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Abstract. Global climate change can have impacts on characteristics of rainfall-runoff 8 

events and subsequently on the hydrological regime. Meanwhile, the catchment itself 9 

changes due to anthropogenic influences. However, it is not easy to prove the link 10 

between the hydrology and the forcings. In this context, it might be meaningful to detect 11 

the temporal changes of catchments independent from climate change by investigating 12 

existing long term discharge records. For this purpose, a new stochastic system based on 13 

copulas for time series analysis is introduced in this study.   14 

  A statistical tool like copula has the advantage to scrutinize the dependence structure of 15 

the data and, thus, can be used to attribute the catchment behavior by focusing on the 16 

following aspects of the statistics defined in the copula domain: (1) Copula asymmetry, 17 

which can capture the non symmetric property of discharge data, differs from one 18 

catchment to another due to the intrinsic nature of both runoff and catchment. (2) Copula 19 

distances can assist in identifying catchment change by revealing the variability and 20 

interdependency of dependence structures.    21 

  These measures were calculated for 100 years of daily discharges for the Rhine rivers 22 

and these analyses detected epochs of change in the flow sequences.  In a follow-up study, 23 

we compared the results of copula asymmetry and copula distance applied to two flow 24 

models: (i) Antecedent Precipitation Index (API) and (ii) simulated discharge time series 25 
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generated by a hydrological model. The results of copula based analysis of hydrological 26 

time series seem to support the assumption that the Neckar catchment had started to 27 

change around 1976 and stayed unusual until 1990. 28 

 29 

Keywords : Catchment discharge characteristics, Copula stochastic analysis, API, Model 30 

uncertainty 31 

1. Introduction 32 

In order to understand the water cycle behavior of a region, it is important to determine its characteristics, 33 

but this is difficult to achieve due to the diversity of the system response at different time and space scales. 34 

In particular, temporal variability makes parameter estimation difficult and the assessment of model 35 

uncertainty essential. As a part of the endeavor to understand the hydrological system, the objective of this 36 

research, assessing the anthropogenic impacts on the catchment characteristic independent of the climate 37 

change, is therefore important, yet hard to accomplish.  38 

 The first possible approach is to statistically test the existence or change of trend in hydrological time 39 

series which can be related to climate changes or anthropogenic impacts. Mann-Kendall’s Test was 40 

performed to confirm the existence of a trend in the annual discharge, precipitation and sediment loads, 41 

then  the human intervention and climate impacts based on the available information of the catchments 42 

were discussed (Wu et al., 2012). Pettitt’s Method (Pettitt, 1979)  can be used to detect the time point of 43 

trend alternation and analyze the impacts based on a double mass curve  (Gao et al., 2012) or a 44 

hydrological model (Karlsson et al., 2014). These non-parametric methods for detecting the signal seem, 45 

however, not capable enough of explaining when and how much the system had changed, thus making it 46 

still difficult to relate the change due to human activities. 47 
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 On the other hand, runoff events are initiated by precipitation then modified by the state and physical 48 

features of the catchment. This implies that the integrated information of catchment status might be 49 

retrieved by analyzing the discharge time series itself. Focusing on this property, the attempts can be made 50 

for capturing the temporal dependence structure of runoff by time series models. The classical time series 51 

model, autoregressive integrated moving average (ARIMA), is designed to describe a stationary stochastic 52 

process based on the temporal correlation structure of Gaussian random variables (Box and Jenkins, 1976). 53 

However, the stationarity of the data is not guaranteed in reality, thus a number of alternative approaches 54 

have been suggested. While the application of Fourier analysis is basically for stationary process,  the 55 

analysis using empirical mode decomposition (Huang et al., 1998) overcomes the restriction of stationarity 56 

by allowing the frequency and local variance of a time series to vary within a component and to separate 57 

the signals adaptively by scale. Autoregressive Conditional Heteroskedasticity (ARCH) models lose the 58 

assumption of stationarity to a certain extent so that variance is not constant, however models the variance 59 

in a similar way to ARIMA. Although inventions and efforts to overcome the limitation of stationarity 60 

have been made, it seems still inadequate to model dynamic changes of hydrological processes with these 61 

time series models.  62 

 Alternatively there is a statistical concept, the copula, which has advantages to model the multivariate 63 

dependence independently from marginals and recently adopted in the field of hydrology. A Copula (Sklar, 64 

1959) is a multivariate probability distribution designed to flexibly model dependence structure in the 65 

uniform (quantile) domain. The use of copulas in hydrology can be found for the assessment of extreme 66 

events by considering flooding as a joint behavior of peak and volume (De Michele and Salvadori, 2003). 67 

Copulas have been applied to describe the spatio-temporal uncertainty of precipitation (Bárdossy and 68 

Pegram, 2009) or the inhomogeneity of groundwater parameters (Bárdossy and Li, 2008). Asymmetry of 69 

dependence in a time series can be tested in the framework of a finite state Markov chain's transition 70 

probability matrix (Sharifdoost et al., 2009). Dissimilarity measures can be defined by means of a copula 71 

modelling the correlation structure of pairs of discharge time series in order to identify the similarity of 72 
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catchments with the purpose of transferring catchment properties from one to the other (Samaniego et al., 73 

2010). We aim at utilizing copulas as an alternative to classical time series models and an efficient tool for 74 

time series analysis to overcome these hydrological challenges.  75 

 The main interest of this study is to assess the human intervention and climate change impacts on 76 

hydrological regime for the strategy of future development in the region. For achieving this goal, 7 daily 77 

discharge gauging stations in South-West Germany (Fig. 1), which have 100 years daily discharge records, 78 

were chosen and extensively analyzed. The gauging stations Andernach, Kaub, Worms and Maxau are 79 

located in the main stream of the Rhine, while Kalkofen, Cochem and Plochingen are located on tributaries. 80 

For further analysis, daily precipitation and temperature records in the Baden-Württemberg state of 81 

