
Interactive comment on “Investigation of hydrological time series using 

copulas for detecting catchment characteristics and anthropogenic impacts” 

by  

 

T. Sugimoto, A. Bárdossy, G. S. S. Pegram and J. Cullmann 

 

General remarks of authors  

 

First of all, we deeply appreciate the care and effort taken by the reviewers in examining this 

paper. 

 

We checked the literature and the papers concerning asymmetry once more. We agree with the 

comments of anonymous referee #1 that our definition of asymmetry is similar to the definition of 

Joe H. (2014) in the sense that it compares the asymmetry along both diagonals of a bivariate 

copula. Although advanced modeling with new asymmetry function is intriguing, it is beyond the 

scope of this study. 

 

It seems that the explanation about the relation between asymmetry and hydrograph was not clear, 

leading to questions and comments from both referees. An effort has been made to substitute more 

comprehensive figures and text for a better explanation of the material. 

 

The main modifications and improvements in the manuscript are  

 

 Expansion of asymmetry definition from expectation notation to integration notation 

 Further comprehensive illustration for the relation between hydrograph and asymmetry. 

 In Figure 6 (Asymmetry and Catchment), x-coordinate is log scaled. 

 In Section 3.1 (deseasonalization of data) redundant equations and explanations are deleted 

 The mistakes  in the equations and English have been corrected  

 
Point-to-Point Response to Anonymous Referee #1 – referee comments in italics 
 
Nice study that appears to be the first dealing with select asymmetrical properties and interpretations of 

copula models in a context of daily streamflow statistics for which asymmetry is known to exists. The 

asymmetry is related to the generalized hydrograph shape. Much of the authoritative text literature (e.g. 

Nelsen, 2006; Joe, 2014; Durante and Sempi, 2015) do not comprehensively tackle the asymmetry problem 

of a copula. 

 

Nelsen (2006) is basically devoid of "skewness" (asymmetry) computations— understandably so. Joe (2014, 

p.66) discusses skewness of a copula and the orientation of the skewness appears conceptually similar (not 

necessarily numerically equal) to the A1 definition (primary diagonal) of eq. 9. A unique contribution by 

the paper is the A2 definition (secondary diagonal) of eq. 10. This reviewer has seen many bivariate plots 

of hydrologic phenomena (such as daily streamflow) and notes the secondary diagonal asymmetry. This 

asymmetry means a fair share of copula families seen in the literature arguably are in applicable because 

they have symmetry on the secondary diagonal. This reviewer would like A1 and A2 to also be expressed in 

direct terms of integration of the copula formula or its density. For example, a Joe (2014) definition for the 

primary diagonal is: \int\int_{[0,1]} (v-u)C(u,v) du dv from which a secondary asymmetry definition (not 

identified by Joe) can result \int\int_{[0,1]} (v+u-1)C(u,v) du dv - (1/2) Can the authors of the paper 

expand the definitions of A1 and A2 beyond the "expectation" notation? 

 

Author’s Response (Definition of Asymmetry1 and Asymmetry2): 



 

The “expectation notation” was conventionally used in this research, so there is no reason not to 

express the equation in integration form beyond the expectation notation as follows:  
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It seems sensible, because the terms such as  1t t ku u    and  ktt uu   appear in this notation, 

which is comparable to the asymmetry definition by Joe (2014) and anonymous referee #1 : 

 

Asymmetry1 :       dudvvucuv ,  

Asymmetry2 :       5.0,1 dudvvucuv  

 

In general, there seem other ways to define and apply the asymmetry. L-comoments (L-coskew) 

suggested by anonymous referee#1 can be one of them. 

  
Have the authors considered the L-comoments (Serfling and Xiao, 2007)? But more importantly, the very 

recent "break through" of L-comoment (bivariate L-moment, bivariate L-skew) definition (Brahimi et al. 

[2015]) directly in terms of a copula. L-coskew (bivariate skew) \deltaˆ{[12]}_{3;\mathbf{C}} = 

\int\int_{[0,1]} (60vˆ2 - 60v + 12) * C(u,v) du dv - (1/2) \deltaˆ{[21]}_{3;\mathbf{C}} = \int\int_{[0,1]} 

(60uˆ2 - 60u + 12) * C(u,v) du dv - (1/2) 

 

Author’s Response (Suggestion for using L-comoments and L-coskew): 

 

L-comoments or L-coskew (Serfling and Xiao, 2007) were not really known to our group. So, we 

quickly checked the theory in the papers and summarize the main features below. 

 

 L-moments are defined as linear combinations of order statistics. 

 The advantage of using order statistics is that, it is not necessary to assume the existence 

of second order statistics or the statistics of higher order. This can be suitable for heavy-

tail distributions. 

 L-comoments or L-coskew are extensions of L-moments to the multivariate case.  

 

These functions are theoretically interesting and can be regarded as an advanced definition of 

copula asymmetry.   

 

The authors generally think that the use of such sophisticated functions enable us to tackle with 

problems of hydrology and earth system sciences in different ways. For example, the application 

of such functions for asymmetry1 might be interesting, although their application is beyond the 

main focus in this research.  

 
These integrals can readily by numerically approximated or integrated by Monte Carlo methods enhanced 

by low-discrepancy sequence methods. Some final thoughts. A similar study as this does not really appear 

to have been done. Whereas, this review generally thinks that the physical interpretations of the watershed 



and climatology are mechanism producing asymmetry, care is suggested to avoid over interpretations until 

a great suite of similar studies can be conducted. For example, 9164, line 24 "... A1 ... asymmetry can be 

related to temporal distribution of precipitation" (what scale of time?) or "... A2 ... more related to 

catchment and rainfall characteristics ... or ... interseasonal characteristics of climate".  

 

These are deeply important properties and suggest that copulas are an avenue forward in 

watershed/climate stochastic modeling. Intuition seems to be correct, but expansion of the authors’ 

thoughts and statements to interpretation of A1 and A2 or other skewness measures or bivariate moment 

(L-moment) would be informative. 

 

Also, given that we know typical storm water hydrographs are asymmetrical and are inherently formed by 

a cascade of processes (e.g. water parcel survival from input to output — Markov of sorts), is there a 

connection between A1/A2 and storm water hydrographs (e.g. unit hydrographs)?  

 

 

Author’s Response   (Relation between asymmetry and hydrograph): 

 

We note that anonymous referee#1 gave some positive comments but also the warning about the 

necessity of careful thought and expressions for asymmetry. It seems important, because this can 

influence the decent usage of copulas and its fruitful results in the future.   

In retrospect, our explanation about the relation between hydrograph and asymmetry seemed to be 

not good enough in this manuscript, which raised several questions or remarks.   

from interactive comment of anonymous referee #1: 

 … is there a connection between A1/A2 and storm water hydrographs (e.g. unit hydrographs)? 

  A1 ... asymmetry can be related to temporal distribution of precipitation" (what scale of time?) 

 expansion of the authors’ thoughts and statements to interpretation of A1 and A2 

 

from interactive comment of anonymous referee #2:   

 Section 3. I would give more practical explanation about Copula asymmetry. It is not fully clear.  

 

In order to answer these questions, Figure3 has been modified as shown below  

 



 
Previous version of figure 3 (top) and New version of figure 3 (bottom) 
Sketch of the transformation of the values from sample hydrograph (left) to the points on scatterplot of 

ranks (right): empirical copula calculated from two values separated by time lag 1k [days] in a discharge 

time series of Andernach where 9870.0ncorrelatiorank ,   0002398.011 kA  and 

  00011037.012 kA . The possible combinations of high and low values, which has large impacts on 

asymmetry, are numbered: (1) low to high,  (2) high to high, (3) high to low, (4) low to low. Negative 

contribution to asymmetry2 is drawn with red circle and positive contribution with blue oval.    

 

 

This figure illustrates where each pair of values on hydrograph can be plotted on empirical copula. 

For example, it can be seen there are more points in upper left corner, which demonstrates how the 

shape of hydrograph can be related to the asymmetry of these empirical copulas.  This figure and 

additional explanation will replace the current figure3 and explanation.  
 

A1 ... asymmetry can be related to temporal distribution of precipitation" (what scale of time?) 

