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Abstract

This review paper investigates the determinants of modelling choices, for numerous
applications of 1-D free-surface flow and erosion equations, across multiple spatiotem-
poral scales. We aim to characterize each case study by its signature composed
of model refinement (Navier-Stokes: NS, Reynolds-Averaged Navier-Stokes: RANS,
Saint-Venant: SV or Approximations of Saint-Venant: ASV), spatiotemporal scales (do-
main length: L from 1 cm to 1000 km; temporal scale: T from 1 second to 1 year; flow
depth: H from 1 mm to 10 m), flow typology (Overland: O, High gradient: Hg, Bedforms:
B, Fluvial: F) and dimensionless numbers (Dimensionless time period 7~, Reynolds
number Re, Froude number Fr, Slope S, Inundation ratio A,, Shields number 8). The
determinants of modelling choices are therefore sought in the interplay between flow
characteristics, cross-scale and scale-independent views. The influence of spatiotem-
poral scales on modelling choices is first quantified through the expected correlation
between increasing scales and decreasing model refinements, identifying then flow ty-
pology a secondary but mattering determinant in the choice of model refinement. This
finding is confirmed by the discriminating values of several dimensionless numbers,
that prove preferential associations between model refinements and flow typologies.
This review is intended to help each modeller positioning his (her) choices with respect
to the most frequent practices, within a generic, normative procedure possibly enriched
by the community for a larger, comprehensive and updated image of modelling strate-
gies.

1 Introduction

Free-surface flow models cover a wide range of environmental and engineering appli-
cations, across multiple spatiotemporal scales, through successive flow aggregations
over various bed topographies: these govern both the qualitative (flow typology) and
quantitative (dimensionless numbers) flow characteristics. Each case study may thus
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be positioned along “streamwise scenarios” (from runoff initiation to the main rivers)
from unequivocal indications of the spatiotemporal scales, flow typology and associ-
ated dimensionless numbers. This literature review investigates the determinants of
choices made for 1-D free-surface flow and erosion modelling, seeking links between
contextual information (spatiotemporal scales, flow typologies, dimensionless num-
bers) and conceptual descriptions (refinement of the flow equations or, equivalently,
richness of the physical basis). The entire set of descriptors, i.e. model refinement,
spatiotemporal scales, flow typology and dimensionless numbers, constitutes the sig-
nature of a study, which is the open normative procedure designed to allow compar-
isons between studies and to be fed by the community.

For the sake of genericity, this review addresses a wide range of spatiotemporal
scales, starting at the smallest plot scales (spatial scale: domain length L <10 m; time
scale: duration of the process T <10s; flow depth: H<1cm, Fig. 1), those of runoff
genesis, overland flow hydraulics and detailed particle-scale physics (Horton, 1945;
Emmett, 1970; Feng and Michaelides, 2002; Schmeeckle and Nelson, 2003). The in-
termediate scales of catchment and hillslope processes are these expected to exhibit
the widest variety of flow typologies thus modelling strategies (Croke and Mockler,
2001; Parsons et al., 2003; Aksoy and Kavvas, 2005). The larger river basin scales
(L >100km; 7 >10 days; H>1m) are also handled here, relevant for river flow mod-
elling, flood prediction and water resources management (Nash and Sutcliffe, 1970;
Rosgen, 1994; Loucks and van Beek, 2005) with regional surface-subsurface interac-
tions (De Marsily, 1986), non-point pollution, fluvial sediment budgets and global bio-
geochemical cycles (Walling, 1983; Milliman and Syvitski, 1992; Syvitski and Milliman,
2007).

On the Earth’s surface, flow aggregation in the streamwise direction occurs across
several geomorphic thresholds (Kirkby, 1980; Milliman and Sivitsky, 1992; Church,
2002; Paola et al., 2009), through a succession of flow typologies (Emmett, 1970; Grant
et al.,, 1990; Rosgen, 1994; Montgomery and Buffington, 1997). Flow aggregation in
space and time is described through the width function and geomorphological unit hy-
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drograph concepts (Kirkby, 1976; Robinson et al., 1995; Agnese et al., 1998), under the
angle of connecting-scale hydrological and sedimentological pathways (see the review
by Bracken et al., 2013) or by debating the merits of similitude laws versus upscaling
issues in the description of hydrological processes (Strahler, 1956; Bléschl and Siva-
palan, 1995; Slaymaker, 2006). An alternative consists in examining the scale matching
between available data and modelling aims (Lilburne, 2002). This raises technical (con-
textual) as well as strategic (conceptual) issues, handled here from an overview on the
most popular modelling practices, confronting the theoretical refinement of flow models
to the specific, nominal scales of the processes at play.

Many papers or handbooks have summarised free-surface flow modelling and nu-
merical techniques in hydraulics (King and Brater, 1963; Abbott, 1979; Cunge et al.,
1980; Carlier, 1980; French, 1985) or hydrology (Chow, 1959; Kirkby, 1978; Beven
2000) for various contexts, purposes and flow typologies. Less works have discussed
the concern of ad hoc friction laws (Leopold et al., 1960; Gerbeau and Perthame, 2001;
Nikora et al., 2001; Roche, 2006; Burguete et al., 2008), at the microscopic or macro-
scopic scales (Richardson, 1973; Jansons, 1988; Priezjev and Troian, 2006; Smith et
al., 2007; Powell, 2014) although friction, flow retardation and energy dissipation pro-
cesses are closely related to bedforms, thus plausibly govern flow typologies then, pos-
sibly, modelling choices. Often outside any focus on friction, numerous works have pro-
vided wide overviews on erosion modelling (Ritchie and McHenry, 1990; Laflen et al.,
1991; Merritt et al., 2003; Aksoy and Kavvas, 2005; Boardman, 2006). Erosion models
that lean on the most sophisticated flow models calculate explicit particle detachment,
transport and deposition from velocity fields or flow energetics (Vanoni, 1946; Hino,
1963; Lyn et al., 1992; Mendoza and Zhou, 1997) while reduced complexity models
either assume the “transport capacity” (Foster and Meyer, 1972; Bennett, 1974) or
“transport distance” schools of thoughts (see details in Wainwright et al., 2008).

