Hossain and Anagnostou, 2005;Bastola et al., 2008;Gallart et al., 265 

2008;Bouilloud et al., 2010;Qi et al., 2013), because of its relatively simple model structure. 266 

The input data of TOPMODEL mainly includes basin averaged precipitation and topographic 267 

data which can be estimated from DEM.  268 

 269 
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2.5 The proposed framework 270 

 271 

Fig. 2 shows the diagrammatic flowchart of the proposed framework for quantification of 272 

uncertainty contributions to ensemble discharges simulated using precipitation products. This 273 

framework includes four parts: (a) selection of precipitation products; (b) selection of 274 

hydrological models; (c) ensemble discharge simulations using the hydrological models and 275 

precipitation products; and (d) quantification of individual and interactive contributions using 276 

the analysis of variance (ANOVA) approach including contributions from precipitation 277 

products, hydrological models and interactions between models and products. Because the 278 

spatial resolution of selected precipitation products does not correspond with WEB-DHM 279 

model cells, the following procedures were carried out for basin averaged rainfall 280 

calculations: (1) resampling 0.25o or 0.1o precipitation product grids into 300 m × 300 m cells 281 

(the grid size used in WEB-DHM simulations); (2) calculating basin-averaged precipitation 282 

using 300 m precipitation product grids located within the basin boundary. Diagrammatic 283 

descriptions of these procedures are shown in Fig. 1d. Because WEB-DHM needs hourly 284 

input data, for the 3-hour resolution precipitation products, we assumed rainfall is uniformly 285 

distributed within each 3-hour period. For daily resolution products, we used the same 286 

approach as downscaling observed precipitation data. This downscaling approach may affect 287 

uncertainty in simulated discharge. However, Wang et al. (2011) have already successfully 288 

applied the downscaling approach, and showing that the influence is negligible.  289 

 290 

The total ensemble uncertainty Y is the variance of discharges. To relate Y to the uncertainty 291 

sources, the superscripts j and k in j ,kY  represent a combination of precipitation product j 292 

and hydrological model k  293 

 j k j ,kj ,k P M PMY = + +   (7) 294 
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where P represents the effect of jth precipitation product, M represents the effect of kth 295 

hydrological model, and PM  represents the interaction effect. In this study, j varies from 296 

one to six, and k varies from one to two. Details of the quantification are explained in the 297 

follow sections.  298 

 299 

2.5.1 Subsampling approach 300 

 301 

ANOVA could underestimate variance when the sample size is small (Bosshard et al., 2013). 302 

To reduce the effect of the sample size, Bosshard et al. (2013) proposed a subsampling 303 

method, which was used in this paper. In the subsampling method, the superscript j in Eq. (7) 304 

is replaced with ( )h,ig . According to Bosshard et al. (2013), in each subsampling iteration i, 305 

data from two products should be selected out of all the six products, and thus 15 306 

combinations can be obtained. Therefore, the superscript g  becomes a 2 × 15 matrix:  307 

 
1 1 1 2 2 4 4 5
2 3 6 3 4 5 6 6
 

=  
 

g
 

 

  (8) 308 

 309 

2.5.2 Uncertainty contribution decomposition 310 

 311 

Based on the ANOVA theory (Bosshard et al., 2013), total error variance (SST) can be 312 

divided into sums of squares due to the individual effects as: 313 

 SST = SSA + SSB + SSI   (9) 314 

where SSA is the error contribution of precipitation products, SSB is the error contribution of 315 

hydrological models and SSI is the error contribution of their interactions.  316 

 317 

The terms can be estimated using the subsampling procedure as follows: 318 
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where symbol o indicates averaging over a particular index; H is the number of precipitation 323 

products (six in this study) and K is the number of hydrological models (two in this study). 324 

Then the variation fraction 2η  is calculated as follows: 325 

 2
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2η  has a value between 0 and 1, which represent 0% and 100% contributions to the overall 329 

uncertainty of simulated discharges respectively. I equals 15 in this study. As shown in Eqs. 330 

14-16, the subsampling approach is necessary because it guarantees that every contributor has 331 

the same denominator I. This same denominator makes sure that the inter-comparison among 332 

precipitation contribution, model contribution and interaction contribution is free of influence 333 

from the sampling number of precipitation products and hydrological models.  334 

 335 

3 Statistical evaluations  336 

3.1 Daily and monthly scales 337 

 338 
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Comparison of precipitation product data and gauge observations at a daily scale is shown in 339 