 

Author’s Response   (Further explanation about asymmetry1): 
 

The asymmetry1 would change depending on the lag k [days] similar to the case of asymmetry 2 

(please see the figure below) but based on different reasons. The answer to the question is that the 

asymmetry1 is significantly small (-0.002 ~ -0.006) for small time scale (lag k = 1~100 [days]) . 

This is important because this asymmetry can be potentially related to the precipitation of the 

region. Some basic investigation for asymmetry1 was conducted in the original study (Sugimoto, 

T., 2014. Copula based stochastic analysis of discharge time series. PhD Thesis. Nr. 232. 

University of Stuttgart, Germany). It is copied below, but finally not included for the organization 

of this paper.  
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In this sense, no concrete conclusion or over interpretation should be given, but it still may make 

sense to mention the possible mechanism behind it so that it can be the hint for the possible future 

research works. 

 
or other skewness measures or bivariate moment (L-moment) would be informative. 

 

Hopefully, the new Figure3 and some additional explanation about asymmetry1 will carry the 

message, so the following sentences were slightly corrected: 

  
(original text at  9164 Line 25 in discussion paper) 

This asymmetry can be related to the intrinsic temporal distribution of precipitation.  

 

(improved text) 

This implies that the intrinsic temporal distribution of precipitation can be investigated based on this 

asymmetry, possibly with advanced asymmetry functions such as bivariate moments based on L-moments 

(Brahimi et al., 2015). 

 
(original text at 9165 Line 2 in discussion paper) 

This asymmetry can be related to the characteristics of the runoff and catchment.  

(improved text) 

This asymmetry can be related to the shape of the hydrograph, therefore the characteristics of the runoff 

and catchment.  
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9160, Lines 25 and 30: There is confusion in the technical writing 

aspect of mentioning ARIMA and then evidently switching conceptually to "Fourier 

analysis". This review suggests that a proof reading would resolve potential confusion. 

 

Author’s Response (technical proof reading about ARIMA and Fourier Analysis)  

 

We checked again the literature (Huang et al., 1998) . For the Fourier Analysis, the system must 

be periodic or stationary and EMD methods have been developed to overcome the restriction. 

ARIMA is designed originally for stationary process, assuming the no change of the background 

system. In this sense ARIMA and Fourier analysis is related, but maybe the technical description 

was not clear, so the text at 9160 Line1 in discussion paper was improved. 

 



Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung, C.C., Liu, 

H.H., 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and 

non-stationary time series analysis. Proc. R. Soc. A Math. Phys. Eng. Sci. 

doi:10.1098/rspa.1998.0193 

 

9162, Line 9: "this statistics" —> "these statistics" 

Author’s Response: 

Thank you very much for pointing out the mistakes. This will be corrected in the revised version 

of manuscript. 
 
9168, Line 14: missing minus sign in definition of A2(k,t)? 

 

Author’s Response: 

Yes, this is again a mistake. We thank you for pointing out this error. 
 

Figure 6: Shouldn’t the horizontal axis be cast in logarithms? 

 

Author’s Response: 

For the figure 6 (figure6 old), the same result was plotted on the graph with log-scaled x-

coordinate (figure6 new). The correlation and regression line were also calculated based on the 

log-scaled catchment area. (x’ = log10 x). Now, it is more clear that there are linear relationships 

between area and asymmetry measures (A2min, L2min). Thank you very much for pointing this 

out. 

 



  
W 

Old version of Figure6 (left) and new version of Figure6 (right): 

Relation between Asymmetry and catchment characteristics: minimum of asymmetry2 of 

discharge and catchment area (top), lag at minimum of asymmetry2 of discharge and catchment 

area (middle), minimum of asymmetry2 of discharge and lag at minimum of asymmetry2 of 

discharge (bottom) 

  



Point-to-Point Response to Anonymous Referee #2 – referee comments in italics 
 

Received and published: 26 October 2015 

The manuscript provides an interesting set of tools based on copula function for investigating discharge 

time series dynamic.  

The topic is particularly interesting since it is in line with the recent and innovative use of copula. Up today 

copula was applied mainly to perform multivariate frequency analysis while it is potentially useful for 

detecting and interpreting observed data. This paper is a clear example. The manuscript is easy and 

pleasant to read, however it includes many analyses and methods that, maybe, it could be worth to split it 

in two papers. 

 

In the following minor and major concerns are listed. 

 

1) In the abstract API acronym should be defined. 

 

Author’s Response: 

Thank you for pointing out this. It will be corrected. 
 
 
2) In the Introduction line 20-22. If the aim is to investigate on the catchment status and the anthropogenic 

impact, I do not think it is obvious that the solution is to analyze the discharge time series, the reader could 

expect to see the analysis of the crosscorrelation between rainfall and runoff time series.  

 

Author’s Response: 

we agree that cross correlation between rainfall and runoff can be the first choice. There are 

several studies about them, but in our opinion, not enough to explain the causality. The 

corresponding expressions in abstract will be reconsidered. 
 

 

3) Section 3. I would give more practical explanation about Copula asymmetry. It is not fully clear. 

 

Author’s Response:  

Please see “Author’s Response   (Relation between asymmetry and hydrograph)” in the previous 

section in this document 
 

 

4) Section 3.1 line 15. “and instead of “und” 5) Section 3.1 line 25. related “to” temporal distribution 

 

Author’s Response: 

Thank you very much for pointing out the mistakes 
 

 

6) Section 3.1 page 9165-9166. The de-seasonalization approach is well known 

(Grimaldi, S. Linear parametric models applied to daily hydrological series (2004) Journal of Hydrologic 

Engineering, 9 (5), pp. 383-391), maybe you can remove the equations 

in order to make easier the text. 

 

Author’s Response:  

Thank you for pointing out this. Section3.1 , the several equation and redundant explanation were 

removed, instead reference to the study of Grimaldi (Grimaldi, 2004) was added. 
 

 

7) Section 3.1 pag 9166. I am not surprised to have a residual periodicity since you have removed the 

annual one. Maybe a weekly periodicity could be still detected. 



 

Author’s Response:  

Yes, the weekly periodicity might still exist. The important argument here is that the asymmetry 

remains after certain normalizing treatment of original. This asymmetry is now more reasonable to 

explain catchment characteristics, because the influence of annual cycle is eliminated. (Not that  

asymmetry itself is different from month to month. In this sense, the seasonality cannot be fully 

removed). 
 

8) Section 4.1.In general this section is very interesting. I would suggest to better explain if the distance D 

is based on empirical copula and why this is important; and the uncertainty of the estimated distance. 

Maybe these notions are already included in the text but it should be better clarified.  

 

 

Author’s Response: 
 

I would suggest to better explain if the distance D is based on empirical copula and why this is important 

 

Yes, it is based on empirical copula. This study started with the analyzing the asymmetry of 

empirical copula. After that distance D was examined as an extension to it. It is not necessarily 

important to use empirical copula, but seems sensible to use it for the purpose of this study. 

 
and the uncertainty of the estimated distance. 

 

There seem two aspects about uncertainty: 

 

1. Uncertainty of Model 

 

From the definition, copula variance can be related to the model uncertainty; how much the 

natural system is varying. This can be related to the potential calibration difficulty of hydrological 

model or any parameter estimation of global circulation model. 

 
(the following text is added at 9179 line 15 in discussion paper, original text) 

This asymmetry can be related to the intrinsic temporal distribution of precipitation.  

 

The copula based measures introduced in this study can be related to the potential model 

uncertainty, that is, how much the natural system is varying. 

 

 

2. Uncertainty of the statistic 

 

Estimating uncertainty of copula distances might be interesting, but seems complicated. It is 

possible to calculate copula distances for 77 discharge data from different gauging stations, but 

these data from the same river or same regions should be interrelated and not independent. Thus, it 

seems not to be simple to estimate the uncertainty of copula distances, therefore this matter is not 

really discussed in this paper. Copula distances are just calculated for the independent stationary 

Gaussian processes in order to provide some impression. 