This multidisciplinary review (hydrology, hydraulics, fluid mechanics and erosion sci-
ence) searches for the determinants of modelling choices. The methodology consists
in defining the “signature” of each case study as the chosen model refinement and the
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given flow typology, spatiotemporal scales and dimensionless numbers, hypothesizing
the conceptual element (model refinement) is the consequence of the contextual el-
ements. The paper is organized as follows: Sect. 2 sorts the flow equations into four
levels of refinement, Sect. 3 plots these refinements versus the spatiotemporal scales
of the studies, also depicting the influence of flow typologies and dimensionless num-
bers. Section 4 discusses the results and future research leads. Some of the best
documented references among the cited literature have been gathered in Appendix A:
most figures in this manuscript were plotted from this database.

2 Flow models
2.1 List of flow models
2.1.1 Water flow

Free-surface flow equations in the literature may roughly be sorted into four levels of
decreasing refinement, from the richness of their physical basis. The choice made
here includes the Navier-Stokes equations (noted NS: Navier, 1822; Stokes, 1845),
their average in time termed Reynolds-Averaged Navier-Stokes equations (RANS:
Reynolds, 1895), the depth-averaged Saint-Venant equations (SV: Saint-Venant, 1871)
and further approximations (referred to as ASV), among which the Diffusive Wave
(DW: Hayami, 1951) and Kinematic Wave equations (KW: lwagaki, 1955; Lighthill and
Whitham, 1955).

2.1.2 Erosion

The associated erosion equations (not shown) are based on a representation of de-

tachment and transport on hillslopes (Bennett, 1974; Van Rijn, 1984a, b; Wainwright

et al., 2008), in streams (Einstein, 1950) or through the channel network (Du Boys,

1879; Exner, 1925; Hjulstrém, 1935; Shields, 1936; Bagnold, 1956). Friction is the link
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between water flow and erosion issues in terms of physical processes at play at the
particle scale, or at the scale of the erodible bed asperities. However, the scope here
is not to review the choices made for friction modelling; friction phenomena, with the
associated flow retardation and energy dissipation processes, are rather considered
for their influence on flow typologies, as discussed later in the manuscript.

2.2 Navier-Stokes
2.2.1 Water flow

The Navier-Stokes (NS) equations have suitable simplifications for the shallow water
cases (L >>H) commonly used to describe free-surface flows. The three-dimensional
fluid motion problem is reduced here to a two-dimensional description, whose projec-
tion along the streamwise axis writes:

@+u%+w@+la_p—g+lﬂ (1)
ot  Ox 0z pox 7* pox

where x is the longitudinal distance [L], z the vertical coordinate [L], { is time [T], u is
the local water velocity in x [LT'1], o is water density [ML'3], g, is the projection of
gravity g on x [LT™®] and 7 is the tangential stress due to water [ML™'T7?] noted To ON
the bed in Fig. 1.

The Navier-Stokes equations stay valid throughout the full range of flow regimes and
contexts. They are preferentially used where much complexity is needed, often when
relevant simplified flow descriptions could not be derived, for example for particle-scale
applications (Chen and Wu, 2000; Wu and Lee, 2001; Feng and Michaelides, 2002),
overland flow (Dunkerley, 2003, 2004) or flows over pronounced bedforms (Booker et
al., 2001; Schmeeckle and Nelson, 2003). A very wide review of numerical methods
and applications for the NS equations is provided by Gresho and Sani (1998) and a
benchmark of numerous solvers by Turek (1999).
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2.2.2 Erosion

Several types of practical applications dictate the use of high-level formalisms in the
description of particle detachment and transport, typically to handle explicit bed ge-
ometries and alterations, for example jet scours and regressive erosion (Stein et al.,
1993; Bennett et al., 2000; Alonso et al., 2002), diverging sediment fluxes in canals
(Belaud and Paquier, 2001) or incipient motion conditions, calculated from grain size,
shape and weight (Stevenson et al., 2002). The NS formalism is also needed to de-
scribe strong water-sediment couplings in which the solid phase exerts an influence
on the liquid phase, acting upon velocity fields, flow rheology and erosive properties
(Sundaresan et al., 2003; Parker and Coleman, 1986; Parker et al., 1986; Davies et
al., 1997; Mulder and Alexander, 2001). Moreover, the NS formalism offers the pos-
sibility to work on the energy equations: the erosive power and transport capacity of
sediment-laden flows may be estimated from the energy of the flow, debating the case
of turbulence damping (or not) with increasing sediment loads (Vanoni, 1946; Hino,
1963; Lyn et al., 1992; Mendoza and Zhou, 1997). The matter is not free from doubt
today (Kneller and Buckee, 2001) and frictional drag, abrasion due to impacts of the
travelling particles and increased flow viscosity have been described prone to enhance
the detachment capacities of loaded flows (Alavian et al., 1992; Garcia and Parker,
1993).