Germany for the last 50 years were obtained from the German Weather Service. Also, 77 discharge records 82 

obtained from the Global Runoff Date Centre in Germany were utilized. 83 

 The following are the novel aspects introduced in this study: (1) The catchment characteristics are 84 

defined based on copulas and estimated from discharge data. Also the changes of catchment characteristics 85 

are investigated by tracing the temporal change of these statistics. (2) A method to model systematic 86 

changes of dependence structure with the help of copulas is suggested, then its variability and 87 

interrelationship with the time series are examined. (3) Anthropogenic impacts are assessed by the 88 

discharge - precipitation relation using API and a hydrological model with copula based measures.  89 

  This article is divided into five sections. After the introduction, the basic methodology for applying 90 

copulas to discharge time series is introduced in the second section. Thirdly, the measures of asymmetry in 91 

copulas are defined and estimated for the discharges of the River Rhine and other catchments. The 92 

determination of the temporal change of the asymmetry of the copulas is treated in the third section as well. 93 

In the fourth section two topics are treated: (i) the analysis based on copula distances for the observed 94 

discharges and (ii) the comparison of observed discharge with API (Antecedent Precipitation Index) time 95 

series and simulated discharge time series with a hydrological model. The conclusion is given in the fifth 96 

section. 97 
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2. Methodology 98 

 In this section, the application of copulas to time series is articulated after a brief introduction. The very 99 

basics about copulas are presented here ; further information can be obtained from (Joe, 1997) or (Nelsen, 100 

2006). 101 

2.1 Basic Methodology 102 

In probability theory and statistics, a copula is a multivariate probability distribution for which the 103 

marginal probability distribution of each variable is uniform. 104 

     : 0,1 0,1
n

C   (1) 105 

  
      1, ,1, ,1, 1
i i

i iC u if u u u  (2) 106 

Any multivariate distribution can be described by a copula and its marginal distributions as was proven by 107 

Sklar’s theorem (Sklar, 1959): 108 

        
1 1 , ,

nX X nF C F x F xx  (3) 109 

where  
i iF x

X  represents the i-th marginal distribution of a multivariate random variable X . The copula 110 

density can be derived by taking partial derivatives of the copula: 111 
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 The advantage of using copulas is that the marginal is detached from the multivariate distribution and 113 

the dependence structure can be examined in the uniform compact domain for different types of data. 114 

2.2 Basic Hypothesis of Temporal Copulas  115 

 For the application of copulas to time series analysis, a stochastic system should be presumed to be 116 

similar to the case of spatial copulas (Bárdossy and Li, 2008): the random variable at time t  is described as 117 

 Z t  and in general there may exist non-Gaussian dependency among the elements of  Z t . Then 118 
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stationarity is defined for each subset of times 
1, , nt t N  and time lag k  such that 119 

 1 , nt k t k N   and for each set of possible values 1, , nz z : 120 
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 (5) 121 

 For the given random function  Z t , a set  S k  containing pairs of ranked values is defined as a 122 

function of time lag k  as follows: 123 

            ,Z ZS k F z t F z t k   (6) 124 

 Thus, a 2-dimentional autocopula for stochastic time series is a function of time lag k  for the set  S k  125 

similar to the case of spatial copula (Bárdossy and Li, 2008):  126 

         1 2 1 2, , ,t z zk u u P F Z t u F Z t k u     C  (7) 127 

where    1 2,u u S k . Thus, a 2-dimentional empirical copula density can be constructed based on 128 

conditional empirical frequencies on a regular g g  grid and kernel density smoothing (Bárdossy, 2006): 129 
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 (8) 130 

where  S k denotes the cardinality (the number of elements in a set) of set  S k . 131 

3. Copula Asymmetry in Discharge Time Series 132 

High and low values might have different dependences in general. Measuring the asymmetry of copulas 133 

could reveal substantial aspects of time series data, which are not illuminated in the Gaussian approach. 134 

Statistics defined on copula shape and calculated from observed discharge time series we believe to be a 135 

new idea. The two types of asymmetry, “asymmetry1” and “asymmetry2”, are considered for two 136 

diagonals on 2-dimensional copulas, which can be described  as a function of time lag k (Li, 2010):  137 
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where   tzFu Zt  ,   ktzFu Zkt  .  kA1 and  kA2  are asymmetry functions corresponding to 140 

asymmetry1 and asymmetry2 respectively. Figure 2 shows an idealization of the asymmetries between a 141 

pair of variables  U t  and  U t k , showing that the tails of the distributions have a large impact on 142 

each type of asymmetry. The measure of asymmetry compares the dependency between low and high 143 

values and quantifies how much it is not symmetric. For example, in a 2-dimensional copula,  1A k  is 144 

positive if the probability density is higher in the upper right corner than in the lower left corner. On the 145 

contrary,  1A k is negative if the probability density is higher in the lower left corner.  2A k  is the 146 

asymmetry for the other diagonal of a 2-dimensional copula.  147 

 Figure 3 shows the scatterplot of ranked values of a discharge time series with time lag k = 1 as a sample 148 

of an empirical autocopula and its relation with storm hydrographs. This figure displays (i) where each pair 149 

of values on a hydrograph can be plotted on an empirical copula, demonstrating that (ii) the dependence 150 

structure is not symmetric especially for  2A k . This illustration provides the insight that asymmetry can 151 

be related to the shape of a unit hydrograph as well as the notion that asymmetry might be used for 152 

advanced modeling of hydrological time series.   153 

 154 

3.1 Asymmetry and catchment characteristics 155 

Asymmetry functions can be considered as statistics calculated from the observed discharge time series 156 

and an important assumption can be made: “assymetry2 is related to catchment characteristics”. This idea 157 
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will be discussed and demonstrated in this section. Figure 5 (upper left) shows parts of the hydrographs of 158 

7 gauging stations in southwest Germany. 159 

 First, an important natural property of discharge seen in this figure is that the durations of high flow and 160 

low flow periods are not symmetric: Flood events, which are initiated by rainfall or snowmelt, do not 161 

continue for a long time because the duration of runoff to rivers is comparatively short. On the other hand, 162 

discharge keeps decreasing and stays low for no rain periods. This means that, if two consecutive values in 163 

a time series are chosen for small time lag k (day), these two values are likely to be less correlated for high 164 

values but more correlated for low values, which leads to negative value of  kA1 . This implies that the 165 

intrinsic temporal distribution of precipitation can be investigated based on this asymmetry, possibly with 166 

advanced asymmetry functions such as bivariate moments based on L-moments (Brahimi et al., 2015). 167 

