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Abstract 12 

Accurate prediction of groundwater table is important for the efficient management of 13 

groundwater resources. Despite being the most widely used tools for depicting the 14 

hydrological regime, numerical models suffer from formidable constraints, such as extensive 15 

data demanding, high computational cost and inevitable parameter uncertainty. Artificial 16 

neural networks (ANNs), in contrast, can make predictions on the basis of more easily 17 

accessible variables, rather than requiring explicit characterization of the physical systems 18 

and prior knowledge of the physical parameters. This study applies ANN to predict the 19 

groundwater table in a freshwater swamp forest of Singapore. The inputs to the network are 20 

solely the surrounding reservoir levels and rainfall. The results reveal that ANN is able to 21 

produce accurate forecast with a leading time up to 7 days, whereas the performance slightly 22 

decreases when leading time increases. 23 
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1. Introduction 26 

Physical-based numerical models are commonly used in groundwater table simulation. 27 

Different numerical models have been developed for different regions with different 28 

objectives, such as to describe regional groundwater flow patterns, and to understand local 29 

hydrological processes. (e.g. Matej et al., 2007; Pool et al., 2011; Yao et al. 2014). Numerical 30 

models solve the deterministic equations to simulate the groundwater systems based on the 31 

knowledge of the system characteristics, initial conditions, system forcings, etc. To develop a 32 

groundwater numerical model, essential data include: topography, geological coverage, soil 33 

properties, land use map, vegetation distribution, evapotranspiration information, hydrologic 34 

and climatic data, etc. Extensive data demanding makes numerical models highly data 35 

dependent and data sensitive. Fitting a physical model is not possible when data are not 36 

sufficient, and the accuracy of the numerical model to a great extent depends on how accurate 37 
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the model inputs are. Numerical models are also less competent in forecast as most of the 38 

system forcings (e.g. evapotranspiration, rainfall) are less predictable. As a result of 39 

aforementioned constraints, numerical models tend to produce imperfect results in spite of the 40 

perfect knowledge of the governing laws (Sun et al., 2010). 41 

To combat the deficiencies of the numerical models, artificial neural networks (ANNs) have 42 

emerged as an alternative modelling and forecasting approach with a variety of applications in 43 

hydrology research (e.g. French et al., 1992; Maier and Dandy, 2000). Unlike the traditional 44 

physical-based models, the ANN-based approach does not require explicit characterization of 45 

the physical properties, or accurate representation of the physical parameters, but rather 46 

simply determines the system patterns based on the relationships between inputs and outputs 47 

mapped in the training process. ANNs typically use input variables that are more accessible to 48 

make predictions, and therefore circumvent the data reliance inherent to the numerical models. 49 

As compared to classical regression techniques, e.g. linear regression model, ANNs are 50 

capable of taking into account of the nonlinear dynamics of the hydrological processes and 51 

hence result in superior modelling and forecasting performance. 52 

ANNs in recent years have also been successfully applied in groundwater table modelling. 53 

Yang et al. (1997) utilized ANN to predict groundwater table variations in subsurface-drained 54 

farmland. Coulibaly et al. (2001) calibrated three different ANN models using groundwater 55 

recordings and other hydro-meteorological data to simulate groundwater table fluctuations. 56 

Lallahem et al. (2005) showed the feasibility of using ANN to estimate groundwater level in 57 

an unconfined chalky aquifer. Daliakopoulous et al. (2005) examined the performance of 58 

different ANN architectures and training algorithms in groundwater table forecasting. 59 

Taormina et al. (2012) developed a two-step ANN model to simulate the groundwater 60 

fluctuations in a coastal aquifer using past observed groundwater levels and external inputs, 61 

i.e., evapotranspiration and rainfall. Most of above studies, however, focus on applying ANN 62 

in large-scale semiarid or arid watersheds, where groundwater table is less variable and long-63 

term groundwater table variation (e.g. monthly, annually) is of more concerns. In addition, 64 

these studies use historical groundwater tables as inputs to the network, requiring 65 

continuously long groundwater table recordings which can be a luxury for many regions. 66 