2.3 Reynolds-Averaged Navier-Stokes
2.3.1 Water flow

The Reynolds-Averaged Navier—Stokes (RANS) equations are a turbulence model, us-
ing time-averaged equations of fluid motion, less generic than the NS formalism. The
hypothesis behind these equations is that instantaneous pressure and velocities may
be decomposed into time-averaged and randomly fluctuating turbulent parts, which
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finally yields:

ou _0u _—_ou OH 101
—+U—+W—+g—= gS

_ 1ot o
ot Yox ez 9%x T 9° T 5a; )

where u [LT_1] and w [LT_1] are the time-averaged local water velocities in x and z, H
is the flow depth [L] and S is the bed slope [-].

In this formulation, the “Reynolds stress” term 7 is of crucial importance for free-
surface flow, friction and erosion modelling, especially for shallow flows, first because
it is the closure term (7 = —p t' w') and second because the Reynolds stresses have
been closely related, in magnitude and direction, to the size and arrangement of bed
asperities. The combined analysis of the relative magnitude of the v’ and w' terms has
become the purpose of “quadrant analysis” (Kline et al., 1967; Raupach, 1981; Kim
et al., 1987) that identifies the four cases of outward interactions (quadrant I: v’ >0,
w'>0), ejections (quadrant Il: v’ <0, w' >0), inward interactions (quadrant Ill: v’ <0,
w' <0) and sweeps (quadrant IV: v’ >0, w' <0). Depending on the submergence and
geometry of bed asperities, the maximal Reynolds stresses, those with significant ef-
fects on flow structure, have most often been reported to occur near or just above the
roughness crests (see Nikora et al., 2001; Pokrajac et al., 2007 and the review by Lamb
et al., 2008a).

2.3.2 Erosion

In their paper on movable river beds, Engelund and Fredsoe (1976) judiciously reformu-
lated and exploited the existing hypotheses (Einstein and Banks, 1950; Bagnold, 1954;
Fernandez Luque and van Beek, 1976) of a partition between “tractive” destabilizing
shear stresses and “dispersive” equalizing drags. The vertical concentration profiles of
bedload and suspended load were calculated from incipient sediment motion condi-
tions, relating stresses on the particles to the values and variations of near-bed veloc-
ities. One step further, the physical explanation, mathematical definition, point of ap-
plication, main direction and erosive efficiency of the turbulent near-bed stresses have
9098
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become private hunting grounds of the RANS models throughout the years (Nikora et
al., 2001; Nino et al., 2003).

The maximal Reynolds stresses are located near the crests of the submerged bed
asperities, where turbulent velocity fluctuations reach several times the average near-
bed velocity values, which greatly enhances particle detachment (Raupach et al., 1991;
Nikora and Goring, 2000; Lamb et al., 2008a). Very few studies deal with the magnitude
and point of application of the Reynolds stresses for partial inundation cases (Bayazit,
1976; Dittrich and Koll, 1997; Carollo et al., 2005) although turbulent flows between
emergent obstacles often occur in natural settings. Particle detachment is then at-
tributed to “sweeps” (quadrant IV: v’ >0, w' <0) (Sutherland, 1967; Drake et al., 1988;
Best, 1992) or “outward interactions” (v’ >0, w' > 0) (Nelson et al., 1995; Papanicolaou
et al., 2001) but depends on bed geometries and bed packing conditions. Finally, the
RANS equations allow explicit calculations of shear stresses and particle-scale pick-
up forces, thus incipient motion conditions (Nino et al., 2003; Afzalimehr et al., 2007).
They may handle the movements of detached particles in weak transportation stages
(Bounvilay, 2003; Julien and Bounvilay, 2013) down to near-laminar regimes (Charru et
al., 2004).

2.4 Saint-Venant
2.4.1 Water flow

The Saint-Venant (SV) equations are obtained by depth-integrating the Navier—Stokes
equations, neglecting thus the vertical velocities as well as vertical stratifications in the
streamwise velocity (Stoker, 1957; Johnson, 1998; Whitham, 1999). The integration
process (Chow, 1959; Abbott, 1979) incorporates an explicit bottom friction term 7,
that previously appeared only as a boundary condition in the NS and RANS equation:
O, y3Y GO s, To

ot ox 9ax "9 T oH )

9099

Jaded uoissnosiq

Jladed uoissnosiq | Jadeq uoissnosiq | Jaded uoissnasiq

HESSD
12, 9091-9155, 2015

1-D free-surface flow
and erosion issues in
hydrology

B. Cheviron and
R. Moussa

' III III


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/9091/2015/hessd-12-9091-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/9091/2015/hessd-12-9091-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

Recent attempts have been made in the field of fluid mechanics to derive specific
expressions for 7, (laminar flows: Gerbeau and Perthame, 2001; macro-roughness:
Roche, 2006; thin flows: Devauchelle et al., 2007; turbulent flows: Marche, 2007; multi-
layer SV model: Audusse et al., 2008). However, the common practice in hydraulics and
hydrology is rather to approximate steady-state equilibrium between bottom friction 7,
and the streamwise stress exerted at the bottom of a water column (75 = pgHS;) to
reach the popular formulation:

ou ou 0oH
W-'_UE-FQE_ (5-5) (4)

@M ) (@) (v) (v)

where (i) is the unsteadiness term, (ii) the convective acceleration term, (iii) the pres-
sure gradient term, while (iv) and (v) form the diffusive wave approximation (later dis-
cussed).

In the above, S; (-) is the “friction slope” whose expression depends on flow velocity
and on the chosen friction law, often one of the Chézy, Darcy-Weisbach or Manning
formulations (e.g. S; = nU2/8gH with Manning’s n friction coefficient). The derivation
of the SV equations by Boussinesq (1877) involved a momentum correction coefficient
B [-]in the advection term (King and Brater, 1963; Chen, 1992) to account for stratifi-
cation effects in the vertical distribution of velocities, especially plausible in sediment-
laden flows or in presence of density currents.