 Second, the rates of increase and decrease of discharge are not symmetrical in the upper limb compared 168 

to the lower limb of the hydrograph (Fig. 3): Soon after the rainfall, the river flow rises sharply, but once 169 

the rain stops and peak discharge is observed, then the water level starts to decrease, typically more slowly 170 

on the recession than the rising limb of the hydrograph. This leads to the negative values of  2A k  for 171 

small time lags k (day) and the notion that asymmetry2 can be related to the shape of the hydrograph, and 172 

therefore the characteristics of the runoff and catchment. In addition, it can be said the annual cycle in Fig. 173 

4 is not symmetric in the same sense a hydrograph is not symmetric.  174 

 The change of  2A k  with time lag k is now discussed. The point is that these statistics for small time 175 

lags k can be more related to the catchment and rainfall characteristics of the region, while asymmetry for 176 

larger time lags k can capture the inter-seasonal characteristic of the climate in the region.  177 

 In order to reduce such seasonal impacts on the analysis of hydrological time series, deseasonalization 178 

measures can be applied, for example, for daily stream flow (Grimaldi, 2004). Adopting Grimaldi’s 179 

method, all the time series are normalized in this study. First, the mean i   on the i-th calendar day is 180 

calculated as the expectation of the random variable iX . Then, the annual cycle of the mean *

i  (Fig. 4 181 



 

9 

left) is calculated as a smoothed version of 
i  by linearly weighting the neighboring values along i and 182 

summing them up. The smoothed annual cycle of standard deviations *

i (Fig. 4 right) can be obtained in 183 

the same way. Then the normalized time series is defined by dividing the original time series   tZ  by *

i  184 

after subtracting  *

i  as follows 185 

   
 

  
*

365|

365|
*

norm

t

ttZ
tZ




  (11) 186 

where | 365t  is  mod 365t  and represents calendar day at time t (day). Figure 5 (upper right) shows parts 187 

of normalized discharge time series from the 7 gauging stations. It should be noted that the process still 188 

appears to be non-Gaussian after this transformation and the seasonality for small time lags k might not 189 

have been fully eliminated. Figure 5 (bottom left and bottom right) shows the variation of asymmetry 190 

functions for 7 discharge time series corresponding to time lag k, similar to correlograms, in addition to the 191 

confidence interval of Gaussian process. 192 

 The confidence intervals in the figures are gained by calculating  2A k  for 100 realizations of stationary 193 

Gaussian process which are fitted to the observed discharge of Andernach. The result shows that the 194 

process is clearly different from Gaussian and the influence of asymmetry is significantly large.  195 

 It can be seen that the variation of  2A k  of discharge without normalization (Fig. 5 bottom left) has a 196 

larger impact of seasonality for bigger k ( 40k  ), while its impacts are mitigated after the normalization 197 

(Fig. 5 bottom right). Furthermore, as a consequence of normalization, a sharp drop down of  2A k  for 198 

small time lags k emerged which might be regarded as a catchment indicator. Therefore, the 199 

selected/critical properties for small time lags k is formulated by (i) taking the minimum value of  2A k  200 

for the time lag 50k   and (ii) the lag k at the minimum of  2A k : 201 

   2,min 2
50

min
k

A A k


   (12) 202 

    min,22
500

min,2 ;min AkAkL
k


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 (13) 203 
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 The question is whether they are really related to catchment characteristics. Now, these statistics 204 

estimated for 77 discharge data recorded at the gauging stations in Germany are compared with the 205 

catchment area as one of the simplest possible indicators of the catchment as shown in Fig. 6. 2,minA - area 206 

(Fig. 6 top) and 2,minL - area (Fig. 6 middle)  both show a linear relationship with the log-scaled x-axis of 207 

catchment area, with positive correlation. There seems also to be a linear relation between 2,minA  and 2,minL  208 

(Fig. 6 bottom) as a consequence of the above relationships. 209 

 This result demonstrates that the information extracted from discharge is related to the basic information 210 

of its catchment to a certain extent. Since the principal objective is to assess anthropogenic impacts, the 211 

idea introduced now is to use this measure for evaluating the catchment change by calculating 212 

chronological changes of 2,minA .  213 

3.2 Time Series Analysis with Asymmetry 214 

Temporal change of asymmetry2 is defined  2 ,A k t  on the set representing a moving time window of size 215 

w. 216 

           
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
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where  , ,t t t k t ku U u U      *, ,
t ktu u S k t


 .Then the minimum of  2A k  and lag k at the at time t  are 219 

given by 220 

     2,min 2
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k

A t A k t
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 Figure 7 shows the temporal changes of  2,minA t with window size 3000w  (days) for 7 gauging 223 

stations in southwest Germany in addition to the confidence interval calculated for 100 times 224 

independently generated Gaussian process.  225 

 The comparison of  2,minA t  from observed discharges with  2,minA t  from a Gaussian process exhibits 226 

(i) the influence of asymmetry in discharge is significantly large as was seen in Fig. 5, (ii) The fluctuations 227 

of  2,minA t  of 7 observed discharge time series appear to be bigger than the one calculated for a 228 

realization of a Gaussian process and (iii)  2,minA t of these 7 discharge records shows a similar trend: 229 

there are big drop-downs around 1945 and after 1980 for all the discharges. 230 

 However, it cannot be ascertained whether this is caused by the simultaneous change of the catchments, 231 

the long term meteorological behavior in the region or just randomness in the stationary process. To 232 

overcome this, temporal behavior of discharge and temperature were first checked by calculating the mean, 233 

the standard deviation and the minimum of discharge and temperature in a time window centered on time 234 

t  defined by 235 
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 (18) 236 

where w is the size of time window. Figure 8 shows the moving average and moving standard deviation of 237 

discharge records with windows size 3000w   (days), but it is hard to say whether the behavior around 238 