Fig. 3. Observations are shown on the x-axis and precipitation product data are shown on the 340 

y-axis. Four criteria, RMSE, CC, NSE and RB, are also shown. GSMAP-MVK+ is the best 341 

product and PERSIANN has the poorest performance with respect to RMSE and NSE. 342 

GSMAP-MVK+ is also the best with respect to CC, while GLDAS has the poorest 343 

performance with a CC value of 0.55. With respect to RB, APHRODITE performs best and 344 

GSMAP-MVK+ the second best, while TRMM3B42RT the least best with an RB value of 345 

-38%. None of the products can outperform others in terms of all the statistical criteria. This 346 

may be due to the different limitations of satellite sensors and inverse algorithms of 347 

precipitation products. This situation shows that the selection of the best precipitation 348 

products is difficult.  349 

 350 

TRMM3B42RT and TRMM3B42 underestimate precipitation amounts. This underestimation 351 

may be because convective rainfall always happens in summer in northeast China (Shou and 352 

Xu, 2007a, b;Yuan et al., 2010), and indicates the limitation of TRMM algorithms in high 353 

latitude regions with convective rainfall. This type of rainfall has a large rainfall amount 354 

within a short time period and, therefore, cannot be captured by microwave imager. This type 355 

of rainfall may also have a thick cloud that is impenetrable by infrared (Ebert et al., 2007). 356 

Thus microwave and infrared estimation could underestimate rainfall. Compared with 357 

TRMM3B42RT, TRMM3B42 provides an improvement in RB. This improvement may be 358 

attributed to the assimilation with gauge data and histogram matching. Compared with 359 

APHRODITE and GSMAP-MVK+, TRMM3B42 has low accuracy as represented by RB. 360 

This implies that the retrieval algorithm used by TRMM3B42 still needs to be improved with 361 

respect to RB. The reason why APHRODITE outperforms TRMM3B42 is that APHRODITE 362 

is a gauge-based product. GSMAP-MVK+ outperforms TRMM3B42 in terms of RB may be 363 
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due to the cloud motion vectors it uses. Compared with GSMAP-MVK+, GLDAS/Noah 364 

precipitation shows low accuracy in all the criteria even though they use similar data sources: 365 

IR and MW.  366 

 367 

Comparison of precipitation product data and gauge observations at a monthly scale is shown 368 

in Fig. 4. Here, the APHRODITE product (Fig. 4d) performs best based on RMSE, CC, NSE 369 

and RB. GLDAS/Noah is the poorest in terms of RMSE and NSE. With respect to CC, 370 

GLDAS and TRMM3B42 are equally poor, with CC values of 0.81. The results also show 371 

that PERSIANN overestimates precipitation amount, while Li et al. (2013) found 372 

PERSIANN underestimates rainfall in south China. This may be attributed to the different 373 

latitudes of the study regions.  374 

 375 

Fig. 5 shows time series of average monthly precipitation data against gauge observations 376 

during the period 2000-2007. Each curve represents a different precipitation product. GLDAS 377 

data (Fig. 5a) seriously underestimate high rainfall. Similarly, TRMM3B42RT underestimates 378 

peak precipitation intensity also. Comparatively, APHRODITE, PERSIANN, TRMM3B42 379 

and GSMAP-MVK+ have better performances.  380 

 381 

3.2 Inter-annual evaluations 382 

 383 

Fig. 6 shows the inter-annual average monthly precipitation. Each curve represents a different 384 

product data. PERSIANN overestimates in all the 12 months, while others underestimate, 385 

especially during the summer. This may result from the artificial neural network function and 386 

limitations of infrared and microwave estimation. APHRODITE data are relatively close to 387 

observations. Compared with TRMM3B42RT, TRMM3B42 is better, which indicates the 388 
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gauge corrections and histogram matching used by TRMM3B42 impact positively on 389 

accuracy. During the summer, discrepancies between products become larger. With a decrease 390 

of rainfall magnitude, the discrepancies between products reduce. This information implies 391 

that the differences in precipitation estimation algorithms are related to precipitation 392 

magnitudes: the larger the rainfall magnitudes, the greater the differences.  393 