The SV equations may account for flows of variable widths and depths, for exam-
ple in floodplains (Bates and De Roo, 2000; Beltaos et al., 2012), rivers (Guinot and
Cappelaere, 2009), overland flow (Berger and Stockstill, 1995; Ghavasieh et al., 2006),
with overpressure in drainage systems (Henine et al., 2014), in man-made channels
(Zhou, 1995; Sen and Garg, 2002; Sau et al., 2010), for vegetation flushing (Fovet et
al., 2013), in channel networks (Choi and Molinas, 1993; Camacho and Lees, 1999)
or natural settings (Moussa and Bocquillon, 1996a; Wang and Chen, 2003; Roux and
Dartus, 2006; Burguete et al., 2008; Bates et al., 2010), including these with curved
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boundaries (Sivakumaran and Yevjevich, 1987). Discharge and cross-sectional area
may conveniently be used instead of velocity and water depth, and the two equations
describing mass and momentum in the Saint-Venant system now write (Sivapalan et
al., 1997):

0A 0Q

at Tox ©
10 10 (.0°\ oH
g—AE+g—Aa—x<ﬁ7>+a—x+5f‘s‘° ©

where A is the cross-sectional area [L2], Q is the discharge [L3T'1 1, g, is the lateral flow
per unit channel length [L2T'1 ]. The magnitudes of the various terms in Egs. (5) and (6)
are given in the literature (e.g. Henderson, 1966, Kuchment, 1972).

2.4.2 Erosion

In the hydrology-erosion community, the SV level is that of the Concepts of mathe-
matical modelling of sediment yield by Bennett (1974). This landmark paper extended
Exner’s (1925) conservation of sediment mass, adding the possibility to handle differ-
ent fluid and particle velocities, also accounting for particle dispersion via a diffusion
term. Unfortunately, most citing papers discard this term, taking particle velocity equal
to water velocity. The assumption seems false if transport occurs as bedload or salta-
tion load, questionable for suspended load trapped into turbulent motions, exact only
for very small particles borne by laminar flows. Although warning against the capability
of first-order laws to “represent the response of sediment load to changes in transport
and detachment capacity’ (Bennett, 1974; p. 491), the author recommended the use of
such a model (Foster and Meyer, 1972). The proposed simplification writes e/D, =1-
c/T., where the net erosion rate (e) is normalised by the maximal detachment capacity
(D;) while sediment load (c) is normalised by the maximal transport capacity of the flow
(T.)- An additional (uncertain) hypothesis was that of maximal detachment capacity for
9101
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minimal sediment load, i.e., clear water. See the controversial comments around the
Wainwright et al. (2008) paper: the areas of disagreement revolve around the ability
of models to handle unsteady flow conditions, to deal with suspended and/or bedload
transport, to consider particles of different sizes and to stay valid over realistic ranges
of sediment concentration.

Those questions directly address the possibilities of SV-level approaches: higher-
level models (NS, RANS) better describe the dynamics of incipient motion (Dey and
Papanicolaou, 2008), especially in shallow laminar flows (Charpin and Myers, 2005) or
focusing on granular flows (Parker, 1978a, b; Charru et al., 2004; Charru, 2006). Re-
fined models are also needed to explicitly handle specific particle velocities (Bounvilay,
2003), to describe particle diffusion in secondary currents (Sharifi et al., 2009), to ac-
count for the spatial heterogeneity of “neither laminar nor turbulent” overland flows
(Lajeunesse et al., 2010) or to introduce modifications in flow rheology (Sundaresan et
al., 2003). On the other hand, slope effects (Polyakov and Nearing, 2003), particle-size
effects (Van Rijn, 1984a; Hairsine and Rose, 1992a; Sander et al., 2007; Wainwright
et al., 2008), flow stratification effects (van Maren, 2007), the effects of hyperconcen-
trated flows (Hessel, 2006) and bedload transport (Van Rijn, 1984b; Julien and Sim-
mons, 1985; Hairsine and Rose, 1992b; Wainwright et al., 2008) have received much
attention within the SV or ASV formalisms.

Whatever the liquid-solid coupling opted for, the SV level covers the widest variety
of contexts, from overland erosion models (Simpson and Castelltort, 2006; Nord and
Esteves, 2010) to dam-break hydraulics over erodible beds (Cao et al., 2004) and the
analysis of channel inception driven by the variations of the Froude number (Izumi
and Parker, 1995) or the impact of travelling particles (Sklar and Dietrich, 2004; Lamb
et al., 2008b). Sediment detachment and transport over plane beds (Williams, 1970),
rough beds (Afzalimehr and Anctil, 1999, 2000; Gao and Abrahams, 2004), step-pools
(Lamarre and Roy, 2008) or pool-riffle sequences (Sear, 1996; Rathburn and Wohl,
2003) have yielded often-cited studies, while sediment flushing in reservoirs (Camp-
isano et al., 2004) and vegetation flushing in canals (Fovet et al., 2013) constitute
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more specific applications. Cited limitations of the SV approaches are their inability to
explicitly describe the near-bed velocity fluctuations, especially the local accelerations
responsible for particle entrainment but also the vertical gradients of the streamwise ve-
locity, for bedload transport in the laminar layer. This lack of accuracy in the description
of flow characteristics also endangers the possibility to predict the formation, transfor-
mation and migration of geometrical bed patterns, which in turn requires the full set of
3-D (x,y,z) NS equations in several cases (Lagrée, 2003; Charru, 2006; Devauchelle
et al., 2010).