1945 and after 1980 is unusual. Figure 9 shows mean and minimum of temperature in the time window of 239 

size 365 days which correspond to annual mean and minimum. Roughly speaking, there are certain cold 240 

periods around 1940, 1955 and 1985, which might influence the snow accumulation and melting in the 241 

region, but the relation with  2A k  is rather obscure.  242 
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 What seems to be a useful outcome from the above exploratory analysis is that (i) the behavior of  2A k  243 

is different from catchment to catchment showing a statistical relation with the catchment area and (ii) 244 

temporal behaviors of  2A k  of 7 discharges time series are dependent on each other, which implies the 245 

existence of a background mechanism common to the region. 246 

4. Analysis of hydrological time series with Copula Distance  247 

As an alternative to copula asymmetry, which emphasizes the behavior in the corners of copulas, copula 248 

distance is here suggested so that the characteristic behavior can be captured in the entire domain of the 249 

copula. Calculating this for each time step for different time series and comparing them hopefully exhibits 250 

the changes of dependence structure and therefore the catchment change.  251 

4.1 Introduction of Copula Distance 252 

The basic idea behind the copula distance is to apply the Cramér-von Mises type distance 253 

      
1 1 2

*

1 2 1 2 1 2
0 0

, ,D C u u C u u du du    (19) 254 

which by design measures the goodness of fit between two distribution functions to two copulas. This type 255 

of distance was tested to measure the difference between empirical and theoretical copulas in the bootstrap 256 

framework for the evaluation of spatial dependence of ground water quality (Bárdossy, 2006). For the 257 

analysis of time series data, it still needs to be carefully thought out how (and which) copulas should be 258 

chosen. 259 

4.1.1 Introduction of Copula Distance to single time series 260 

In order to apply the concept of copula distance to time series, the adoption of two copulas in different 261 

time scales is considered. An empirical copula can be obtained from an entire time series which contains 262 

the averaged information of all the time points (global copula). Another empirical copula can be obtained 263 
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for a certain time window of width w centered at time step t  (local copula). In order to make the concept 264 

clear, two sets containing pairs of ranked values with different time scales are specified. 265 

            nZZ tttktzFtzFkS  1global ;,  (20) 266 
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 tkS ,local  can be interpreted as a moving time window where the reference time t is set to the middle of the 268 

window of size w, while  kSglobal  represents a set of the entire time series. Global copula and local copula 269 

are the empirical autocopula densities defined on these sets based on Eq. (8), there denoted by  u
*

globalc  270 

and  wtc ,,*

local u  respectively for the n-dimensional case. In this analysis, 3000 days for the time window w 271 

and a 3-dimensional copula separated with 1 day gap between each variable are employed. This means that 272 

   0 1 2, ,u u uu  (22) 273 

where         0 1 2, 1 , 2z z zu F Z t u F Z t u F Z t     , then the deviation of local copula from global 274 

copula is defined by  275 

       uuu
*

global

*

local ,, ctctc   (23) 276 

 For the first approach, the comparison of dependence structures between entire and local time series is 277 

done for detecting unusual dependence structures. To this end, copula distance type1 is defined by taking 278 

the copula distance between global and local copulas at each time step t   279 
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Second, copula distance type2 is introduced for indicating the point at which the structure of copulas starts 281 

to change. For this method, the distance between two local copulas is calculated at two instants:  282 
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Note that reference time is set to the middle of both time windows and shifted for w/2 (days) from each 284 

other where the size of the time windows is w. Therefore, there is no overlapping part between the two 285 

time intervals of these two local copulas. For the comparison, the moving variance is introduced as 286 

follows: 287 
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 (26) 288 

 Figure 10 shows the result of  1D t , 2 ( )D t and  tVar  in the moving time window for the normalized 289 

discharge time series between 1940 to 2000 at 4 gauging stations located in the main stream of the Rhine 290 

(Andernach, Maxau ) and its two different tributaries (Cochem, Plochingen) in addition to the 90 % 291 

confidence intervals calculated for the Gaussian process fitted to the discharge data of Andernach. 292 

 First of all, the values of   1D t  and 2 ( )D t  at Cochem and Plochingen are bigger and more fluctuating 293 

than in general. The reason could be that their catchments and discharges are smaller, thus more sensitive 294 

to changes. Second, it can be said that the dependence structure is not homogeneous over the time period, 295 

but the local copula clearly deviates from the global copula for certain time periods. For example, the value 296 

of  1D t  is remarkably big around 1947, 1982 and 2000 for all the 4 discharge records (indicated by white 297 

arrows). 2 ( )D t  is also big around 1977 for all the data. The signal of 2 ( )D t  implies that a simultaneous 298 

change of runoff behavior occurred in this region in 1977, which can be related to the high value of 299 

 1D t at 1982.  tVar  is also changing, but a direct relation with  1D t  and 2 ( )D t  is hard to recognize.   300 

Also the confidence interval of the Gaussian process is clearly smaller than the observed one. This 301 

indicates the copula distances of the stationary process are small while the nature process is non-stationary 302 

and its dependence structure is more varying. 303 

 For copula distance type1, the global copula can be considered as an average state of the copula, while 304 

the local copula can be regarded as a realization of a possible state of a copula at time step t. This concept 305 
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can be comparable to variance and leads to a new measure, copula variance, which is the summation of 306 

copula distances between global and local copula over the time.  307 
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 Table 1 shows the variance and copula variance calculated for the 4 discharge data. The result 309 

demonstrates that copula variance of the time series can be higher, even if the conventional variance is 310 

lower for example in case of Maxau. 311 

4.1.2 Copula Distance for two time series 312 

In the previous section, copula variance was defined as a measure of the variability characteristic of the 313 

copula itself. Here, it is determined whether covariance can be defined for two copula densities c1 and c2 314 

from two time series as copula distance type3, which shows whether the variability characteristic of 315 

copulas is related to each other. The measure introduced is: 316 

     
1 1

3 1 2 1 2 1
0 0

( , , ) ... , , ... nD c c t c t c t du du    u u  (28) 317 

where  318 
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By its definition, the value of 3( )D t can be related to 1( )D t  because 3( )D t  compares the deviation of local 320 

copulas from global copulas in a similar way to 1( )D t  in Eq. (26). In order to reduce the influence of 321 