 394 

3.3 Probability distribution evaluations 395 

 396 

Fig. 7 shows cumulative probability distribution functions (CDF) by occurrence (CDFc) and 397 

by volume (CDFv) for precipitation products. Probabilities are shown on the y axis, and the x 398 

axis shows rainfall intensity with a 1 mm/day interval log space.  399 

 400 

PERSIANN is the best by both occurrence and volume. However, for CDFc, TRMM3B42RT 401 

is the least best, and, for CDFv, TRMM3B42RT and GLDAS/Noah are comparable and 402 

worse than others. All precipitation products overestimate occurrence and volume 403 

probabilities except rainfall intensities of larger than 63mm/day and 53mm/day for 404 

occurrence and volume probabilities, respectively. This may be because the precipitation 405 

products overestimate the intensity of some heavy rainfall (recall the results in section 3.1). 406 

The results differ from those of Li et al. (2013), in which PERSIANN has the poorest 407 

performance. This may result from differences in study region (in the study of Li et al. (2013), 408 

south China was studied).  409 

 410 

3.4 Contingency statistics 411 

 412 

Fig. 8 shows the false alarm ratio, probability of detection and critical success index for each 413 



18 
 

precipitation product.  414 

 415 

PERSIANN has the highest false alarm ratio among the products, while TRMM3B42RT has 416 

the lowest. The false alarm ratio of TRMM3B42 is larger than TRMM3B42RT, which 417 

indicates that the gauge corrections and histogram matching used by TRMM3B42 do not 418 

provide positive effects on false alarm ratio and may give rise to uncertainty in false alarm 419 

ratio. GSMAP-MVK+ has a lower false alarm ratio than TRMM3B42. 420 

 421 

No obvious trends are observed for the false alarm ratio overall (compared with the 422 

probability of detection and critical success index), which means the false alarm ratio 423 

dependence on rainfall magnitude is weak. However, Chen et al. (2013a) found the false 424 

alarm ratios of TRMM3B42 and TRMM3B42RT to increase with an increase in rainfall 425 

intensity. The differences are attributed mainly to observed data. In the study of Chen et al. 426 

(2013a), national rain gauge data were employed, whereas in this study more detailed basin 427 

data are used.  428 

 429 

Among all selected products, GLDAS/Noah has the lowest probability of detection and 430 

critical success index during periods of high rainfall intensity, while APHRODITE retains a 431 

high probability of detection and critical success index. This is because APHRODITE uses 432 

gauge observations, and implies that the APHRODITE algorithm is effective. PERSIANN 433 

has comparable probability of detection with APHRODITE. The critical success index of 434 

GSMAP-MVK+ is also comparable with APHRODITE. Compared with TRMM3B42RT, 435 

TRMM3B42 has greater probability of detection and comparable critical success index. This 436 

information implies that retrieval algorithm of TRMM3B42 provides positive effects on 437 

probability of detection, but no obvious positive impacts on critical success index.  438 
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 439 

Decreasing trends are observed for all products in terms of probability of detection and 440 

critical success index, matching the results of Chen et al. (2013a) for TRMM3B42 and 441 

TRMM3B42RT. This indicates that probability of detection and critical success index have 442 

relatively strong dependence on rainfall magnitude, and implies microwave and infrared 443 

precipitation estimation may have relatively strong dependence on rainfall magnitude in 444 

terms of probability of detection and critical success index.  445 

 446 

4 Hydrological evaluations 447 

4.1 Assessment of hydrological models  448 

WEB-DHM was calibrated against observed discharges of Biliu. Six main parameters were 449 

selected to calibrate using a trial and error approach due to the model’s computational burden. 450 

Model parameter multipliers were calibrated, similar to the study by Wang et al. (2011). The 451 

‘Trial and error’ approach has two steps. First, all the multiplier values are set to 1 which 452 

represents the default parameter values from Food and Agriculture Organization (FAO) (2003) 453 

and SiB2 model. Second, varying the multiplier values until acceptable discharge simulation 454 

accuracy is obtained. The calibrated parameter values are listed in Table 2. The simulated 455 

daily, monthly and inter-annual results are shown in Figs. 9a, 9c and 9e.  456 

 457 
TOPMODEL uses basin-averaged parameter values, and these parameter values are estimated 458 

by experience or observation. However, these methods do not give precise parameter values. 459 