There seems to exist a dedicated “NS-SV Morphodynamics” research lead that uses
rather simple bedload transport formulae (Du Boys, 1890; Meyer-Peter and Mdller,
1948; Einstein and Banks, 1950; Bagnold, 1966; Yalin, 1977) to calculate sediment
fluxes from excess bed shear stresses, in studies of long-term system evolutions.
These low “system evolution velocities” appear under the “quasi-static” flow hypoth-
esis: particle velocity may be neglected before water velocity, which allows neglecting
the unsteadiness term in the momentum equation but on no account in the continu-
ity equation (Exner law) that describes bed modifications (Parker, 1976). Moreover,
shear stresses are generally calculated from near-bed laminar or near-laminar veloc-
ity profiles, sometimes with the regularising hypothesis that detachment and transport
occur just above the criterion for incipient motion (see the review by Lajeunesse et al.,
2010). Various applications address rivers with mobile bed and banks (Parker, 1978a,
b), focus on self-channelling (Métivier and Meunier, 2003; Mangeney et al., 2007) and
often resort to formulations at complexity levels between these of the NS and the SV
approaches (Devauchelle et al., 2007; Lobkovsky et al., 2008).

2.5 Approximations to Saint-Venant
2.5.1 Water flow

When the full Saint-Venant equations are not needed or impossible to apply due to
a lack of data, an option is to neglect one or several terms of the momentum equa-
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tion (Ponce and Simons, 1977; Romanowicz et al., 1988; Moussa and Bocquillon,
1996a; Moussa and Bocquillon, 2000). In most practical applications for flood rout-
ing, the unsteadiness (i) and convective acceleration (ii) terms in Eq. (4) may be ne-
glected, suppressing the first two terms from Eq. (6). Combining the remaining terms
in Egs. (5) and (6), we obtain the Diffusive Wave equation (Moussa, 1996):

e, 0Q 0°Q dq

6t+c<6x q) D<ax2 ax>'o @)
where C [LT'1] and D [L2T'1] are non-linear functions of the discharge @ (and conse-
quently the flow depth H) known as the celerity and diffusivity, respectively.

In cases where the pressure-gradient term (iii) in Eq. (4) can also be neglected, the
third term of Eq. (6) also vanishes and the Diffusive Wave becomes the Kinematic
Wave equation, with D =0 in Eq. (7). The Diffusive Wave (Cunge, 1969; Akan and Yen,
1981; Rutschmann and Hager, 1996, Wang et al., 2006; Wang et al., 2014) can thus
be considered a higher order approximation than the Kinematic Wave approximation
(Katopodes, 1982; Zoppou and O’Neill, 1982; Daluz Vieira, 1983; Ferrick, 1985; Ponce,
1990). Both have proven very useful for canal control algorithms (Rodellar et al., 1993)
or flood routing procedures, with lateral inflow (Fan and Li, 2006), in rectangular chan-
nels (Keskin and Agiralioglu, 1997), for real time forecast (Todini and Bossi, 1986), in
lowland catchments (Tiemeyer et al., 2007), for small catchments (Moussa et al., 2002;
Chabhinian et al., 2005; Charlier et al. 2007), for mountainous catchments (Moussa et
al., 2007) or tropical catchments (Charlier et al., 2009), at the largest scale of the Ama-
zon basin (Trigg et al., 2009; Paiva et al., 2013), for anthropogenic hillslopes (Hallema
and Moussa, 2013), to address backwater effects (Munier et al., 2008), stormwater
runoff on impervious surfaces (Blandford and Meadows, 1990; Parsons et al., 1997),
stream-aquifer interactions (Perkins and Koussis, 1996) or volume and mass conser-
vation issues (Perumal and Price, 2013). Given their “nominal”’ scales of application,
the ASV models are sometimes fed by airborne (remote sensing) data acquisition (Jain
and Singh, 2005; Reddy et al., 2007). In addition, predictive uncertainties (Elhanafy et
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al., 2008) or the applicability of the Kinematic and Diffusive Wave equations are the
main scope of several studies (Liggett and Woolhiser, 1967; Ponce and Simons, 1977;
Ponce et al., 1978; Moussa and Bocquillon, 1996b; Bajracharya and Barry, 1997), the
evaluation of modelling strategies is that of Horritt and Bates (2002), while parameter
estimation is addressed, among others, by Koussis et al. (1978).

2.5.2 Erosion

Whereas common practices in fluid mechanics and hydraulics are rather to seek
context-specific strategies in erosion modelling, two simplifying and unifying trends,
if not paradigms, have developed in the field of hydrology. The first one is the trans-
port capacity concept (Foster and Meyer, 1972) in which the erosive strength of the
flow decreases with increasing suspended sediment load, until a switch occurs from
detachment- to transport-limited flows. The second one is the stream power concept
(Bagnold, 1956) that slope times discharge is the explicative quantity for erosion, with
adaptations that mentioned unit stream power (slope times velocity, Yang, 1974; Gov-
ers, 1992) or fitted exponents to the slope and discharge terms (Julien and Simmons,
1985). Many catchment-scale hydrology-erosion models (e.g. ANSWERS: Beasley et
al., 1980; CREAMS: Knisel 1980; KINEROS: Smith et al., 1995; LISEM: De Roo et
al., 1996; WEPP: Ascough et al., 1997; EUROSEM: Morgan et al., 1998; MAHLERAN:
Wainwright et al., 2008; MHYDAS-Erosion: Gumiere et al., 2011) adopt the 1-D Dif-
fusive or Kinematic Wave Equations to route water fluxes, possibly through vegetated
strips (Mufoz-Carpena et al., 1999), together with the simplest possible couplings be-
tween water and sediment fluxes (Aksoy and Kavvas, 2005).