1( )D t  on 3( )D t , copula distance type4 is introduced as a normalized measure bounded between -1 and 1 322 

analogous to correlation. 323 
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where 4 1 2( , , ) 1D c c t  . For comparison, covariance and correlation in a moving window are introduced for 325 

two random variables  tZ1  and  tZ2  as follows: 326 
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 Figure 11 shows the copula distance between two time series 3( )D t  and 4 ( )D t in addition to the 329 

covariance and correlation in a moving time window. 330 

 First, it can be said that the behavior of covariance and correlation in a moving window are different 331 

from 3( )D t  and 4 ( )D t . This implies these two copula based statistics exhibit different properties of the 332 

time series from ordinary statistics. Second, 3( )D t  shows high values around 1947, 1982 and 2000, which 333 

is similar to the case of  1D t in Fig. 10. This indicates that unusual states of copulas in 4 discharge time 334 

series can be related to each other. Third, 4 ( )D t  is in general high except for the period around 1970 and 335 

1990. This means, the temporal behavior of dependence structures for these 4 discharges are actually 336 

similar except for these periods even if   1D t  and 3( )D t are small. 337 

 Copula covariance and copula correlation can be defined similar to copula variance in order to quantify 338 

the overall behavior of two time series. 339 
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where   1,Corr 21cop cc  and its derivation can be found in appendix A. In Table 2, these copula based 342 

statistics are compared with ordinary statistics. For example, Cochem and Plochingen are located remotely 343 

in different tributaries, thus covariance and correlation are lower than the others, but copula covariance and 344 

copula correlation are not the lowest.  345 

 The measures using copula distance are different from the conventional statistics. This behavior can be 346 

explained by the fact that the autocopula has more substantial information about temporal dependence 347 
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structure than the autocorrelation. Using these measures might enable us to take advantage of a different 348 

way of seeing the dependence between time series. 349 

 What is new in the analysis of this section is that (i) measures based on copula distance show the 350 

different properties of time series in comparison to conventional statistics and (ii) there are significant 351 

signals of copula distances for certain time periods in common to all the discharge data. 352 

4.2 Copula based Stochastic Analysis with API and a Hydrological Model  353 

The difficulty of analyzing discharge time series in order to detect catchment change is that it is not clear 354 

whether the temporal change of stochastic information is caused by catchment change or merely by 355 

random behavior of precipitation. To gain an understanding of this process, we attempted to eliminate the 356 

influence of precipitation using, first, an Antecedent Precipitation Index (API) for comparison with 357 

discharge, second, using a hydrological model with the parameter sets calibrated and fixed for the entire 358 

simulation time period. 359 

4.2.1 Copula Distance Analysis with API 360 

An API time series, which is generated from observed precipitation time series and behaves similarly to 361 

discharge, is used instead of precipitation.  362 

       1API1API  tPtt    (35) 363 

where  P t  is daily precipitation (mm/day),  tAPI  is time series of API (mm/day) and α = 0.85 was 364 

chosen. The assumption for this method is that the API time series has the stochastic information purely 365 

originated from the precipitation, while observed discharge is influenced by both catchment and 366 

precipitation characteristics. If the stochastic information derived from these two data sets is the same, this 367 

indicates that the stochastic turbulence is originating from precipitation; otherwise the change is from the 368 

catchment. 369 

 For this investigation, precipitation data was carefully chosen for 4 regions northwest, northeast, 370 

southwest and central) of Baden-Württemberg (Germany) so that they have several almost continuous 371 
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daily records between 1935 and 2005. Figure 12 shows the locations of measuring stations. The 372 

precipitation time series were aggregated into one for each region by taking their daily average, then 4 API 373 

time series were calculated in total by Eq. (35). Figure 13 shows the resulting copula distances 374 

1( )D t , 2 ( )D t  and moving average )(Var t  for API time series with the 90% confidence intervals of the 375 

Gaussian process. Figure 14 shows the result of copula distances 3( )D t , 4 ( )D t  and moving covariance and 376 

correlation for API time series. 377 

 What can be recognized first from Fig. 13 is that the magnitudes of  1( )D t  and 2 ( )D t  are smaller than 378 

the case of discharge. This is considered to be a result of aggregation of precipitation time series and 379 

adoption of API, but some signals can be still identified:  1D t  around 1947 and 2000 is high, but not as 380 

high for 1982. The signal of 2 ( )D t  which was detected around 1977 in Fig. 11 does not seem to exist for 381 

API. This is even more clear for 3( )D t  in Fig. 14 in that there is no common change of the dependence 382 

structure around 1982 in API time series. This is interesting due to the following implications: (i) the 383 

noises of  1D t  in Fig. 13 were reduced and signals in common were amplified (ii) the unusual state of the 384 

copula around 1982 is not caused by precipitation, but could be caused by the catchment change. 385 

 For further verification, copula distance type3 and type4 between discharge and API time series were 386 

calculated as shown in Fig. 15. This result also shows there is no clear relation between API and discharge 387 

time series around 1982. 388 

4.2.2 Copula based analysis with a hydrological model  389 

In this section, simulated discharges time series are generated by a conceptual hydrological model, HBV 390 

(Bergström 1976 ; Bergström, Singh, and others 1995), which takes daily precipitation and temperature 391 

records as input and simulates discharges for smaller catchments as an example of discharge, to compare 392 

with observed discharge,  in order to check if differences might occur due to the method. 393 



 

19 

 Thus the idea behind this methodology is similar to the case of API: a hydrological model with the 394 

parameters fixed for the entire time period represents the catchment not influenced by anthropogenic 395 

impacts. Then, the discharges simulated by this model should not depend on catchment change, while 396 

observed discharge is assumed to be influenced by both catchment and precipitation.  397 

 For the study area, the Upper Neckar Catchment was chosen as shown in Fig. 12. One parameter set 398 

needed for this model constitutes of 13 parameters which are calibrated based on the Nash–Sutcliffe model 399 

efficiency coefficient using the simulated annealing algorithm for the period between 1960 and 2000. Then, 400 