Therefore, the parameter values are considered as uncertain and provided with ranges based 460 

on experience (Beven and Kirkby, 1979;Beven and Freer, 2001a, b;Peters et al., 2003). Six 461 

parameters of TOPMODEL were calibrated using the dynamically dimensioned search 462 

algorithm (Tolson and Shoemaker, 2007), and the results are given in Table 3. The simulated 463 

daily, monthly and inter-annual results are shown in Figs. 9b, 9d and 9f.  464 
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 465 

Note that the parameters of TOPMODEL and WEB-DHM were calibrated using observed 466 

precipitation data, and the accuracy of simulated discharges has been validated using gauge 467 

observations. Comparison with the parameter values reported in previous research shows the 468 

parameter values are appropriate (Beven and Freer, 2001a;Peters et al., 2003;Qi et al., 2015).  469 

 470 

4.2 Daily scale discharges 471 

 472 

Figs. 10 and 11 display scatterplots of discharges during the period 2000-2007 simulated 473 

using WEB-DHM and TOPMODEL against gauge observations at a daily scale. Two criteria, 474 

NSE and RB, are shown. It should been noted that the start dates are different for 475 

precipitation products, and observed data were used when product data are not available: 476 

from 1 January 2000 to 29 February 2000 for TRMM3B42RT, GSMAP-MVK+ and 477 

PERSIANN; from 1 January 2000 to 23 February 2000 for GLDAS/Noah. These time 478 

periods were not considered for accuracy comparison.  479 

 480 

In the case of WEB-DHM simulations, the best NSE (0.41) corresponds with APHRODITE 481 

(Fig. 10d), while the best value for RB (1%) corresponds with GLDAS/Noah. In the case of 482 

TOPMODEL simulations, the best NSE (0.41) corresponds with APHRODITE, and the best 483 

value for RB (-24%) corresponds with APHRODITE also. Although the best NSE is the same 484 

for both WEB-DHM and TOPMODEL simulations and corresponding product is also the 485 

same, there is a large difference in the best RB values. At the daily scale precipitation amount 486 

evaluation, the least best RB is -38%, corresponding with TRMM3B42RT (Fig. 3c). However, 487 

in WEB-DHM discharge simulation, the least best RB (218%) corresponds with PERSIANN, 488 

and, in TOPMODEL simulation, the least best RB (-62%) corresponds with TRMM3B42RT. 489 
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These differences stem from differences in hydrological models and interactions between 490 

hydrological models and precipitation product data.  491 

 492 

All RB criteria at the daily scale precipitation evaluations (recall the results in Fig. 3) are 493 

amplified by TOPMODEL, while in the case of WBE-DHM, some are amplified and the 494 

others are decreased. For example, for GLDAS and PERSIANN, the RB criteria at the daily 495 

scale precipitation evaluations are -27% and 28%, but they are -50% and 31% in 496 

TOPMODEL simulations; they are 1% and 218% in WEB-DHM simulations. These 497 

differences result from the influence of hydrological models and interactions between 498 

precipitation products and hydrological models. These results reveal that a hydrological 499 

model can amplify uncertainties in input data but also reduce uncertainties, which may be due 500 

to the nonlinear runoff generation process in hydrological models. This finding is consistent 501 

with the research by Yong et al. (2010).  502 

 503 

4.3 Monthly scale discharges 504 

 505 

Figs. 12 and 13 display scatterplots of discharges during the period 2000-2007 simulated 506 

using WEB-DHM and TOPMODEL against gauge observations at a monthly scale.  507 

 508 

In the case of WEB-DHM, the best NSE and RB values are 0.73 and 1%, which 509 

corresponding with TRMM3B42 and GLDAS respectively. In the case of TOPMODEL, they 510 

are 0.58 and -24%, corresponding with PERSIANN and APHRODITE respectively. The 511 

combination of WEB-DHM and TRMM3B42 shows a great performance, with NSE and RB 512 

values of up to 0.73 and -7%, even though TRMM3B42 is not the best in monthly scale 513 

precipitation data evaluation. This reveals the influence of different characterizations of 514 
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hydrological processes on the selection of precipitation data, implying that accurate discharge 515 

simulation does not solely depend on the accuracy of a precipitation product.  516 