A known difficulty when embracing larger scales with simplified models is to describe
the spatially-distributed sources and sinks of sediments (Jetten et al., 1999, 2003) with
or without explicit descriptions of the permanent or temporary connectivity lines, for wa-
ter and sediment movements (Prosser and Rustomii, 2000; Croke and Mockler, 2001;
Pickup and Marks, 2001; Bracken et al., 2013). What tends to force reduced complexity
approaches in erosion models is the necessity to handle distinct detachment, transport
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and deposition processes (from the very shallow diffuse flows formed during runoff ini-
tiation to the regional-scale basin outlets) with only sparse data on flow structure and
soil characteristics (cohesion, distribution of particle sizes, bed packing). Parsons and
Abrahams (1992) have established how the agronomical, engineering and fluvial fami-
lies of approaches have converged into similar modelling techniques, especially on the
subject of erosion in overland flows (Prosser and Rustomji, 2000). The ASV formalism
also allows fitting bedload transport formulae against mean discharge values as a sur-
rogate to the overcomplicated explicit descriptions of erosion figures in high-gradient
streams with macro-roughness elements (Smart, 1984; Aziz and Scott, 1989; Weichert
2006; Chiari, 2008). ASV-level couplings have also been applied to study the slope in-
dependence of stream velocity in eroding rills (Gimenez and Govers, 2001) and the
appearance of bed patterns in silt-laden rivers (van Maren, 2007).

3 Determinants of modelling choices

This section aims at the construction of a signature for each case study, relating the
“conceptual” choice of a model refinement (Navier-Stokes: NS, Reynolds-Averaged
Navier-Stokes: RANS, Saint-Venant: SV or Approximations to Saint-Venant ASV) to
the “contextual” descriptors, i.e. the spatiotemporal scales (Sect. 3.1), spatiotemporal
scales and flow typologies (Sect. 3.2), spatiotemporal scales, flow typologies and di-
mensionless numbers (Sect. 3.3). Figures 2, 3, 5, 6 and 7 in this section were drawn
from the 158 studies listed in Appendix A.

3.1 Spatiotemporal scales
3.1.1 Influence of domain length (L) and time scale (7)

A cross-disciplinary analysis of the cited literature indicates a clear correlation be-

tween the (L,T) scales and the chosen model refinement (NS, RANS, SV or ASV).

In this (L,7) plane, Fig. 2 quantifies the expected trend that sophisticated (NS,
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RANS) models are required to represent rapidly-varying small-scale phenomena
(lower left) while simplified approaches (ASV) pertain to increased durations and
spatial extensions (upper right). Typical scales of application may be identified for
each model refinement: NS (10cm<L <100m, 10s<7 <1h), RANS (1m<L <100m,
10s<7<1h), SV (10m<L <20km, 1min<T <5 days) and ASV (10m<L <1000 km,
30min<T <1 year). However, some studies consider larger spatial or temporal scales,
for example Charru et al. (2004) for overland granular flows (RANS, L ~20cm,
T ~ 2 days) or Rathburn and Wohl (2003) for pool-riffle sequences (SV, L ~70m, T ~ 30
days). Nevertheless, the existence of overlap regions suggests that the (L,T) spa-
tiotemporal scales are not the only factor governing the choice of flow models.

The influence of flow typologies is discussed later in details but could the modelling
choices also be dictated by the scientific background of the modeller? A striking exam-
ple is that of the SV models, responsible for the largest overlaps in Fig. 2. They may for
example be used by physicists, as an upgraded alternative to the NS equations, in the
field of environmental fluid mechanics (for limited scales). They may as well be conve-
nient for soil scientists interested in high-resolution hydrology or for civil engineers who
may need to cope with flow unsteadiness to handle erosion issues or to allow correct
sizing of the man-made structures (for rather large scales).

Figure 2 bears another type of information than the trend to decreasing model re-
finement with increasing spatiotemporal scales. As the x ordinate indicates the spatial
scale L and the y ordinate the time scale T, then the L /T ratio has dimensions of a
velocity. However, this quantity should not be interpreted as a flow velocity. It rather in-
dicates which of the temporal (long-term, low L /T ratio) or spatial (short-term, high
L /T ratio) aspects are predominant in the study. Hence, the five dotted diagonals
(L/T =1 0'4, 10'3, 10'2, 0.1and1m s‘1) establish the numerical link between the spa-
tial and temporal scales of the cited experiments. They also show the dispersion with
respect to the expected (say “natural”’) correlation between increasing L and T values.
This dispersion contains a lot of information. Judging from the plotted literature, the
lowest L /T ratios (e.g. 107 ms_1) tend to indicate systems with low “evolution ve-
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locities”, possibly associated with long-term changes or effects (high 7 values, low L
values) obtained from repeated phenomena, multiple cycles and slow modifications.
By contrast, high L /T ratios (e.g. 1 ms‘1) rather refer to single-event situations, more
associated with quick modifications of flow patterns or bed morphologies.