30 parameter sets are independently calibrated in total and, subsequently, 30 simulated discharges time 401 

series are generated to compare with one observed discharge. 402 

 Figure 16 shows the result of copula based analysis calculated for single time series 403 

(  1D t ,  2D t ,  2,minA t ). It can be seen that  2,minA t  in Fig. 16 (top) that (i) fluctuations of  2,minA t  of 404 

observed and simulated discharge are locally identical. This implies that the short term behavior of 405 

 2,minA t  is originated from the temporal behavior of precipitation but (ii) there exists a change of trend 406 

around 1976:  2,minA t  of observed discharge is slightly bigger than simulated before 1976, while 407 

 2,minA t  of observed discharge clearly undershoot the simulated ones of after 1976. This change of trend 408 

was also seen in the previous analyses (  2D t  in Fig. 10). Furthermore,  1D t  in Fig. 16 (middle) is high 409 

before 1976 which indicates the state of the copula is different from the rest, while the result of simulated 410 

discharges does not show such tendency.  2D t  in Fig. 16 (bottom) indicates the change of dependence 411 

structure happened around 1970 and 1977. These results using the HBV model indicate the change of the 412 

dependence structure detected using copulas around 1976 is not caused by the random behavior of 413 

precipitation, but by the behavior of the catchment itself. 414 

 The fact and the notion obtained in this section is that (i) both results from API and HBV based on 415 

copula measures indicate that the catchment changed around 1976 and (ii), by comparing the simulated 416 

discharge with observed discharge, the origin of the change of stochastical information can be assessed.  417 
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 418 

Conclusion 419 

In this paper the application of copulas for hydrological time series data is newly explored for the detection 420 

of catchment characteristics and their temporal changes.  421 

 1. A Copula based measure of asymmetry,  kA1  and  2A k , was defined and newly applied for the 422 

identification of catchment characteristics. Indeed, it was presumed that asymmetry2 is related to the 423 

runoff characteristics.  424 

 2. The relation between asymmetry2 and catchment characteristics was tested for 77 discharge records. 425 

min,2A  has a certain relation especially with the size of catchments and this strengthens the notion that 426 

asymmetry2 of discharge data can be used to describe the catchment characteristic and state. 427 

 3.  2,minA t  was defined for evaluating the temporal change of asymmetry2 and calculated as an 428 

indicator of the catchment state. The result indicates  2,minA t  keeps changing coincidentally with time. 429 

However, it is difficult to explain the causality, at least, by long term behavior of discharge and 430 

temperature time series.  431 

 4. A method based on copula distance was examined for the investigation of temporal behavior of 432 

hydrological time series. This measure can detect the time period where dependence structure is unusual 433 

and its interdependency between different time series. Clear signals were detected that the dependence 434 

structure is unusual for a certain time period and this signal was not found by investigating the time series 435 

with variance, covariance or correlation. 436 

 5. API time series were calculated for each region in the Baden-Württemberg state and simulated 437 

discharge time series were generated using the HBV model for the Upper Neckar Catchment. These are the 438 

data not influenced by catchment change, thus compared with observed discharge to assess the 439 

anthropogenic impacts. The results showed that there was a signal detected only in the observed discharge 440 
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around 1982, but not in the API or simulated time series, which implies the anthropogenic impacts on the 441 

catchment. Also it was shown in the results of copula asymmetry that the trend clearly changed around 442 

1976. 443 

 The results of copula based analysis of hydrological time series seem to support the assumption that the 444 

catchment had started to change around 1976 and stayed unusual until 1990. These changes could 445 

correspond to the construction of flood retention basins started around 1982 (Lammersen et al., 2002) and 446 

ecological flooding strategy, which let small floods to happen for the rehabilitation of ecological systems 447 

in the floodplain, introduced in the Upper Rhine since 1989 (Siepe, 2006). 448 

 Copulas can be seen as an alternative method to analyze hydrological time series data by focusing on the 449 

dependence structure, but further exploratory applications and theoretical developments are expected. The 450 

copula based measures introduced in this study can be related to the potential model uncertainty, that is, 451 

how much the natural system is varying. Empirical autocopula analysis is a more data driven approach 452 

which retains more information than the copulas estimated with parametric methods, but it is also 453 

numerically demanding. The effective way to analyze time series and build up a time series model based 454 

on copulas can be further explored.Equation Chapter  1 Section 1 455 

456 
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Appendix A 457 

Suppose that a random variable at time t is denoted as  X t  and  ,Xc tu  is an autocopula obtained from 458 

 X t . Assuming  umean,Xc  as an average state of  ,Xc tu , deviation of copula  ,Xc t u  at time t is 459 

defined by 460 

       uuu mean,,, XXX ctctc   (A1) 461 

 For the empirical case,  ,Xc tu  and  umean,Xc  can be regarded as local copula and global copula 462 

respectively similar to Eq. (29). Since global and local copula are empirical copula density as defined in Eq. 463 

(8),  ,Xc t u  can be regarded as a vector of values on finite number of grids: 464 

             ,1 ,2 , ,, , , , ,X X X X i X Nt c t c t c t c t     Δc  (A2) 465 

where  ,X ic t  denotes the value of copula density at i-th grid and N is the number of grids. From Cauchy-466 

Schwarz inequality 467 

         
2

,X Y X Yt t t tΔc Δc Δc Δc  (A3) 468 

where  X tΔc is norm and    ,X Yt tΔc Δc  is inner product of vector  X tΔc and  Y tΔc .Then 469 
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Therefore  4 , , 1X YD c c t  in Eq. (30). Above inequality is valid for certain time point t and summing up 473 

Eq. (A6) for all the time steps t leads to  474 
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where T is the number of time steps.  X tΔc  is a norm and can be denoted for simplicity as 476 

 t Xx t Δc . Then  477 
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where    1 2 1 2, ,... , , ,...T Tx x x y y y x y  for 1t T . Again from Cauchy-Schwarz inequality  479 
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Then 
2

, ·x y x y  indicates 484 
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 549 

Table 1. Variance and copula variance calculated for 4 discharge time series (ANDE:Andernach, 550 