 517 

At the monthly scale, although APHRODITE is the best precipitation product and 518 

WEB-DHM model has better performance than TOPMODEL in calibration (Figs. 9c and 9d), 519 

the combination of APHRODITE and WEB-DHM is not better in the discharge simulation, 520 

which can be shown by comparing Fig. 12d with Fig. 13d (the RB and NSE of WEB-DHM 521 

and APHRODITE combination are -37% and 0.5, but they are -24% and 0.51 for the 522 

combination of TOPMODEL and APHRODITE). This could be due to the interactive 523 

influence between hydrological models and precipitation products, and implies that the 524 

interactions between models and products could be large and have a big influence on 525 

discharge simulations. In addition, comparison of Figs. 12d and 12b shows that discharge 526 

simulation of APHRODITE is worse than TRMM3B42, even though APHRODITE is the 527 

best precipitation product in terms of all the selected criteria at a monthly scale precipitation 528 

amount evaluation. This information shows that better precipitation products do not guarantee 529 

better discharge simulations. These results imply that, although the satellite-based 530 

precipitation products are not as accurate as gauge-based products in rainfall amount 531 

estimation, they could have a better performance in discharge simulations if the combination 532 

of precipitation product and hydrological model is good.  533 

 534 

4.4 Inter-annual average monthly discharges 535 

 536 

Fig. 14 shows inter-annual average monthly discharges of all selected precipitation products 537 

during the period 2000-2007. In the case of TOPMODEL, PERSIANN agrees well with 538 

gauge observations, and all products underestimate discharges in August. In the case of 539 
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WEB-DHM, GLDAS data and TRMM3B42 data have a better performance than other data 540 

but, with the exception of PERSIANN, all products underestimate peak discharge in August. 541 

The simulation results show huge differences even though Figs. 9e and 9f show TOPMODEL 542 

and WEB-DHM have almost the same performance using observed data; this is because of 543 

the impacts of interactive influence between hydrological models and precipitation products.  544 

 545 

4.5 Uncertainty source quantification 546 

 547 

All above results suggest that discharge simulations are influenced by precipitation products, 548 

hydrological models and interactions between hydrological models and precipitation products. 549 

Thus it is essential to quantify the respective influence. Figs. 15a and 15b show contributions 550 

of precipitation products, hydrological models and their interactions to uncertainties in 551 

monthly average discharges and different flow quantiles respectively. Fig. 15b shows 552 

quantiles computed at a daily time step. The contributions of uncertainty sources are 553 

represented by stripes.  554 

 555 

Fig. 15a shows that precipitation data contribute most of the uncertainty in discharges, and 556 

contribute more than hydrological models. Interactions between hydrological models and 557 

precipitation products have large contributions, at a similar level to those from hydrological 558 

models. In summer (July to September), the contribution of precipitation data is less than 559 

most other months except March. However, the uncertainty in precipitation intensity 560 

increases in summer (recall the results in section 3.2). In non-summer months except March, 561 

the uncertainty contribution from precipitation products is larger than in summer. These 562 

differences maybe result from the nonlinear propagation of uncertainty through hydrological 563 

models. In March, the contribution of hydrological models is larger than in other months, 564 
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which may result from the decrease in influences of interactions and precipitation products, 565 

and from the nonlinear influence of the hydrological models.  566 

 567 

Fig. 15b shows that, for small discharges (smaller than 25% quantile which corresponds to an 568 

observed discharge value of 1.79m3/s) and large discharges (larger than 99% quantile which 569 

corresponds to an observed discharge value of 157m3/s), hydrological models contribute most 570 

of the uncertainties. For middle magnitude flows (between 25% and 99% quantiles), 571 

precipitation products contribute the majority, and the contribution of interactions is not 572 

negligible and of similar magnitude to the contribution from hydrological models. The 573 

contribution of interactions is larger for middle magnitude flows than for small and large 574 

discharges. The different contributions of interactions for various magnitude flows may be 575 

because different magnitude rainfall data could trigger different hydrological processes 576 