 

These arguments are not clear in the manuscript, so some correction has been done so that these 

are clearer. 
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Abstract. Global climate change can have impacts on characteristics of rainfall-runoff 10 

events and subsequently on the hydrological regime. Meanwhile, the catchment itself 11 

changes due to anthropogenic influences. However, it is not easy to prove the link 12 

between the hydrology and the forcings. In this context, it mightcan be meaningful to 13 

detect the temporal changes of catchments independent from climate change by 14 

investigating existing long term discharge records. For this purpose, a new stochastic 15 

system based on copulas for time series analysis is introduced. While widely used time 16 

series models are based on linear combinations of correlations assuming a Gaussian 17 

behavior of variables, a statistical tool like the copula has the advantage to scrutinize the 18 

dependence structure of the data in the uniform domain independent of the marginal.   19 

Two measures in the copula domain are introduced herein:   20 

  1. Copula asymmetry is defined for copulas and calculated for discharges; this measure 21 

describes the non symmetric property of the dependence structure and differs from one 22 

catchment to another due to the intrinsic nature of both runoff and catchment.   23 

  2. Copula distance is defined as Cramér-von Mises type distance calculated between 24 

two copula densities of different time scales. This measure describes the variability and 25 
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interdependency of dependence structures similar to variance and covariance, which can 26 

assist in identifying the catchment changes. 27 

These measures are calculated for 100 years of daily discharges for the Rhine rivers and 28 

tributaries. Comparing the results of copula asymmetry and copula distance between an 29 

Antecedent Precipitation Index (API) and simulated discharge time series by a 30 

hydrological model we can show the interesting signals of systematic modifications along 31 

the Rhine rivers in the last 30 years. 32 

Keywords : Catchment discharge characteristics, Copula stochastic analysis, API, Model 33 

uncertainty 34 

1. Introduction 35 

In order to understand the water cycle behavior of a region, it is important to determine its characteristics, 36 

but this is difficult to achieve due to the diversity of the system response at different time and space scales. 37 

In particular, temporal variability makes parameter estimation difficult and the assessment of model 38 

uncertainty essential. As a part of the endeavor to understandgrasp the hydrological system, the objective 39 

of this research, assessing the anthropogenic impacts on the catchment characteristic independent of the 40 

climate change, is therefore important, yet hard to accomplish.  41 

 The first possible approach is to statistically test the existence or change of trend in hydrological time 42 

series which can be related to climate changes or anthropogenic impacts. Mann-Kendall’s Test was 43 

performed to confirm the existence of a trend in the annual discharge, precipitation and sediment loads, then  44 

and discussed the human intervention and climate impacts based on the available information of the catchments 45 

were discussed (Wu et al., 2012). Pettitt’s Method (Pettitt, 1979)  can be used to detect the time point of trend 46 

alternation and analyze the impacts based on a double mass curve  (Gao et al., 2012) or a hydrological model 47 
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(Karlsson et al., 2014). These non-parametric methods for detecting the signal seem, however, not capable 48 

enough of explaining when and how much the system had changed, thus making it still difficult to relate the 49 

change due toto human activities. 50 

  On the other hand, runoff events are initiated by precipitation then modified by the state and physical 51 

features of the catchment. This implies that the integrated information of catchment status might be 52 

retrieved by analyzing the discharge time series itself. Focusing on this property, the attempts can be made 53 

for capturing the temporal dependence structure of runoff by time series models.  The classical time series 54 

model, autoregressive integrated moving average (ARIMA), is designed to describe a stationary stochastic 55 

process based on the temporal correlation structure of Gaussian random variables (Box and Jenkins, 1976). 56 

However, the stationarity of the data is not guaranteed in reality, thus a number of alternative approaches 57 

have been suggested. While the application of Fourier analysis is basically for stationary process,  the 58 

analysis using eEmpirical mode decomposition (Huang et al., 1998) is overcomes the restriction of 59 

stationarity a method designed to overcome the drawbacks of Fourier analysis by allowing the frequency 60 

and local variance of a time series to vary within a component and to separate the signals adaptively by 61 

scale. Autoregressive Conditional Heteroskedasticity (ARCH) models loose the assumption of stationarity 62 

to a certain extent so that variance is not constant, however models the variance in a similar way to 63 

ARIMA. Although the inventions and efforts to overcome the limitation of stationarity have beenare made, 64 

it seems still inadequate to model dynamic changes of hydrological processes with these time series 65 

models.  66 

 Alternatively there is a statistical concept, the copulas, which has advantages to model the multivariate 67 

dependence independently from marginals and recently adopted in the field of hydrology. A Copula (Sklar, 68 

1959) is a multivariate probability distribution designed to flexibly model dependence structure in the 69 

uniform (quantile) domain. The use of copulas in hydrology can be found for the assessment of extreme 70 

events by considering flooding as a joint behavior of peak and volume (De Michele and Salvadori, 2003). 71 

Copulas have been applied to describe the spatio-temporal uncertainty of precipitation (Bárdossy and 72 
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Pegram, 2009) or the inhomogeneity of groundwater parameters (Bárdossy and Li, 2008). Asymmetry of 73 

dependence in a time series can be tested in the framework of a finite state Markov chain's transition 74 

probability matrix (Sharifdoost et al., 2009). Dissimilarity measures can be defined by means of a copula 75 

modelling the correlation structure of pairs of discharge time series in order to identify the similarity of 76 

catchments with the purpose of transferring catchment properties from one to the other (Samaniego et al., 77 

2010). We aim at utilizing copulas as an alternative to classical time series models and an efficient tool for 78 

time series analysis to overcome these hydrological challenges.  79 

 The main interest of this study is to precisely assess the human intervention and climate change impacts 80 

on hydrological regime for the strategy of future development in the region. For achieving this goal, 7 81 

daily discharge gauging stations in South-West Germany (Figure 1), which have 100 years daily discharge 82 

records, were chosen and extensively analyzed. The gauging stations Andernach, Kaub, Worms and 83 

Maxau are located in the main stream of the Rhine, while Kalkofen, Cochem and Plochingen are located 84 

on tributaries. For further analysis, daily precipitation and temperature records in the Baden-Württemberg 85 

state of Germany for the last 50 years were obtained from the German Weather Service. Also, 77 discharge 86 

records obtained from the Global Runoff Date Centre in Germany were utilized. 87 

 The following are the novelWhat follows is the new aspects introduced in this study: (1) The catchment 88 

characteristics are is defined based on copulas and estimated from discharge data. Also the changes of 89 

catchment characteristics are investigated by tracing the temporal change of theseis statistics. (2) A method 90 

to model systematic changes of dependence structure with the help of copulas is suggested, then its 91 

variability and interrelationship withof the time series are examined. (3) Anthropogenic impacts are 92 

assessed by the discharge - precipitation relation using API and a hydrological model with copula based 93 

measures.  94 

  This article is divided into five sections. After the introduction, the basic methodology for applying 95 

copulas to discharge time series is introduced in the second section. Thirdly, the measures of asymmetry in 96 

copulas are defined and estimated for the discharges of the river Rhine and other catchments. The 97 
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determination of the temporal change of the asymmetry of the copulas is treated in the third section as well. 98 

In the fourth section two topics are treated: (i) the analysis based on copula distances for the observed 99 

discharges and (ii) the comparison of observed discharge with API (Antecedent Precipitation Index) time 100 

series and simulated discharge time series with a hydrological model. The conclusion is given in the fifth 101 

section. 102 

2. Methodology 103 

 In this section, the application of copulas to time series is articulated after a brief introduction of copulas. 104 

The very basics about copulas are presented here ;and further information can be obtained from (Joe, 1997) 105 

or (Nelsen, 2006). 106 

2.1 Basic Methodology 107 

In probability theory and statistics, a copula is a multivariate probability distribution for which the 108 

marginal probability distribution of each variable is uniform. 109 

    : 0,1 0,1
n

C   (1) 110 

 
      1, ,1, ,1, 1
i i

i iC u if u u u  (2) 111 

Any multivariate distribution can be described by a copula and its marginal distributions as was proven by 112 

Sklar’s theorem (Sklar, 1959): 113 

       
1 1 , ,

nX X nF C F x F xx  (3) 114 

where  
i iF x

X  represents the i-th marginal distribution of a multivariate random variable X . The copula 115 

density can be derived by taking partial derivatives of the copula: 116 
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 The advantage of using copulas is that the marginal is detached from the multivariate distribution and 118 

the dependence structure can be examined in the uniform compact domain for different types of data. 119 
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2.2 Basic Hypothesis of Temporal Copulas  120 