This study, for the first time, applies ANN to forecast the groundwater table in a tropical 67 

wetland – the Nee Soon Swamp Forest (NSSF) in Singapore. Being nourished with water 68 

supply from reservoirs and precipitation, the groundwater table in the NSSF is close to the 69 

ground level and extremely sensitive to the changes in hydro-meteorological conditions. This 70 

study selects surrounding reservoir levels and rainfall as inputs to the network, avoiding the 71 

requirement on continuously long groundwater table recordings. The forecast is made with 3 72 

leading times, i.e., 1 day, 3 days and 7 days, which provides sufficient reaction time for 73 

human intervention to maintain favorable hydrological conditions for conserving local 74 

ecosystem. The methodology, application, results and conclusions are elaborated in the 75 

following sections. 76 

2. Methodology 77 

2.1 Overview 78 

As defined by Haykin (1999), artificial neural networks (ANNs) are massively parallel 79 

distributed processors made up of simple processing units, known as neurons, which have a 80 
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natural propensity for storing experiential knowledge and making it available for use. ANNs 81 

are inspired by biological neural networks to emulate the way in which human brains function. 82 

The fact that neurons can be interconnected in numerous ways results in numerous possible 83 

topologies that can be divided into two basic classes, i.e., feedforward neural networks (FNNs) 84 

and recurrent neural networks (RNNs). In FNNs information flows from inputs to outputs in 85 

only one direction, whereas in RNNs some of the information can flow not only in one 86 

direction from inputs to outputs but also in opposite direction. 87 

There are many algorithms for training neural network models, most of which employ some 88 

form of gradient descent using backpropagation to compute the actual gradients (Werbos, 89 

1974). The backpropagation algorithm is implemented by taking the derivatives of the cost 90 

function with respect to the synaptic weights and then changing the weights in a gradient-91 

related direction (Sexton and Dorsey 2000; Mandischer, 2002). 92 

This study opts for a standard FNN and a quasi-Newton training algorithm, more specifically 93 

a multilayer perceptron (MLP) trained with the Levenberg-Marquardt (LM) algorithm, 94 

attributing to its superior accuracy in groundwater table forecasting (Daliakopoulous et al., 95 

2005). 96 

2.2 Multilayer perceptron 97 

Multilayer perceptron (MLP) was developed for pattern classification by Rosenblatt (1958). 98 

Figure 1 shows the architecture of a typical MLP consisting of an input layer, one hidden 99 

layer and an output layer. In mathematical terms, a computational neuron in the hidden or 100 

output layers can be described by following pair of equations: 101 

1

n

i i
i

u w x


  (1) 102 

and 103 

 y u b   (2) 104 

where 1x , 2x , …, nx  are the input signals to the neuron, 1w , 2w , …, nw  are the synaptic 105 

weights, u  is the linear combiner of the input signals, b  is the bias, y  is the output signal of 106 

the neuron, whereas     is the activation function to limit the amplitude of the output signal 107 

and to create a mapping between the input and output signals. 108 

The universal approximation theorem states that every continuous function defined on a 109 

closed and bounded set can be approximated arbitrarily closely by a MLP provided that the 110 

number of neurons in the hidden layers is sufficiently high and that their activation functions 111 

belong to a restricted class of functions with particular properties (Hornik et al., 1989). 112 

2.3 Levenberg-Marquardt algorithm 113 

The Levenberg-Marquardt (LM) algorithm, independently developed by Levenberg (1944) 114 

and Marquardt (1963), provides a numerical solution to the problem of minimizing a 115 

nonlinear function. The update rule of the LM algorithm can be presented as follows: 116 
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  1T
k k k k k k kw w J J I J e


    (5) 117 

where k  is the iteration index, J  is the Jacobian matrix,   is the combination coefficient, I  118 

is the identity matrix and e  is the error vector. 119 

The LM algorithm essentially blends the steepest descent method and the Gauss–Newton 120 

algorithm. The optimization process is guided by the combination coefficient  . Around the 121 

error surface with complex curvature, the LM algorithm switches to the steepest descent 122 

algorithm with a bigger  , whereas if the local curvature is proper to make a quadratic 123 

approximation,   can be decreased, giving the LM algorithm a step closer to the Gauss–124 

Newton algorithm. The LM algorithm is faster, more stable and less easily trapped in local 125 

minima than other algorithms (Toth et al., 2000). 126 

3. Application 127 

3.1 Study case 128 

Figure 2 shows the geographical location of the study area – the Nee Soon Swamp Forecast 129 

(NSSF) in Singapore. The NSSF is located in the northern part of the Singapore central 130 

catchment nature reserve bounded by the Upper Seletar, Upper Peirce and Lower Peirce 131 

reservoirs. As the only substantial freshwater swamp forest remaining in Singapore Island, the 132 

NSSF houses a diversity of flora and fauna some of which are found nowhere else in 133 