(Herman et al., 2013). Small discharges mainly come from base flows which are relatively 577 

stable and do not need much rainfall to be triggered, and large discharges are mainly 578 

controlled by overland flows when heavy precipitation occurs. Middle magnitude discharges 579 

consist of contributions from base flows, lateral subsurface flows and overland flows. It is 580 

more complex and can be triggered by various magnitude rainfalls - thus interactions are 581 

more changeable.  582 

 583 

Although heavy rainfall data have high uncertainty (recall the results in section 3.1), 584 

precipitation products do not contribute the most uncertainty in large discharges (Fig. 15b). 585 

This may be because the nonlinear propagation of uncertainty through hydrological models 586 

enlarges the influence of hydrological models, and implies that high uncertainties in extreme 587 

rainfall do not mean high uncertainties in extreme discharges.  588 

 589 
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In this study, because hydrological model parameters were calibrated using gauge 590 

observations, the hydrological model parameter uncertainty was not considered. Although the 591 

uncertainty contribution results in this study may not be transferable to other basins, the 592 

proposed framework provides a useful tool for quantifying uncertainty contributions in 593 

discharge simulations using precipitation products.  594 

 595 

5 Discussion  596 

The spatial distribution of different precipitation data is not considered in this study. The 597 

study region is a small river basin, as shown in Fig. 1, there are only 11 grids inside the basin 598 

boundary for the precipitation products with a spatial resolution of 0.25 degree. Within a grid 599 

of 0.25 degree, there are no differences in precipitation amount between the 300 m × 300 m 600 

grids used in hydrological models, and differences exist at the level of 0.25 degree grids only. 601 

Sapriza-Azuri et al. (2015) suggested that the spatial variability of precipitation has little 602 

influence on rapidly responding river discharges; this study is the case because the flow 603 

transport time from the most upper part of the basin to the downstream discharge gauge is 6 604 

hours, which is shorter than the daily and monthly time steps of discharges investigated. 605 

Therefore, the spatial distributions of precipitation products with a resolution of 0.25 degree 606 

in the relatively small river basin have little influence on the simulated discharges. However, 607 

the assumption of uniform distribution can be regarded as another uncertainty source against 608 

spatial variability, and its influence can be assessed using the proposed uncertainty 609 

quantification framework. This will allow us to compare the relative contributions of the 610 

assumption to those from other sources such as hydrological models, which will be 611 

investigated using a much larger river basin in the future work.  612 

 613 

In addition to improving the accuracy of precipitation products, a good collation could help to 614 
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achieve the performance in discharge simulations. Our approach provides a way to assess the 615 

different coalitions, i.e., the overall uncertainties in simulated discharges from different 616 

combinations of hydrological models and precipitation products. More precipitation products 617 

and hydrological models should be included and tested in the future work.  618 

 619 

It should be noted that other input data including temperature, downward solar radiation, long 620 

wave radiation, air pressure, wind speed and humidity may also have uncertainties. However, 621 

Fig. 9 shows that the simulated discharge data are acceptable particularly at monthly and 622 

inter-annual scales using these data. Research has shown that the land surface temperatures 623 

are highly accurate compared with MODIS satellite land surface temperature observations 624 

(Wang et al., 2011;Qi et al., 2015). Thus, the uncertainties from the other inputs are not 625 

considered in our case study river basin.  626 

 627 

In this study, the parameter values calibrated using gauge observations are not tuned to a 628 

specific product. That is, there is little compensation of model parameters for the errors in 629 

input precipitation data. The differences in model accuracy mainly results from the different 630 

representations of hydrological processes. That is, the errors in precipitation products are 631 

primarily compensated by the different representations of model processes.  632 

 633 

6 Summary and conclusions 634 

 635 

This research assesses the applicability of six precipitation products with fine spatial and 636 

temporal resolutions at a high latitude region in northeast China using both statistical and 637 

hydrological evaluation methods at multi-temporal scales. A framework is proposed to 638 

quantify uncertainty contributions of precipitation products, hydrological models and their 639 
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interactions to simulated discharges. These products are TRMM version 7 products 640 