 For the application of copulas to time series analysis, a stochastic system should be presumed to be 121 

similar to the case of spatial copulas (Bárdossy and Li, 2008): the random variable at time t  is described as 122 

 Z t  and in general there may exist non-Gaussian dependency among the elements of  Z t . Then 123 

stationarity is defined for each subset of times 1, , nt t N  and time lag k  such that 124 

 1 , nt k t k N   and for each set of possible values 1, , nz z : 125 

 
    

    

1 1

1 1

, ,

, ,

n n

n n

P Z t z Z t z

P Z t k z Z t k z

  

   
 (5) 126 

 For the given random function  Z t , a set  S k  containing pairs of ranked values is defined as a 127 

function of time lag k  as follows: 128 

           ,Z ZS k F z t F z t k   (6) 129 

 Thus, a 2-dimentional autocopula for stochastic time series is a function of time lag k  for the set  S k  130 

similar to the case of aspatial copula (Bárdossy and Li, 2008): 131 

        1 2 1 2, , ,t z zk u u P F Z t u F Z t k u     C  132 

 (7) 133 

where    1 2,u u S k . Thus, a 2-dimentional empirical copula density can be constructed based on 134 

conditional empirical frequencies on a regular g g  grid and kernel density smoothing (Bárdossy, 2006): 135 
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 (8) 136 

where  S k denotes the cardinality (the number of elements in a set) of set  S k . 137 

3. Copula Asymmetry in Discharge Time Series 138 
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 High and low values might have different dependences in general. Measuring the asymmetry of copulas 139 

could reveal substantial aspects of time series data, which are not illuminated in the Gaussian approach. 140 

Statistics defined on copula shape and calculated from observed discharge time series we believe to be a 141 

new idea. Asymmetry functions are defined on 2-dimensional copulas as a function of time lag k (Li, 142 

2010):  143 

Asymmetry 1 and Asymmetry2 are is defined as: 144 
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 (9) 149 

Asymmetry 2 is defined as: 150 

           2 0.5 0.5 0.5 0.5t t k t t kA k E U U U U 
          151 

 (10) 152 

where   tzFu Zt  ,   ktzFu Zkt  .  Figure 2 shows an idealization of the two asymmetries 153 

between a pair of variables  U t  and  U t k , showing that the tails of the distributions have a large 154 

impact on each type of asymmetry. The measure of asymmetry (i) compares the dependency between low 155 

and high values and (ii) quantifies how much it is not symmetric. For example, in a 2-dimensional copula, 156 

 1A k  is positive if the probability density is higher in the upper right corner than in the lower left corner. 157 

On the contrary the other hand,  1A k is negative if the probability density is higher in the lower left corner 158 

than in the upper right.  2A k  is the asymmetry for the other diagonal of a 2-dimensional copula.  159 

Figure 3 shows the scatterplot of ranked values of a discharge time series with time lag k = 1 as a sample 160 

of an empirical autocopula and its relation with storm hydrographs. This figure displays  (i) where each 161 

pair of values on a hydrograph can be plotted on an empirical copula, demonstrating that (ii) the 162 

dependence structure is not symmetric especially for  2A k , 163 
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This illustration provides the insight that asymmetry can be related to the shape of a unit hydrograph as 164 

well as the notion that asymmetry might be used for advanced modeling of hydrological time series.   165 

Figure 3 shows the scatterplot of ranked values of a discharge time series with time lag k = 1 as a sample 166 

of an empirical autocopula, demonstrating the structure is not symmetric especially for  2A k . 167 

3.1 Asymmetry and catchment characteristics 168 

 Asymmetries can be considered as statistics calculated from the observed discharge time series and leads 169 

to have an important assumption can be made: ‘assymetry2 is related to catchment characteristics’. This 170 

idea will be intensively discussed uand demonstrated in this section. Figure 5 (upper left) shows parts of 171 

the hydrographs of 7 gauging stations in southwest Germany. 172 

 First, an important and obvious natural property of discharge seen in this figure is that the durations of 173 

high flow and low flow periods areis not symmetric: Flood events, which are initiated by rainfall or 174 

snowmelt, do not continue for a long time because the duration of runoff to rivers is comparatively short. 175 

On the other hand, discharge keeps decreasing and stays low for no rain periods. This means that, if two 176 

consecutive values in a time series are chosen for small time lag k, these two values are likely to be less 177 

correlated for high values but more correlated for low values, which leads to negative value of 
 1A k

.  178 

This implies that the intrinsic temporal distribution of precipitation can be investigated based on this 179 

asymmetry, possibly with advanced asymmetry functions such as bivariate moments based on L-moments 180 

(Brahimi et al., 2015). 181 

This asymmetry can be related to the intrinsic temporal distribution of precipitation. 182 

 Second, the rates of increase and decrease of discharge areis not symmetrical: Soon after the rainfall, the 183 

river flow rises sharply. Once the rain stops and peak discharge is observed, then the water level starts to 184 

decrease, typically more slowly on the recession than the rising limb of the hydrograph, which leads to 185 

negative values of  2A k  for small time lags k. This asymmetry can be related to the shape of the 186 
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hydrograph, and therefore the characteristics of the runoff and catchment. In addition, it can be said the 187 

annual cycle in Figure 4Figure 4 is not symmetric in the same sense a unit hydrograph is not symmetric.   188 

 The change of  2A k  with time lag k [days] is now discussed. The point is that these statistics for small 189 

time lags k can be more related to the catchment and rainfall characteristics of the region, while asymmetry 190 

for larger time lags k can capture the inter-seasonal characteristic of the climate in the region.  191 

In order to reduce such seasonal impacts on the analysis of hydrological time series, deseasonalization 192 

measures can be applied, for example, for daily stream flow (Grimaldi, 2004). Adopting this method, all 193 

the time seires are normalized in this study. 194 

 In order to reduce this seasonal impact, normalization was adopted for the time series similar to z-score 195 

in the following way. FFirst, the annual cycle of the mean i   on the i-th calender day is calculated as the 196 

expectation of the random variable iX  on the i-th calender day.  Then, the annual cycle of the mean *

i  is 197 

calculated as a smoothed version of i  by linearly weighting the neighboring values along i and summing 198 

them up. The smoothed annual cycle of standard deviations  *

i  (Figure 4 left) can be obtained in the same 199 

way. Then the normalized time series is defined by dividing the original time seires Z(t) by *

i  after 200 

subtracting  *

i  as follows 201 

 
 

  
*
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t
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  (11) 202 

 and smoothed by linear weighting  203 
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where | 365t  is  mod 365t  and represents calendar day at time t [day]. iX  denotes the random variable 205 

of discharge, i denotes mean and *

i denotes mean after smoothing on calendar day i respectively. After 206 
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subtraction of the annual mean from the original time series  Z t , the annual cycle of standard deviation 207 

is defined. 208 
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 (12) 209 

Figure 4 shows the annual cycles after smoothing described by equations (11) and (12). By subtracting the 210 

annual mean cycle and dividing by annual standard deviation cycle, the normalized time series is defined. 211 

  
  *

|365

*

|365

  
t

norm

t

Z t
Z t





 
 
 
 

 (13) 212 

Figure 5 (upper right) shows parts of normalized discharge time series from the 7 gauging stations. It 213 

should be noted that the process still appears to be non-Gaussian after this transformation and the 214 

seasonality for small time lags k might not have been fully eliminated. Figure 5 (bottom left and bottom 215 

right) shows the variation of asymmetry functions for 7 discharge time series corresponding to time lag k , 216 

similar to the correlograms, in addition to the confidence interval of Gaussian process. 217 

 The confidence intervals in the figures are gained by calculating  2A k  for 100 realizations of stationary 218 

Gaussian process which are fitted to the observed discharge of Andernach. The result shows that the 219 

process is clearly different from Gaussian and the influence of asymmetry is significantly large.  220 

 It can be seen that the variation of  2A k of discharge without normalization (Figure 5 bottom left) has a 221 

larger impact of seasonality for bigger k ( 40k  ), while its impacts are mitigated after the normalization 222 