If rules of thumb in problem dimensioning were to be drawn from Fig. 2, geomorpho-
logical concerns (dune migration, basin sedimentation, long-term bed modifications)
probably require stretching up the temporal scale so that low “system evolution veloc-
ities” would fall beneath L /T = 102 ms™" while event-based modelling (dam breaks,
formative discharges, flash floods) should be able to handle high “system evolution ve-
locities” near or beyond L /T =1m s~'. This “fixed-L, chosen-T” description of system
evolution and characteristic time scales also refers to Fig. 1 in which the choice of T is
somehow left at the modeller’s discretion, as a degree of freedom: how different from 7
should 7 be? These points are the subject of detailed investigations in the field of mor-
phodynamics (Paola et al., 1992; Howard, 1994; Van Heijst et al., 2001; Allen, 2008;
Paola et al., 2009). Indicators of “system evolution velocities” with units of a velocity
but different definitions may for example be found in Sheets et al. (2002), who took the
channel depth (H) divided by the average deposition rate to obtain a relevant, charac-
teristic time scale (7). For the same purpose, Wang et al. (2011) took the characteristic
bed roughness (¢) instead of channel depth. The objective is often to discriminate what
Allen (2008) called the “reactive” (high L /T) and “buffer” (low L /T) systems. With or
without erosion issues, a reasonable hypothesis here seems that the dispersionin L /T
ratios arises from the variety of flow contexts, which may necessitate different mod-
elling strategies. In other terms, it is deemed in this study that this secondary trend,
associated with flow typologies, is also a determinant in the choice of the flow model.

3.1.2 Influence of domain length (L) and flow depth (H)

The NS, RANS, SV and ASV equations are now positioned with respect to the spa-

tial scale (L) and flow depth (H) of the reported experiments (Fig. 3), showing pat-

terns and trends very similar to those of the (L,T) plane, though less pronounced.
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The global trend stays a decrease in refinement of the flow models from the small-
est to the largest (L,H) values and typical scales of application may again be iden-
tified for each model refinement, NS (10cm<L <100m, 1Tmm<H <30cm), RANS
(Im<L<100m, 5cm<H <50cm), SV (10m<L <20km, 1icm<H <2 m) and ASV
(10m<L <1000km, 10cm < H <10 m). Some studies provide outliers for example Ge-
jadze and Copeland (2006) for canal control purposes (NS, L ~3km, H~10m) or
Cassan et al. (2012) for flows in lined channels (RANS, L ~50cm, H~75cm). In an
overview, wider overlaps and more dispersion occur in the (L,H) than in the (L,7)
plane, especially for low to medium scales: flow depth (H) seems less discriminating
than the time scale (T) in the choice of a flow model.

The transverse analysis of H/L “fineness ratios” (dotted diagonals H/L =1 0',107%
10'3, 10~ and 10'5) provides additional information, or rather a complementary read-
ing grid on the information already plotted. First, only the NS and RANS models allow
2-D (x, z) flow descriptions, which explains why these models have many of the largest
H/L ratios (which, in most cases, stay within the H <<L shallow water hypothesis).
Second, low H/L ratios provide justifications to discard 2-D (x,z) descriptions at the
benefit of 1-D (x) descriptions within but also without the NS and RANS formalisms, so
that the second diagonal of Fig. 3 (roughly from the upper right to the lower left) also
shows a decrease in model refinement, towards SV and ASV points.

3.1.3 Influence of domain length (L), time scale (T) and flow depth (H)

The links between model refinements (NS, RANS, SV or ASV) and spatiotemporal
scales (L,T,H) were shown in the (L,T) and (L,H) planes (Figs. 2 and 3). There was
first the expected correlation between increasing scales and decreasing model refine-
ments. Then the transverse analyses involved re-examining the same dataset from the
values of the L /T and H/L ratios, also seeking the determinants of modelling choices
in the “system evolution velocity” (L /T) and “fineness” of the flow (H/L).
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— The values of the L /T ratios indicate that modelling choices owe much to the
long-term (low L /T) or short-term (high L /T) objectives associated with the tar-
get variables (velocity, discharge, particle transport, bed modifications) thus influ-
encing the choice of T values. However, this choice is not totally free: it is likely
constrained by flow characteristics and typologies.

— The values of the H/L ratios also indicate that flow typology (here, only its “fine-
ness” is explicit) may be a mattering determinant for the choice of a modelling
strategy. This idea is explored in far more details hereafter. The next section out-
lines the influence of friction, flow retardation and energy dissipation processes
on flow typology. It advocates thus the definition of flow typologies from quantities
related to the different types and/or magnitudes of flow retardation processes,
provided these quantities are easily accessible (e.g. bed geometry, water depth,
bed slope, size of the roughness elements).

3.2 Flow typology
3.2.1 From friction laws and bed topography to flow characteristics

Early insights on fluid friction and the definition of shear stress proportional to local ve-
locity gradients came together with the action-reaction law (Newton, 1687): friction ex-
erted on the flow was of equal magnitude as the erosive drag, originally termed “critical
tractive force” (Du Buat, 1779) and held responsible for particle detachment. The fric-
tion laws mostly resorted to in present-day modelling do not often involve adaptations
or generalisations of their famous empirical predecessors in civil engineering (Chézy,
1775; Weisbach, 1845; Darcy, 1857; Manning, 1871) even if practitioners and mod-
ellers are now confronted to far less controlled bed topographies and flow conditions,
thus to a wider variety of flow typologies. The theoretical derivation (or justification)
of contextually relevant friction laws seems therefore crucial, for water flow modelling
at the microscopic (Richardson, 1973; Jansons, 1988; Priezjev and Troian, 2006) or
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macroscopic scales (Smith et al., 2007; Powell, 2014), and even more for erosion is-
sues. In the literature, the modelling choices to account for friction phenomena are most
often correlated with the refinement of the flow models used (NS, RANS, SV, ASV) but
also constrained by bed topographies and flow typologies in numerous cases.