(TRMM3B42 and TRMM3B42RT), GLDAS, APHRODITE, PERSIANN and 641 

GSMAP-MVK+. The fully distributed WEB-DHM and semi-distributed TOPMODEL were 642 

employed to investigate the influence of hydrological models on simulated discharges. The 643 

results show the uncertainty characteristics of the six products, and reveal strategies that 644 

could improve precipitation products. This information could be able to provide references 645 

for future precipitation product development. The proposed framework can reveal 646 

hydrological simulation uncertainties using precipitation products: thus provides useful 647 

information on precipitation product applications. The following conclusions are presented 648 

on the basis of this study.  649 

 650 

First, at daily scale, selecting the best precipitation products is very difficult, while, at a 651 

monthly scale, APHRODITE has the best performance in terms of NSE, RB, RMSE, and CC, 652 

and also retains a high probability of detection and critical success index. This information 653 

implies that the APHRODITE algorithm is effective, and APHRODITE could be a very good 654 

data set to refine and validate satellite-based precipitation products.  655 

 656 

Second, GSMAP-MVK+ show huge advantage, and is better than TRMM3B42 in RB, NSE, 657 

RMSE, CC, false alarm ratio and critical success index, while PERSIANN is better than 658 

TRMM3B42 in probability of detection and precipitation probability distribution estimation. 659 

At present, the new precipitation estimation mission - NASA Global Precipitation 660 

Measurement (GPM) - combines the artificial neural network function of PERSIANN and 661 

precipitation radar-matching of TRMM Multi-satellite Precipitation Analysis. However, the 662 

above finding implies that incorporating GSMAP-MVK+ estimation approach into GPM 663 

could be useful as well.  664 
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 665 

Third, it is found that, although high uncertainty exists in heavy rainfall, hydrological models 666 

contribute mostly to the uncertainty in extreme discharges. This may result from the 667 

nonlinear propagation of uncertainty through hydrological models enlarges the influence of 668 

hydrological models, and implies that high uncertainties in extreme rainfall do not mean high 669 

uncertainties in extreme discharges.  670 

 671 

Fourth, interactions between hydrological models and precipitation products contribute a lot 672 

to uncertainty in discharge simulations, and interactive impacts are influenced by discharge 673 

magnitude. Because of interactive effects, for hydrological models with similar performances 674 

in calibration, using the same precipitation products for discharge simulations does not 675 

provide a similar level of accuracy in discharge simulations, and in fact very different 676 

predictions could be obtained. In addition, this finding implies that only considering 677 

precipitation products or hydrological model uncertainties could result in overestimation of 678 

precipitation product contribution and hydrological model contribution to discharge 679 

uncertainty.  680 

 681 

Fifth, a good discharge simulation depends on a good coalition of a hydrological model and a 682 

precipitation product, and a better precipitation product does not necessarily guarantee a 683 

better discharge simulation. This suggests that, although the satellite-based precipitation 684 

products are not as accurate as the gauge-based product, they could have better performance 685 

in discharge simulations when appropriately combined with hydrological models. It should be 686 

noted that this finding should be further tested with more river basins, in particular large river 687 

basins accounting for spatial variability in precipitation products.  688 

 689 
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In the future, calculating deterministic discharge simulations considering precipitation 690 

product uncertainties and hydrological model uncertainties together should be studied 691 

because above results show product uncertainties and model uncertainties all are important. 692 

In addition, recalibrating hydrological models using precipitation products may reduce the 693 

interactive influence between hydrological models and precipitation products on simulated 694 

discharges, and this may explain why recalibration can improve discharge simulation 695 

accuracy. This should be verified in future work. Further, future research is encouraged to 696 

incorporate GSMAP-MVK+ estimation approach into GPM because of the good performance 697 

of GSMAP-MVK+.  698 
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Table 1 Precipitation products 1025 

Product 
Spatial 

resolution 
Temporal 
resolution 

Areal coverage Start date Type 

TRMM3B42 0.25o 3h Global 50°N-S 1 Jan 1998 
PR+IR+MW+gauge

+HM 

TRMM3B42RT 0.25o 3h Global 50oN-S 1 Mar 2000 IR+MW 

GLDAS/Noah 0.25o 3h 
Global 

90oN-60oS 
24 Feb 2000 IR+MW+gauge 

GSMAP-MVK+ 0.1o 1h Global 60°N-S 1 Mar 2000 IR+MW+CMV 

PRRSIANN 0.25o 3h Global 60°N-S 1 Mar 2000 PR+IR+MW+ANN 

APHRODITE 0.25° 1day 
60°E-150°E, 
15°S-55°N 

1 Jan 1961 to 
2007 

gauge 

PR: precipitation radar; IR: infrared estimation; MW: microwave estimation; HM: histogram 1026 

matching; CMV: cloud motion vectors; ANN: artificial neural network.  1027 
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Table 2 WEB-DHM parameters 1029 