(Figure 5 bottom right). Furthermore, as a consequence of normalization, a sharp drop down of  2A k  for 223 

small time lags k emerged which might be regarded as a catchment indicator. Therefore, the 224 

selected/critical properties for small time lags k is formulated by (i) taking the minimum value of  2A k  225 

for the time lag 50k   and (ii) the lag k at the minimum of asymmetry2: 226 
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  2,min 2
50

min
k

A A k


   (12) 227 

   2,min 2 2,min
0 50
min ;

k
L k A k A

 
   (13) 228 

 The question is whether they are really related to catchment characteristics. Now, these statistics 229 

estimated for 77 discharge data recorded at the gauging stations in Germany are compared with the 230 

catchment area as one of the simplest possible indicators of the catchment as shown in Figure 6.: 2,minA - 231 

area (Figure 6 top) and shows a more clear linear relation than 2,minL - area (Figure 6 middle) are both 232 

showing a linear relationship withto the log-scaled x-axis of catchment area, with positive correlation.  233 

There seems also to be a the linear relation betweenwhile the dispersions 2,minA  and 2,minL   as a 234 

consequences of the above relationships in. for the smaller catchments are big for both cases. The 235 

correlation between 2,minA and 2,minL  (Figure 6 bottom) is slightly positive. 236 

 This demonstrates that the information extracted from discharge is related to the basic information of its 237 

catchment to a certain extent. Since the principal objective is to assess anthropogenic impacts, the idea 238 

introduced now is to use this measure for evaluating the catchment change by calculating chronological 239 

changes of 2,minA .  240 

3.2 Time Series Analysis with Asymmetry 241 

 Temporal change of asymmetry  2 ,A k t  is defined on the set representing a moving time window of 242 

size w. 243 
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where  , ,t t t k t ku U u U      *, ,
t ktu u S k t


 .Then the minimum of asymmetry2 and lag k at the 247 

minimum of asymmetry2 at time t  are given by 248 

    2,min 2
30

min ,
k

A t A k t


  (16) 249 

       2,min 2 2,min
0 30
min ; ,

k
L t k A k t A t

 
   (17) 250 

 Figure 7 shows the temporal changes of  2,minA t with window size 3000w  [days] for 7 gauging 251 

stations in southwest Germany in addition to the confidence interval calculated for 100 times 252 

independently generated Gaussian process.  253 

 The comparison of  2,minA t  from observed discharges with  2,minA t  from a Gaussian process exhibits 254 

(i) the influence of asymmetry in discharge is significantly large as it was seen in Figure 5,. (ii) The 255 

fluctuations of  2,minA t of 7 observed discharge time series appear to be bigger than the one calculated for 256 

a realization of a Gaussian process and. (iii)  2,minA t of these 7 discharge records shows a similar trend: 257 

there are big drop-downs around 1945 and after 1980 for all the discharges. 258 

 However, it cannot be ascertained whether this is caused by the simultaneous change of the catchments, 259 

the long term meteorological behavior in the region or just randomness in the stationary process. To 260 

overcome this, temporal behavior of discharge and temperature were first checked by calculating the mean, 261 

the standard deviation and the minimum in a time window centered onat time t  defined by 262 
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  (18) 263 

where w is the size of time window. Figure 8 shows the moving average and moving standard deviation of 264 

discharge records with windows size 3000w   [days], but it is hard to say whether the behavior around 265 

1945 and after 1980 is unusual. Figure 9 shows mean and minimum of temperature in the time window 266 
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ofwith size 365 [days] which correspond to annual mean and minimum. Roughly speaking, there are 267 

certain cold periods around 1940, 1955 and 1985, which might influence the snow accumulation and 268 

melting in the region, but the relation with asymmetry2 is rather obscure.  269 

 What seems to be a useful outcome from the above exploratory analysis is that (i) the behavior of 270 

asymmetry2 is different from catchment to catchment showing a statistical relation with the catchment area 271 

and (ii) temporal behaviors of asymmetry2 of 7 discharges time series are dependent on each other, which 272 

implies the existence of a background mechanism common to the region. 273 

4. Analysis of hydrological time series with Copula Distance  274 

 As an alternative to copula asymmetry, which emphasizes the behavior inon the corners of copulas, 275 

copula distance is here suggested so that the characteristic behavior can be captured in the entire domain of 276 

the copula. Calculating this for each time step for different time series and comparing them hopefully 277 

exhibits the changes of dependence structure and therefore the catchment change.  278 

4.1 Introduction of Copula Distance 279 

The basic idea behind the copula distance is to apply the Cramér-von Mises type distance 280 

     
1 1 2

*

1 2 1 2 1 2
0 0

, ,D C u u C u u du du    (19) 281 

, which by design measures the goodness of fit between two distribution functions, to two copulas. This 282 

type of distance was tested to measure the difference between empirical and theoretical copulas in the 283 

bootstrap framework for the evaluation of spatial dependence of ground water quality (Bárdossy, 2006). 284 

For the analysis of time series data, it still needs to be carefully thought out how (and which) copulas 285 

should be chosen. 286 

4.1.1 Introduction of Copula Distance to single time series 287 

 In order to apply the concept of copula distance to time series, the adoption of two copulas in different 288 

time scales is considered. An empirical copula can be obtained from an entire time series which contains 289 
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the averaged information of all the time points (global copula). Another empirical copula can be obtained 290 

for a certain time window of width w centered at time step t  (local copula). In order to make the concept 291 

clear, two sets containing pairs of ranked values with different time scales are specified. 292 

           1, ;global Z Z nS k F z t F z t k t t t     (20) 293 
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 ,localS k t can be interpreted as a moving time window where the reference time t is set to the middle of 295 

the window of size w, while  globalS k represents a set of the entire time series. Global copula and local 296 

copula are the empirical autocopula densities defined on these sets based on Equation (8)(8)(8), there 297 

denoted by  *

globalc u  and  * , ,localc t wu  respectively for the n-dimensional case. In this analysis, 3000 298 

[days] for the time window w and a 3-dimensional copula separated with 1 day gap between each variable 299 

are employed. This means that 300 

  0 1 2, ,u u uu  (22) 301 

where         0 1 2, 1 , 2z z zu F Z t u F Z t u F Z t     , then the deviation of local copula from global 302 

copula is defined by  303 

      * *, ,local globalc t c t c  u u u  (23) 304 

 For the first approach, the comparison of dependence structures between entire and local time series is 305 

done for detecting unusual dependence structures. To this end, copula distance type1 is defined by taking 306 

the copula distance between global and local copulas at each time step t   307 
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Second, copula distance type 2 is introduced for indicating the point at which the structure of copulas starts 309 

to change. For this method, the distance between two local copulas is calculated at two instants:from the 2 310 

time intervals  311 

 

2
1 1

* *

2 1
0 0

( , ) ... , , ...
2 2

local local n

w w
D c t c t c t du du

    
       

    
  u u  (25) 312 

Note that reference time is set to the middle of both time windows and shifted for w/2 [days] from each 313 

other where the size of the time windows is w. Therefore, there is no overlapping part between the two 314 

time intervals of these two local copulas. For the comparison, the moving variance is introduced as 315 

follows: 316 
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 (26) 317 

 Figure 10 shows the result of  1D t , 2 ( )D t and  Var t  in the moving time window for the normalized 318 

discharge time series between 1940 to 2000 at 4 gauging stations located in the main stream of the Rhine 319 

(Andernach, Maxau ) and its two different tributaries (Cochem, Plochingen) in addition to the 90 % 320 

confidence intervals calculated for the Gaussian process fitted to the discharge data of Andernach. 321 

 First of all, the values of these 2  1D t  and 2 ( )D t measures at Cochem and Plochingen are bigger and 322 

more fluctuating than in general. The reason could be that their catchments and discharges are smaller, 323 

thus more sensitive to changes. Second, it can be said that the dependence structure is not homogeneous 324 

over the time period, but the local copula clearly deviates from the global copula for certain time periods. 325 

For example, the value of  1D t  is remarkably big around 1947, 1982 and 2000 for all the 4 discharge 326 

records (indicatedpointed by white arrows). 2 ( )D t  is also big around 1977 for all the data. Theis signal of 327 