Singapore or the world (Karunasingha et al., 2013). 134 

With an estimated area of about 750 ha, the NSSF covers the lower area of shallow valleys 135 

with slow-flowing streams and a few higher grounds with dryland forests. The elevation of 136 

NSSF ranges between 1 m to 80 m above mean sea level (MSL). The aquifer depth in the 137 

NSSF is from 20 m to 40 m, and the major soil type features silty sand with a hydraulic 138 

conductivity of 4.05 x 10-5 m/s. Figure 2 also depicts the locations of the 4 piezometers 139 

installed for groundwater table monitoring. The piezometers are deployed near the streams, 140 

where the observed groundwater tables vary between 0 to 1 m below the ground level. 141 

3.2 ANN setup 142 

The surrounding reservoirs serve as important fresh water storage for Singapore, with 143 

reservoir levels being kept at relatively high levels ranging from 10 to 40 m above MSL. 144 

Singapore has a typical tropical rainforest climate with abundant rainfall; the annual rainfall at 145 

the NSSF region can be as high as 3,000 mm. Despite being another important influential 146 

factor for the groundwater, observed evapotranspiration is not available due to the constraints 147 

imposed from setting up monitoring stations in the protected forest, and hence it is exclude in 148 

the ANN setup. Reservoir levels and rainfall, as the major water source and driving force, are 149 

fed to the networks as inputs, while the output is the observed groundwater tables with a 150 

leading time of 1 day, 3 days and 7 days (i.e., future observed groundwater tables after 1 day, 151 

3 days and 7 days). 152 

A multiple-input multiple-output (MIMO) network is selected over 4 multiple-input single-153 

output (MISO) ANNs for 2 reasons: (1) it is easier to implement; and (2) cross-correlation 154 

exists in the observed groundwater tables, e.g. the synchronous response to dry and wet 155 
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conditions; targeting the groundwater table measurements at 4 locations simultaneously, the 156 

cross-correlation impact can be captured in the synaptic weights of the trained ANN and 157 

hence a better performance is expected. The MIMO network is composed of an input layer 158 

with 4 input neurons (including 3 reservoir levels and one rainfall), a hidden layer with 10 159 

neurons (determined by trial and error), and an output layer with 4 output neurons (future 160 

observed groundwater tables at the 4 piezometers). The logistic function and threshold 161 

function are respectively adopted as the activation functions for the hidden layer and the 162 

output layer. 163 

Daily observed data, i.e., reservoir levels, rainfall and groundwater tables, are available in 164 

2012 and 2013. The data set is divided into 3 subsets as follows: 165 

 Training data (January 2012 to December 2012) 166 

Training data are used for adjusting the synaptic weights in the network. An entire year’s data 167 

are selected as the training data, so as to expose the network to a complete annual cycle for a 168 

robust training. 169 

 Cross validation data (January 2013 to June 2013) 170 

Cross validation data are used for avoiding overfitting. When the errors between the predicted 171 

values and desired values in the cross validation data begin to increase, the training stops and 172 

this is considered to be the point of best generalization. Half a year’s data are selected as the 173 

cross validation data. 174 

 Testing data (July 2013 to December 2013) 175 

Testing data are used for evaluating the performance of the network. Once the network is 176 

trained, the weights are frozen; the testing set is fed into the network and the network output 177 

is then compared with the desired output. Remaining half a year’s data are selected as the 178 

testing data. 179 

4. Results and discussion 180 

Figure 3 illustrates examples of the observed groundwater tables and the ANN-forecasted 181 

groundwater tables at P1 with a leading time of 1 day, 3 days and 7 days; the corresponding 182 

scatter plots are presented in Figure 4. The 1 day network forecast agrees well with the 183 

observed groundwater tables, whereas the discrepancies become larger when leading time 184 

increases to 7 days. The response of the groundwater tables to the system forcings – reservoir 185 

levels and rainfall, for such a confined and wet catchment, is rapid and sensitive. When the 186 

leading time progresses, the correlation fades out between the inputs and outputs, the 187 

accuracy of the ANN forecast therefore decreases. The groundwater tables experience a 188 

drastic drop in July and August 2013, caused by a continuous two-month drought. As such a 189 

drought condition does not exist in the training data, the ANN tends to over-predict the 190 

groundwater tables for that period. In general, the network forecast successfully resolves the 191 

rising and falling tendencies of the groundwater tables, resulting in rather reasonable 192 

groundwater table forecast. 193 

Figure 5 and Figure 6 respectively present the groundwater table time series and scatter plots 194 

at P4. P4 is located near the Upper Seletar reservoir, and the groundwater table is affected by 195 
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the spillway discharge released from the reservoir. Failing to include the spillway information 196 

makes the ANN less competent in capturing the groundwater table extreme values caused by 197 

the spillway discharge, and hence results in the lower forecast accuracy at P4. 198 