Symbol 
(units) Brief description  Basin‐averaged value 

KS (mm/h) Saturated hydraulic conductivity for soil 
surface  26.43 

Anik Hydraulic conductivity anisotropy ratio  11.49 
Sstmax (mm) Maximum surface water storage  42.75 
Kg (mm/h) Hydraulic conductivity for groundwater  0.36 

alpha van Genuchten parameter  0.01 
n van Genuchten parameter  1.88 

  1030 
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Table 3 TOPMODEL parameters  1031 

Name (units) Description Lower 
bound 

Upper  
bound Calibration 

SZM (m) form of the exponential 
decline in conductivity 0.01 0.04 0.019 

LNT0 (m2 h-1) 
log value of effective 

lateral saturated 
transmissivity 

-25 1 -11.911 

RV (m2 h-1) hill slope routing 
velocity 2000 5000 2608.4 

SRmax (m) maximum root zone 
storage 0.001 0.01 0.006 

SR0 (m) initial root zone deficit 0 0.01 0.005 

TD (m h-1) unsaturated zone time 
delay per unit deficit 2 4 2.885 
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 1034 

Fig. 1 Biliu basin: (a) the location of Liaoning province within China; (b) the location of 1035 

Biliu basin within Liaoning province; (c) the distributions of rain gauges, discharge gauge, 1036 

automatic weather stations, digital elevation model, and diagrammatic 0.25-degree 1037 

precipitation cells; and (d) diagrammatic description of downscaling the 0.25-degree 1038 

precipitation cells to 300 m × 300 m cells, and retrieving the 300 m × 300 m cells located 1039 

within the basin boundary.  1040 
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 1042 

Fig. 2 Diagrammatic flowchart of the proposed framework for quantification of uncertainty 1043 

contributions to ensemble discharges simulated using precipitation products on the basis of 1044 

the analysis of variance (ANOVA) approach.  1045 
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 1047 

Fig. 3 Scatterplots of basin-averaged precipitation products versus gauge observations at a 1048 

daily scale.  1049 
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 1051 

Fig. 4 Scatterplots of basin-averaged precipitation products versus gauge observations at a 1052 

monthly scale. 1053 
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 1055 

Fig. 5 Time series plots of basin-averaged precipitation product values versus gauge 1056 

observations at monthly scale.  1057 
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 1059 

Fig. 6 Inter-annual basin-averaged monthly precipitation.  1060 
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 1062 

Fig. 7 Probability distributions of the six precipitation products by occurrence (CDFc) and 1063 

volume (CDFv).  1064 

  1065 



55 
 

 1066 

Fig. 8 False alarm ratio, probability of detection and critical success index for the six 1067 

precipitation products.  1068 
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 1070 

Fig. 9 Observed and simulated flows using WEB-DHM and TOPMODEL from 2000 to 2007: 1071 

(a), (c) and (e) are daily, monthly and inter-annual simulations using WEB-DHM respectively; 1072 

(b), (d) and (f) are daily, monthly and inter-annual simulations using TOPMODEL 1073 

respectively.  1074 
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 1076 

Fig. 10 Scatterplots of simulated discharges with WEB-DHM against gauge observations at a 1077 

daily scale.  1078 
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 1080 

Fig. 11 Scatterplots of simulated discharges with TOPMODEL against gauge observations at 1081 

a daily scale.  1082 
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 1084 

Fig. 12 Scatterplots of simulated flows with WEB-DHM against gauge observations at a 1085 

monthly scale. 1086 
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 1088 

Fig. 13 Scatterplots of simulated discharges with TOPMODEL against gauge observations at 1089 

a monthly scale.  1090 

  1091 



61 
 

 1092 

Fig. 14 Inter-annual average monthly discharges.  1093 
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 1095 

Fig. 15 Contributions of uncertainty sources to (a) average monthly discharges and (b) 1096 

discharge quantiles based on daily scale simulated results.  1097 
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