2 ( )D t  implies that a simultaneous change of runoff behavior occurred in this region inat 1977, which can 328 

be related to the high value of  1D t at 1982.  Var t  is also changing, but athe direct relation with  1D t  329 
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and 
2 ( )D t  is hard to recognize.   Also the confidence interval of the Gaussian process is clearly smaller 330 

than the observed one. This indicates the copula distances of the stationary process are small while the 331 

nature process is non-stationary and its dependence structure is more varying. 332 

 For copula distance type1, the global copula can be considered as an average state of the copula, while 333 

the local copula can be regarded as a realization of a possible state of a copula at time step t. This concept 334 

can be comparable to variance and leads to a new measure, copula variance, which is the summation of 335 

copula distances between global and local copula over the time.  336 

    
1

1

1

1
,

nt

cop
t

n
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   (27) 337 

 Table 1Table 1Table 1 shows the variance and copula variance calculated for the 4 discharge data. The 338 

result demonstrates that copula variance of the time series can be higher, even if the conventional variance 339 

is lower for example in case of Maxau. 340 

4.1.2 Copula Distance for two time series 341 

 In the previous section, copula variance was defined as a measure of the variability characteristic of the 342 

copula itself. Here, it is determinedexamined whether covariance can be defined for two copula densities c1 343 

and c2 from two time series as copula distance type3, which shows whether the variability characteristic of 344 

copulas is related to each other. The measure introduced is : 345 

    
1 1

3 1 2 1 2 1
0 0

( , , ) ... , , ... nD c c t c t c t du du    u u  (28) 346 

where  347 
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By its definition, the value of 3( )D t can be related to 1( )D t  because 3( )D t  compares the deviation of local 349 

copulas from global copulas in a similar way to 1( )D t  in Equation (26). In order to reduce the influence of 350 
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1( )D t  on 
3( )D t , copula distance type4 is introduced as a normalized measure bounded between -1 and 1 351 

analogous to correlation. 352 
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 (30) 353 

where 4 1 2( , , ) 1D c c t  . For comparison, covariance and correlation in a moving window are introduced for 354 

two random variables Z1(t) and Z2(t) as follows: 355 

          
2

1 1 2 2
2

( )
t w

t w
Cov t z a E Z t z a E Z t da




          (31) 356 

 
   )()(

)(
)(

21 tZVartZVar

tCov
tCorr


  (32) 357 

 Figure 11 shows the copula distance between two time series 3( )D t  and 4 ( )D t in addition to the 358 

covariance and correlation in a moving time window. 359 

 First, it can be said that the behavior of covariance and correlation in a moving window are different 360 

from 3( )D t  and 4 ( )D t . This implies these two copula based statistics exhibit different properties of the 361 

time series from ordinary statistics. Second, 3( )D t  shows high values around 1947, 1982 and 2000, which 362 

is similarame to the case of  1D t in Figure 10. This indicates that unusual states of copulas in 4 discharge 363 

time series can be related to each other. Third, 4 ( )D t  is in general high except for the period around 1970 364 

and 1990. This means, the temporal behavior of dependence structures for these 4 discharges are actually 365 

similar except for these periods even if   1D t  and 3( )D t are small. 366 

 Copula covariance and copula correlation can be defined similar to copula variance in order to quantify 367 

the overall behavior of two time series. 368 
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where   1, 21 ccCorrcop  and its derivation can be found in appendix A. In Table 2Table 2Table 2, these 371 

copula based statistics are compared with ordinary statistics. For example, Cochem and Plochingen are 372 

located remotely in different tributaries, thus covariance and correlation are lower than the others, but 373 

copula covariance and copula correlation are not the lowest.  374 

 The measures using copula distance are different from the conventional statistics. This behavior can be 375 

explained by the fact that the autocopula has more substantial information about temporal dependence 376 

structure than the autocorrelation. Using these measures might enable us to take advantage of a different 377 

way of seeing the dependence between time series. 378 

 What is new in the analysis of this section is that (i) measures based on copula distance show the 379 

different properties of time series in comparison to conventional statistics and (ii) there are significant 380 

signals of copula distances for certain time periods in common to all the discharge data. 381 

4.2 Copula based Stochastic Analysis with API and a Hydrological Model  382 

 The difficulty of analyzing discharge time series in order to detect catchment change is that it is not clear 383 

whether the temporal change of stochastic information is caused by catchment change or merely by 384 

random behavior of precipitation. To gain an understanding of this process, we attempted to eliminate the 385 

influence of precipitation using, first, an Antecedent Precipitation Index (API) (antecedent precipitation 386 

index) for comparison with discharge , second, using a hydrological model with the parameter sets 387 

calibrated and fixed for the entire simulation time period. 388 

4.2.1 Copula Distance Analysis with API 389 

 An API (Antecedent Precipitation Index) time series, which is generated from observed precipitation 390 

time series and behaves similarly to discharge, is used instead of precipitation.  391 

      1 1API t API t P t      (35) 392 Field Code Changed
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where  P t  is daily precipitation [mm/day],  API t  is time series of API [mm/day] and α = 0.85 was 393 

chosen. The assumption for this method is that the API time series has the stochastic information purely 394 

originated from the precipitation, while observed discharge is supposed to be influenced by both 395 

catchments and precipitations characteristics. If the stochastic information derived from these two data sets 396 

is the same, this indicates that the stochastic turbulence is originating from precipitation; otherwise the 397 

change is from the catchment. 398 

 For this investigation, precipitation data was carefully chosen for 4 regions (northwest, northeast, 399 

southwest and central) of Baden-Württemberg (Germany) so that they have several almost continuous 400 

daily records between 1935 and 2005. Figure 12 shows the locations of measuring stations. The 401 

precipitation time series were aggregated into one for each region by taking their daily average, then 4 API 402 

time series wereas calculated in total by Equation (35)(35)(35). Figure 13 shows the resulting of copula 403 

distances 1( )D t , 2 ( )D t  and moving average ( )Var t  for API time series with the 90% confidence intervals 404 

of the Gaussian process. Figure 14 shows the result of copula distances 3( )D t , 4 ( )D t  and moving 405 

covariance and correlation for API time series. 406 

 What can be recognized first fromin this Figure 13 is that the magnitudes of  1( )D t  and 2 ( )D t  are smaller 407 

than the case of discharge. This is considered to behappen as a result of aggregation of precipitation time 408 

series and adoption of API, but some signals can be still identified:  1D t  around 1947 and 2000 is high, 409 

but not as highmuch for 1982. The signal of 2 ( )D t  which was detected around 1977 in Figure 11 does not 410 

seem to exist for API. This iscan be even more clear for 3( )D t  in Figure 14 in that there is no common 411 

change of the dependence structure around 1982 in API time series. This is interesting due to the following 412 

implications: (i) the noises of  1D t  in Figure 13Figure 13Figure 13 were reduced and signals in common 413 

were amplified (ii) the unusual state of the copula around 1982 is not caused not by precipitation, but could 414 

be caused by the catchment change. 415 
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 For further verification, copula distance type3 and type4 between discharge and API time series were 416 

calculated as shown in Figure 15. This result also shows there is no clear relation between API and 417 

discharge time series around 1982. 418 

4.2.2 Copula based analysis with a hydrological model  419 

API time series were calculated by spatially aggregating several daily precipitations records in each region 420 

of Baden-Württemberg state. In this section, simulated discharges time series are generated by a 421 

conceptual hydrological model, HBV (Bergström 1976 ; Bergström, Singh, and others 1995) ,which takes 422 

daily precipitations and temperatures records as input and simulates discharges for smaller catchments as 423 

an example more robust sample of discharge, to compare with observed discharge in order to check if 424 

differences might occur due to the method. 425 

 Thus the idea behind this methodology is similar to the case of API: aA hydrological model with the 426 

parameters fixed for the entire time period represents the catchment not influenced by anthropogenic 427 

impacts. Then, the discharges simulated by this model should not dependreflect on the catchment change, 428 

while observed discharge is assumed to be influenced by both catchment and precipitation.  429 

 For the study area, the Upper Neckar Catchment was chosen as showndrawn in Figure 12. One 430 

parameter set needed for this model constitutes of 13 parameters which are calibrated based on the Nash–431 