COCH:Cochem,  MAXA:Maxau, PLOC:Plochingen)  551 

 552 
 553 

 ANDE COCH MAXA PLOC 

Var 1.79 2.24 1.75     2.72 

Varcop    (×10 -5) 3.01 1.64 5.39 1.27 

 554 

Table 2. Covariance, correlation, copula covariance and copula correlation between 4 discharge data 555 

(AN:Andernach, CO:Cochem,  MA:Maxau, PL:Plochingen)  556 

 557 
 558 

 AN-CO AN-MA AN-PL CO-MA CO-PL MA-PL 

Cov 1.68 1.60 1.33 1.38 1.31 1.41 

Cor 0.84 0.90 0.60 0.70 0.53 0.64 

Covcop  (×10 -6) 4.90 3.40 3.39 7.16 9.90 5.47 

Corrcop 0.60 0.77 0.46 0.71 0.60 0.59 

 559 

Table 3. Variance and copula variance calculated for API time series of 4 regions in the Baden-560 

Württemberg state of Germany (C: Central, SW: South-West,  NW: North-West, NE: North-East) 561 

 562 
 563 
 C SW NW NE 

Var 1.70 1.66 1.72 1.78 

Varcop     (×10 -6) 3.00 4.02 3.35 3.21 

 564 

 565 

Table 4.  Covariance, correlation, copula covariance and copula correlation between API time series from 566 

4 regions in the Baden-Württemberg state of Germany (C: Central, SW: South-West,  NW: North-West, 567 

NE: North-East) 568 

 569 
 570 
 C-SW C-NW C-NE SW-NW SW-NE NW-NE 

Cov 1.35 1.33 1.44 1.25 1.41 1.42 

Cor 0.80 0.77 0.84 0.74 0.84 0.83 

Covcop  (×10 -7) 1.46 1.16 8.94 4.42 1.11 8.80 

Corrcop 0.36 0.29 0.29 0.09 0.26 0.24 

571 
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Figure Captions 572 

 573 

Fig. 1. Locations of 7 discharge gauging stations in the Upper Rhine Region 574 

Fig. 2. Visualization of          5.05.05.05.0,1   kttkttktt uuuuuua  (left) and 575 

         5.05.05.05.0,2   kttkttktt uuuuuua  (right) which displays the contribution of single 576 

realization of  ,t t kU U   to asymmetry functions 577 

          1 0.5 0.5 0.5 0.5t t k t t kA k E U U U U 
         and 578 

          5.05.05.05.02   kttktt UUUUEkA  579 

Fig. 3. Sketch of the transformation of the values from sample hydrograph (left) to the points on scatterplot 580 

of ranks (right): empirical copula calculated from two values separated by time lag k = 1 (days) in a 581 

discharge time series of Andernach where rank correlation is 0.9870,   0002398.011 kA  and 582 

  00011037.012 kA . The possible combinations of high and low values, which has large impacts on 583 

asymmetry, are numbered: (1) low to high,  (2) high to high, (3) high to low, (4) low to low. Negative 584 

contribution to 2A  is drawn with red circle and positive contribution with blue oval. 585 

Fig. 4. Annual cycles of mean discharge measured at seven sites in the Rhine basin after smoothing (left) 586 

and annual cycle of standard deviation after smoothing (right) 587 

Fig. 5. Discharge time series measured at seven sites in the Rhine basin between 1950 and 1955 before 588 

applying normalization (upper left) and after applying normalization (upper right).  2A k calculated for 589 

entire time series before applying normalization (bottom left) and after applying normalization (bottom 590 

right) with 90% confidence intervals (grey) calculated for 100 realizations of Gaussian process (dashed 591 

line  is  2A k  calculated for one of the realization of Gaussian process ). 592 

Fig. 6. Relation between asymmetry of discharge data and catchment characteristics: min,2A  of discharge 593 

and catchment area (top), 2,minL  of discharge and catchment area (middle), min,2A  of discharge and 2,minL  of 594 

discharge (bottom) 595 

Fig. 7. Temporal change of asymmetry2 :  tA min,2  for 7 discharge records and, for comparison, confidence 596 

intervals  calculated from the Gaussian process (90% confidence interval with grey color and 60% 597 

confidence interval with dark grey color) and one of its realizations (dashed line) 598 

Fig. 8. Moving average and standard deviation of the 7 daily discharge records for the window size w = 599 

3000 (days) 600 

Fig. 9. Annual minimum (upper panel) and mean of aggregated daily temperature (lower pannel) in the 601 

Baden-Württemberg state of Germany 602 

Fig. 10. Copula distances of discharge time series in moving time window: variance (top), distance type1 603 

(middle) and distance type2 (bottom), each panel containing the  80% confidence interval of Gaussian 604 

process and one of its realization (dashed line). The arrows point 1947, 1982, 2000 and 1977 in which the 605 
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clear signals of anomalies are detected for all four discharge time series: Andernach(ANDE), 606 

Cochem(COCH), Maxau(MAXA) and Plochingen(PLOC)). 607 

Fig. 11. Copula distances of discharge time series in moving time window: covariance (top), correlation 608 

(second), copula distance type3 (third) and copula distance type4 (bottom). The arrows point 1947, 1982 609 

and 2000 in which the clear signals of anomalies are detected for the comparisons between 4 discharge 610 

time series: Andernach(ANDE), Cochem(COCH), Maxau(MAXA), Plochingen(PLOC) 611 

Fig. 12. Locations of the precipitation gauge stations within Baden-Württemberg (Germany) indicated by 612 

coloured circles.  Upper Neckar catchment is identified by the light green area and the location of the 613 

gauging station is indicated by a square 614 

Fig. 13. Copula distances of API time series in moving time window: variance (top), copula distance type1 615 

(middle) and copula distance type2 (bottom) where ‘C’ denotes central, ‘SW’ denotes southwest, ‘NW’ 616 

denotes northwest and ‘NE’ denotes northeast part of  the Baden-Württemberg State of Germany, each 617 

containing 80% confidence interval of Gaussian process and one of its realization (dashed line). The 618 

arrows indicate the years in which anomalies are detected in the previous analysis (Fig. 10) 619 

Fig. 14. Copula distances of API time series in moving time window: covariance (top), correlation 620 