Table 1 summarizes the ANN forecast efficiency through evaluating based on the testing data 199 

the root mean square error (RMSE) and the correlation coefficient (r). The forecast accuracy 200 

decreases slightly when the leading time increases due to the rapid and sensitive response of 201 

the groundwater tables to the system forcings. The RMSE is in general within 10 cm with the 202 

exception at P4 caused by the absence of the spillway information. Averaged over the 3 203 

leading times, at P1 to P3 the RMSE is less than 8.0 cm with correlation coefficient r higher 204 

than 0.7, whereas at P4 the averaged RMSE and correlation coefficient r are respectively 13.8 205 

cm and 0.67. 206 

5. Conclusions 207 

This study, for the first time, applies artificial neural networks (ANNs) to predict the 208 

groundwater table variations in a tropical wetland – the Nee Soon Swamp Forest (NSSF) in 209 

Singapore. The groundwater table, in such a confined freshwater swamp forest, varies rapidly 210 

in the superficial aquifer layer and is very sensitive to the changes in the hydro-metrological 211 

condition. The complex geological condition and demand on ecology conservation also 212 

hinder the installation of monitoring stations to acquire the necessary input information for 213 

the numerical models. The ANN model solely utilizes the easily accessible surrounding 214 

reservoir levels and rainfall as inputs to forecast the groundwater tables, without requiring any 215 

other prior knowledge of the system’s physical properties. 216 

The forecast is made at 4 piezometer locations with 3 leading times, i.e., 1 day, 3 days and 7 217 

days. The ANN forecast shows promising accuracy, while its performance slightly decreases 218 

when the leading time progresses due to the fading correlation between the network inputs 219 

and outputs. The network forecast in general successful resolves the rising and falling 220 

tendencies of the groundwater tables, resulting in rather reasonable groundwater table forecast. 221 

Averaged over the 3 leading times, the RMSE is within 10 cm and the correlation coefficient r 222 

is higher than 0.7 at P1 to P3, whereas at P4 the averaged RMSE and correlation coefficient r 223 

are respectively 13.8 cm and 0.67 caused by the absence of the spillway information. 224 

In this study, surrounding reservoir levels and rainfall are selected as ANN inputs. The 225 

limited number of inputs eliminates the data demanding restrictions inherent in the numerical 226 

models. However, improvements are expected if trained with more inputs, such as spillway 227 

discharge, evapotranspiration and water level measurements. Less data demanding, lower 228 

computational cost and higher site-specific forecast accuracy are the advantages of the ANN-229 

based approach over the physical-based numerical models. Numerical models, however, can 230 

be applied to describe the system processes over the entire model domain given sufficient 231 

information on the model inputs. Therefore, the ANN and numerical model can act as natural 232 

complements in such a way that ANN is more suitable for site-specific forecast while the 233 

numerical model provides a better spatial coverage. 234 
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Figure 1 Architectural diagram of a typical multilayer perceptron 292 

 293 

  294 
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 295 

Figure 2 Geographical location of the Nee Soon Swamp Forest in Singapore 296 

 297 

  298 
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Figure 3 Observed vs. ANN-forecasted groundwater tables (P1) 299 
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Figure 4 Scatter plots of observed and ANN-forecasted groundwater tables (P1) 302 
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Figure 5 Observed vs. ANN-forecasted groundwater tables (P4) 305 
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Figure 6 Scatter plots of observed and ANN-forecasted groundwater tables (P4) 308 
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Table 1 Evaluation statistics of the ANN forecast 311 

 P1 P2 P3 P4 
RMSE 
(cm) 

r 
RMSE 
(cm) 

r 
RMSE 
(cm) 

r 
RMSE 
(cm) 

r 

1day 5.4 0.88 6.4 0.78 5.2 0.77 12.2 0.69 
3 day 8.2 0.76 7.1 0.76 6.6 0.71 13.3 0.68 
7 day 9.9 0.64 9.2 0.72 8.6 0.67 15.8 0.65 
Average 7.8 0.76 7.6 0.75 6.8 0.72 13.8 0.67 
 312 