Sutcliffe model efficiency coefficient using the simulated annealing algorithm for the period between 1960 432 

and 2000. Then, 30 parameter sets are independently calibrated in total and, subsequently, 30 simulated 433 

discharges time series are generated to compare with one observed discharge. 434 

 Figure 16 shows the result of copula based analysis calculated for single time series 435 

(  1D t ,  2D t ,  2,minA t ). It can be seen that  2,minA t  in Figure 16 (top) that (i) fluctuations of  2,minA t  436 

of observed and simulated discharge are locally identical. This implies that the short term behavior of 437 

 2,minA t  is originated from the temporal behavior of precipitation but (ii) there exists a change of trend 438 

around 1976:  2,minA t  of observed discharge is slightly bigger than simulated before 1976, while 439 
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 2,minA t  of observed discharge clearly undershoot the simulated ones of after 1976. This change of trend 440 

was also seen in the previous analyses (  2D t  in Figure 10). Furthermore,  1D t  in Figure 16 (middle) is 441 

high before 1976 which indicates the state of the copula is different from the rest, while the result of 442 

simulated discharges does not show such tendency.  2D t  in Figure 16 (bottom) indicates the change of 443 

dependence structure happened around 1970 and 1977. These results using the HBV model indicate the 444 

change of the dependence structure detected using copulas around 1976 is not caused by the random 445 

behavior of precipitation, but by the behavior of the catchment itself. 446 

 The fact and the notion obtained in this section is that (i) both results from API and HBV based on 447 

copula measures indicate that the catchment changed around 1976 and (ii), by comparing the simulated 448 

discharge with observed discharge, the origin of the change of stochastically information can be assessed.  449 

 450 

Conclusion 451 

 In this paper the application of copulas for hydrological time series data is newly explored for the 452 

detection of catchment characteristics and their temporal changes.  453 

 1. A Copula based measure, asymmetry, was defined and newly applied for the identification of 454 

catchment characteristics. Indeed, it wasis presumedpresented that asymmetry2 iscan be related to the 455 

runoff characteristics.  456 

 2. The relation between the minimum of asymmetry2 and catchment characteristics was tested for 77 457 

discharge records. Asymmetry2 has a certain relation especially with the size of bigger catchments and this 458 

strengthens the notion that asymmetry2 can be used as a statistic to explain the catchment state. 459 

 3. Temporal change of asymmetry2 was calculated as an index of the catchment state and demonstrated 460 

it keeps changing coincidentally with time. However, it is difficult to explain the causality, at least, by long 461 

term behavior of discharge and temperature time series.  462 
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 4. A method based on copula distance was examined for the investigation of temporal behavior of 463 

hydrological time series. This measure can detect the time period where dependence structure is unusual 464 

and its interdependency. Clear signals were detected that the dependence structure is unusual for a certain 465 

time period and the signal was not found by investigating the time series with variance, covariance or 466 

correlation. 467 

 5. API time series were generated for each region in the Baden-Württemberg state and simulated 468 

discharge time series were generated using the HBV model for the Upper Neckar Catchment. These are the 469 

data not influenced by the catchment change, thus compared with observed discharge to assess the 470 

anthropogenic impacts. The results showed that there was a signal detected only in the observed discharge 471 

around 1982, but not in the API or simulated time series, which implies the anthropogenic impacts on the 472 

catchment. Also it was shown in the results of copula asymmetry that the difference of  2,minA t  between 473 

observed and simulated discharge was not constant, but the trend clearly changed around 1976. 474 

 The results of copula based analysis of hydrological time series seem to support the assumption that the 475 

catchment had started to change around 1976 and stayed unusual until 1990. These changes could 476 

correspond to the construction of flood retention basins started around 1982 (Lammersen et al., 2002) and 477 

ecological flooding strategy, which let small floods to happen for the rehabilitation of ecological systems 478 

in the floodplain, introduced in the Upper Rhine since 1989 (Siepe, 2006). 479 

 Copulas can be seen as an alternative method to analyze the hydrological time series data by focusing on 480 

the dependence structure, but further exploratory applications and theoretical developments are expected. 481 

The copula based measures introduced in this study can be related to the potential model uncertainty, that 482 

is, how much the natural system is varying. Empirical autocopula analysis is a more data driven approach 483 

which retains more information than the copulas estimated with parametric methods, but it is also 484 

numerically demanding. The effective way to analyze time series and build up a time series model based 485 

on copulas can be further explored. 486 

Equation Chapter  1 Section 1 487 
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Appendix A 489 

Suppose that a random variable at time t is denoted as  X t  and  ,Xc tu  is an autocopula obtained from 490 

 X t . Assuming  ,X meanc u  as an average state of  ,Xc tu , deviation of copula  ,Xc t u  at time t is 491 

defined by 492 

      ,, ,X X X meanc t c t c  u u u  (A1) 493 

For the empirical case,  ,Xc tu  and  ,X meanc u  can be regarded as local copula and global copula 494 

respectively similar to Equation (29)(29)(29). Since global and local copula are empirical copula density as 495 

defined in equation (8)(8)(8),  ,Xc t u  can be regarded as a vector of values on finite number of grids: 496 

            ,1 ,2 , ,, , , , ,X X X X i X Nt c t c t c t c t     Δc  (A2) 497 

where  ,X ic t  denotes the value of copula density at i-th grid and N is the number of grids. From 498 

Cauchy-Schwarz inequality 499 

        
2

,X Y X Yt t t tΔc Δc Δc Δc  (A3) 500 

where  X tΔc is norm and    ,X Yt tΔc Δc  is inner product of vector  X tΔc and  Y tΔc .Then 501 
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Therefore  4 , , 1X YD c c t  in Equation (30)(30)(30). Above inequality is valid for certain time point t and 505 

summing up (A6) for all the time steps t leads to  506 

         
2

1 1

,
T T

X Y X Y

t t

t t t t
 

  Δc Δc Δc Δc  (A7) 507 

where T is the number of time steps.  X tΔc  is a norm and can be denoted for simplicity as 508 

 t Xx t Δc . Then  509 
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 Δc Δc x y  (A8) 510 

where    1 2 1 2, ,... , , ,...T Tx x x y y y x y  for 1t T . Again from Cauchy-Schwarz inequality  511 
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 581 

Table 1 Variance and copula variance calculated for 4 discharge time series 582 

 583 
 584 

 ANDE COCH MAXA PLOC 

Var 1.79 2.24 1.75     2.72 

Varcop    [×10 -5] 3.01 1.64 5.39 1.27 

 585 

Table 2 Covariance, correlation, copula covariance and copula correlation between 4 discharge data 586 

(AN:Andernach, CO:Cochem,  MA:Maxau, PL:Plochingen)  587 

 588 
 589 

 AN-CO AN-MA AN-PL CO-MA CO-PL MA-PL 

Cov 1.68 1.60 1.33 1.38 1.31 1.41 

Cor 0.84 0.90 0.60 0.70 0.53 0.64 

Covcop  [×10 -6] 4.90 3.40 3.39 7.16 9.90 5.47 

Corcop 0.60 0.77 0.46 0.71 0.60 0.59 

 590 

Table 3 Variance and copula variance calculated for API time series of 4 regions in the Baden-591 

Württemberg state of Germany 592 

 593 
 594 
 C SW NW NE 

Var 1.70 1.66 1.72 1.78 

Varcop     [×10 -6] 3.00 4.02 3.35 3.21 

 595 

 596 

Table 4  Covariance, correlation, copula covariance and copula correlation between API time series from 4 597 

regions in the Baden-Württemberg state of Germany 598 

 599 
 600 
 C-SW C-NW C-NE SW-NW SW-NE NW-NE 

Cov 1.35 1.33 1.44 1.25 1.41 1.42 

Cor 0.80 0.77 0.84 0.74 0.84 0.83 

Covcop  [×10 -7] 1.46 1.16 8.94 4.42 1.11 8.80 

Corcop 0.36 0.29 0.29 0.09 0.26 0.24 

601 
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Figure Captions 602 

 603 

Figure 1 Locations of 7 discharge gauging stations in the Upper Rhine Region 604 

Figure 2 Visualization of the functions which displays the contribution of a realization of  ,t t kU U   to 605 

assymetry1 (left) and asymmetry2 (right) 606 

Figure 3 Sketch of the transformation from sample hydrograph (left)  to empirical copula (right):  607 