(second), copula distance type3 (third) and copula distance type4 (bottom). The arrows indicate the years 621 

in which anomalies are detected in the previous analysis (Fig. 11) 622 

Fig. 15. Copula distance type3 (top) and type4 (bottom) between 4 discharge and 1 API time series which 623 

is aggregated for all the daily precipitations depicted in Fig. 12.  The arrows indicate the years in which 624 

anomalies are detected in the previous analysis (Fig. 11) 625 

Fig. 16. Copula asymmetry and copula distances for 30 simulated and one observed discharge time series 626 

at Plochingen between 1965 and 2000: min,2A  for the time lag k = 2 days (top), copula distance type1 627 

(middle), copula distance type2 (bottom) 628 

 629 

 630 

631 
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 632 
Fig. 1. Locations of 7 discharge gauging stations in the Upper Rhine Region 633 

 634 

  635 
  636 

Fig. 2. Visualization of          5.05.05.05.0,1   kttkttktt uuuuuua  (left) and 637 

         5.05.05.05.0,2   kttkttktt uuuuuua  (right) which displays the contribution of single 638 

realization of  ,t t kU U   to asymmetry functions 639 

          1 0.5 0.5 0.5 0.5t t k t t kA k E U U U U 
         and 640 

          5.05.05.05.02   kttktt UUUUEkA  641 

 642 
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 643 

 644 
Fig. 3. Sketch of the transformation of the values from sample hydrograph (left) to the points on scatterplot 645 

of ranks (right): empirical copula calculated from two values separated by time lag k = 1 (days) in a 646 

discharge time series of Andernach where rank correlation is 0.9870,   0002398.011 kA  and 647 

  00011037.012 kA . The possible combinations of high and low values, which has large impacts on 648 

asymmetry, are numbered: (1) low to high,  (2) high to high, (3) high to low, (4) low to low. Negative 649 

contribution to 2A  is drawn with red circle and positive contribution with blue oval.    650 
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 653 

Fig. 4. Annual cycles of mean discharge measured at seven sites in the Rhine basin after smoothing (left) 654 

and annual cycle of standard deviation after smoothing (right) 655 

 656 

Fig. 5. Discharge time series measured at seven sites in the Rhine basin between 1950 and 1955 before 657 

applying normalization (upper left) and after applying normalization (upper right).  2A k calculated for 658 

entire time series before applying normalization (bottom left) and after applying normalization (bottom 659 

right) with 90% confidence intervals (grey) calculated for 100 realizations of Gaussian process (dashed 660 

line  is  2A k  calculated for one of the realization of Gaussian process ).  661 



 

32 

   662 
Fig. 6. Relation between asymmetry of discharge data and catchment characteristics: min,2A  of discharge 663 

and catchment area (top), 2,minL  of discharge and catchment area (middle), min,2A  of discharge and 2,minL  of 664 

discharge (bottom) 665 
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 666 

Fig. 7. Temporal change of asymmetry2 :  tA min,2  for 7 discharge records and, for comparison, confidence 667 

intervals  calculated from the Gaussian process (90% confidence interval with grey color and 60% 668 

confidence interval with dark grey color) and one of its realizations (dashed line) 669 

  670 

 671 

Fig. 8. Moving average and standard deviation of the 7 daily discharge records for the window size w = 672 

3000 (days) 673 

 674 

675 
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  676 

 677 

Fig. 9. Annual minimum (upper panel) and mean of aggregated daily temperature (lower pannel) in the 678 

Baden-Württemberg state of Germany 679 

 680 

Fig. 10. Copula distances of discharge time series in moving time window: variance (top), distance type1 681 

(middle) and distance type2 (bottom), each panel containing the  80% confidence interval of Gaussian 682 

process and one of its realization (dashed line). The arrows point 1947, 1982, 2000 and 1977 in which the 683 
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clear signals of anomalies are detected for all four discharge time series: Andernach (ANDE), 684 

Cochem(COCH), Maxau(MAXA) and Plochingen(PLOC)). 685 

 686 

Fig. 11. Copula distances of discharge time series in moving time window: covariance (top), correlation 687 

(second), copula distance type3 (third) and copula distance type4 (bottom). The arrows point 1947, 1982 688 

and 2000 in which the clear signals of anomalies are detected for the comparisons between 4 discharge 689 

time series: Andernach(ANDE), Cochem(COCH), Maxau(MAXA), Plochingen(PLOC) 690 

691 
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 692 

 693 

Fig. 12. Locations of the precipitation gauge stations within Baden-Württemberg (Germany) indicated by 694 

coloured circles.  Upper Neckar catchment is identified by the light green area and the location of the 695 

gauging station is indicated by a square696 
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 697 

  698 

Fig. 13. Copula distances of API time series in moving time window: variance (top), copula distance type1 699 

(middle) and copula distance type2 (bottom) where ‘C’ denotes central, ‘SW’ denotes southwest, ‘NW’ 700 

denotes northwest and ‘NE’ denotes northeast part of  the Baden-Württemberg State of Germany, each 701 

containing 80% confidence interval of Gaussian process and one of its realization (dashed line). The 702 

arrows indicate the years in which anomalies are detected in the previous analysis (Fig. 10)  703 

 704 

 705 
 706 
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 708 

 709 

Fig. 14. Copula distances of API time series in moving time window: covariance (top), correlation 710 

(second), copula distance type3 (third) and copula distance type4 (bottom). The arrows indicate the years 711 

in which anomalies are detected in the previous analysis (Fig. 11)  712 

 713 

714 
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  715 

 716 

Fig. 15. Copula distance type3 (top) and type4 (bottom) between 4 discharge and 1 API time series which 717 

is aggregated for all the daily precipitations depicted in Fig. 12.  The arrows indicate the years in which 718 

anomalies are detected in the previous analysis (Fig. 11)  719 

720 
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 721 

 722 

Fig. 16. Copula asymmetry and copula distances for 30 simulated and one observed discharge time series 723 

at Plochingen between 1965 and 2000: min,2A  for the time lag k = 2 days (top), copula distance type1 724 

(middle), copula distance type2 (bottom) 725 

 726 

 727 
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