Scatterplot of ranks are calculated from two values separated by time lag 1k  [days] in a discharge time 608 

series of Andernach where 0.9870rank correlation  ,  1 1 0.0002398A k     and 609 

 2 1 0.00011037A k    . The possible combinations of high and low values, which has large impacts on 610 

asymmetry, are numbered  (1) low to high,  (2) high to high (3) high to low (4) low to low.  Negative 611 

contribution to asymmetry2  is drawn with red circle, positive contribution with blue circle. 612 

Figure 4 Annual cycle of mean discharge after smoothing (left) and annual cycle of standard deviation 613 

after smoothing (right) 614 

Figure 5 Discharge time series between 1950 and 1955 before applying normalization (upper left) and after 615 

applying normalization (upper right). The variation of asymmetry2 function calculated for entire time 616 

series before applying normalization (bottom left) and after applying normalization (bottom right) with 617 

90% confidence intervals (grey) calculated for 100 realizations of Gaussian process (dashed line  is  2A k  618 

calculated for one of the realization of Gaussian process ). 619 

Figure 6 Relation between Asymmetry and catchment characteristics: minimum of asymmetry2 of 620 

discharge and catchment area (top), lag at minimum of asymmetry2 of discharge and catchment area 621 

(middle), minimum of asymmetry2 of discharge and lag at minimum of asymmetry2 of discharge (bottom)  622 

Figure 7 Temporal change of minimum of asymmetry2 for 7 discharge records and confidence intervals  623 

calculated from the Gaussian process (90% confidence interval with grey color and 60% confidence 624 

interval with dark grey color) and one of its realizations (dashed line) 625 

Figure 8 Moving average and standard deviation of the 7 daily discharge records for the window size w = 626 

3000 627 

Figure 9 Annual minimum and mean of aggregated daily temperature in the Baden-Württemberg state of 628 

Germany 629 

Figure 10 Copula distances of discharge time series in moving time window: moving variance (top), 630 

distance type1 (middle) and distance type2 (bottom) with 80% confidence interval of Gaussian process and 631 

one of its realization (dashed line) 632 

Figure 11 Copula distances of discharge time series in moving time window: moving covariance (top), 633 

moving correlation (second), distance type3 (third) and distance type4 (bottom) 634 

Figure 12 Locations of the precipitation gauge stations within the Baden-Württemberg (Germany) 635 

indicated by coloured circles.  Upper Neckar catchment is drawn with green area and the location of 636 

gauging station is drawn with a square 637 
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Figure 13 Copula distances of API time series in moving time window: moving variance (top), copula 638 

distance type1 (middle) and copula distance type2 (bottom) where ‘C’ denotes central, ‘SW’ denotes 639 

southwest, ‘NW’ denotes northwest and ‘NE’ denotes northeast part of Baden-Württemberg State of 640 

Germany respectively with 80% confidence interval of Gaussian process and one of its realization (dashed 641 

line). 642 

Figure 14 Copula distances of API time series in moving time window: moving covariance (top), moving 643 

correlation (second), distance type3 (third) and distance type4 (bottom) 644 

Figure 15 Copula distance type3 (top) and type4 (bottom) between 4 discharge and 1 API time series 645 

which is aggregated for all the daily precipitations depicted in Figure 12 646 

Figure 16 Copula asymmetry and copula distances for 30 simulated and one observed discharge time series 647 

at Plochingen between 1965 and 2000: minimum of asymmetry2 for the time lag k = 2 [days] (top), copula 648 

distance type1 (middle), copula distance type2 (bottom) 649 

 650 

 651 

652 
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 653 
Figure 1 Locations of 7 discharge gauging stations in the Upper Rhine Region 654 

 655 

Figure 2 Visualization of the functions which displays the contribution of a realization of  ,t t kU U   to 656 

assymetry1 (left) and asymmetry2  (right) 657 

 658 

 659 
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 660 
Figure 3 Sketch of the transformation of the values from sample hydrograph (left) to the points on 661 

scatterplot of ranks (right): empirical copula calculated from two values separated by time lag 1k [days] 662 

in a discharge time series of Andernach where  9870.0ncorrelatiorank ,   0002398.011 kA  and 663 

  00011037.012 kA . The possible combinations of high and low values, which has large impacts on 664 

asymmetry, are numbered: (1) low to high,  (2) high to high, (3) high to low, (4) low to low. Negative 665 

contribution to asymmetry2 is drawn with red circle and positive contribution with blue oval.    666 

 667 

 668 

Figure 3 Scatterplot of ranks calculated from two values separated by time lag 1k  [days] in a discharge 669 

time series of Andernach where 0.9870rank correlation  ,  1 1 0.0002398A k     and 670 

 2 1 0.00011037A k   671 
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672 

 673 

Figure 4 Annual cycle of mean discharge after smoothing (left) and annual cycle of standard deviation 674 

after smoothing (right) 675 
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 676 

Figure 5 Discharge time series between 1950 and 1955 before applying normalization (upper left) and after 677 

applying normalization (upper right). The variation of asymmetry2 function calculated for entire time 678 

series before applying normalization (bottom left) and after applying normalization (bottom right) with 679 

90% confidence intervals (grey) calculated for 100 realizations of Gaussian process (dashed line  is  2A k  680 

calculated for one of the realization of Gaussian process ).  681 
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 683 

Figure 6 Relation between Asymmetry and catchment characteristics: minimum of asymmetry2 of 684 

discharge and catchment area (top), lag at minimum of asymmetry2 of discharge and catchment area 685 

(middle), minimum of asymmetry2 of discharge and lag at minimum of asymmetry2 of discharge (bottom) 686 

687 
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 688 

 689 

Figure 7 Temporal change of minimum of asymmetry2 for 7 discharge records and confidence intervals  690 

calculated from the Gaussian process (90% confidence interval with grey color and 60% confidence 691 

interval with dark grey color) and one of its realizations (dashed line) 692 

  693 

 694 

Figure 8 Moving average and standard deviation of the 7 daily discharge records for the window size w = 695 

3000 696 

 697 

698 
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  699 

 700 

Figure 9 Annual minimum and mean of aggregated daily temperature in the Baden-Württemberg state of 701 

Germany 702 

 703 

Figure 10 Copula distances of discharge time series in moving time window: moving variance (top), 704 

distance type1 (middle) and distance type2 (bottom) with 80% confidence interval of Gaussian process and 705 

one of its realization (dashed line) 706 
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 707 

 708 

Figure 11 Copula distances of discharge time series in moving time window: moving covariance (top), 709 

moving correlation (second), distance type3 (third) and distance type4 (bottom) 710 

711 
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 712 

 713 

Figure 12 Locations of the precipitation gauge stations within the Baden-Württemberg (Germany) 714 

indicated by coloured circles.  Upper Neckar catchment is drawn with green area and the location of 715 

gauging station is drawn with a square716 
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 717 

  718 

Figure 13 Copula distances of API time series in moving time window: moving variance (top), copula 719 

distance type1 (middle) and copula distance type2 (bottom) where ‘C’ denotes central, ‘SW’ denotes 720 

southwest, ‘NW’ denotes northwest and ‘NE’ denotes northeast part of Baden-Württemberg State of 721 

Germany respectively with 80% confidence interval of Gaussian process and one of its realization (dashed 722 

line). 723 

 724 
 725 

726 
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 727 

 728 

Figure 14 Copula distances of API time series in moving time window: moving covariance (top), moving 729 

correlation (second), distance type3 (third) and distance type4 (bottom) 730 

731 
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  732 

 733 

Figure 15 Copula distance type3 (top) and type4 (bottom) between 4 discharge and 1 API time series 734 

which is aggregated for all the daily precipitations depicted in Figure 12Figure 12Figure 12735 



 

44 

 736 

 737 

Figure 16 Copula asymmetry and copula distances for 30 simulated and one observed discharge time series 738 

at Plochingen between 1965 and 2000: minimum of asymmetry2 for the time lag k = 2 [days] (top), copula 739 

distance type1 (middle), copula distance type2 (bottom) 740 

 741 

 742 
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