Several studies at the NS level of refinement advocate the use of the “partial slip”
(Navier, 1827) condition or parented formulations in which the near-bed slip veloc-
ity is either proportional to the shear stress (Jager and Mikelic, 2001; Basson and
Gerard-Varet, 2008) or depends on it in a non-linear way (Achdou et al., 1998; Jager
and Mikelic, 2003). Other works plead for “no-slip” conditions (Panton, 1984; Casado
and Diaz, 2003; Myers, 2003; Bucur et al., 2008, 2010) or suggest the separation of
flow domains within or outside bed asperities, with a complete slip condition (non-zero
tangential velocity) at the interface (Gerard-Varet and Masmoudi, 2010). A wider con-
sensus exists at the RANS level, calculating bottom friction as the local grain-scale
values of the “Reynolds stresses” (Kline et al., 1967; Nezu and Nekagawa, 1993;
Keshavarzy and Ball, 1997), which has proven especially relevant for flows in small
streams over large asperities (Lawless and Robert, 2001; Nikora et al., 2001; Pokrajac
et al., 2007; Schmeeckle et al., 2007). However, he who can do more, can do less, and
it is still possible to use the simplest empirical friction coefficients (Chézy, Manning)
within sophisticated flow descriptions (NS: Lane et al., 1994; RANS: Métivier and Me-
unier, 2003). In the literature, the SV level of refinement is a tilting point in complexity,
that allows fundamental research, deriving ad hoc shear stress formulae from the lo-
cal fluid-solid interactions (Gerbeau and Perthame, 2001; Roche, 2006; Devauchelle et
al., 2007; Marche, 2007) or applied research, adjusting parameter values in existing ex-
pressions, for specific contexts (e.g. boulder streams: Bathurst, 1985, 2006; step-pool
sequences: Zimmermann and Church, 2001; irrigation channels: Hauke, 2002; gravel-
bed channels: Ferro, 2003). The latter trend holds for most studies at the ASV level
of refinement, though theoretical justifications of Manning’s empirical formula were re-
cently derived (Gioia and Bombardelli, 2002) and a recent mathematical study of the
Diffusive Wave equation (Alonso et al., 2008) introduces generalized friction laws for
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flows over non-negligible topographic obstacles. The event-based variability of the fric-
tion coefficient in ASV models has been investigated by Gaur and Mathur (2002).

If not decided from the level of refinement of the flow model, the friction coefficient
(f) is chosen in accordance with flow typology and bed topography, the former often
described by the Reynolds number (Re), the latter by the inundation ratio (A, =H/¢e
where ¢ is the size of bed asperities, to which flow depth H is compared). Such ar-
guments were already present in the works of Keulegan (1938) and Moody (1944) on
flow retardation in open-channel and pipe flows, relating values of the friction coeffi-
cient to the relative roughness (¢/H =1/A,) of the flow, across several flow regimes
(laminar, transitional, turbulent) but only for small relative roughness (high inundation
ratios). The existence of implicit relations between f, Re and A, has somehow trig-
gered the search for contextual alternatives to the sole 7-Re relation for turbulent flows.
Progressively lower inundation ratios were investigated (Smith et al., 2007) until the
real cases of emergent obstacles received attention (Bayazit, 1976; Abrahams and
Parsons, 1994; Bathurst, 2006; Meile, 2007; Mugler et al., 2010) including for non-
submerged vegetation (Prosser et al., 1995; Nepf, 1999; Jarveld, 2005; Nikora et al.,
2008). For site-specific friction laws, the default f-Re relation is sometimes comple-
mented by 7-Fr trends (Grant, 1997; Gimenez et al., 2004; Tatard et al., 2008) or f-
A\, relations (Peyras et al., 1992; Chin, 1999; Chartrand and Whiting, 2000; Church
and Zimmermann, 2007) in steep bed morphologies, where Fr is the Froude number
(Froude, 1868).

Knowledge gained on flow retardation processes lead to the identification of key di-
mensionless groups, to be included in any comprehensive analysis, formed from the
“obvious”, available elements of bed geometry previously mentioned (Julien and Si-
mons, 1985; Lawrence, 2000; Ferro, 2003; Yager et al., 2007). In numerous practical
cases though, explicit bed geometries cannot be handled by the flow models. A crucial
surrogate becomes then to include as many geometrical effects as possible in the cho-
sen friction laws, for example these obtained from composite roughness experiments
(Schlichting, 1936; Colebrook and White, 1937; Einstein and Banks, 1950). A crucial
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advance was due to Smith and McLean (1977) who attributed distinct retardation ef-
fects to bed particles, particle aggregates and bedforms, corresponding to “grain spill”,
“obstructions” and “long-wave form resistance” in the subsequent literature. From then
on, friction forces exerted by multiple roughness elements or scales have often been
described as additive-by-default, in shallow overland flows (Rauws, 1980; Abrahams
et al., 1986), gravel-bed streams (Bathurst, 1985; Lawless and Robert, 2001; Ferro,
2003), natural step-pool formations (Chin and Wohl, 2005; Canovaro and Solari, 2007;
Church and Zimmermann, 2007) and man-made spillways or weirs (Peyras et al., 1992;
Chinnarasri and Wongwise, 2006).

3.2.2 From flow characteristics to flow typologies

Several authors have put forward the existence of a scale-independent link between
bed geometry, flow retardation and flow structure, through the existence of three dis-
tinct flow regimes, from geometrical arguments: “isolated roughness”, “wake interfer-
ence” and “skimming” flow (Morris, 1955, 1959; Leopold et al., 1960; Fig. 4a, ¢ and e).
These flow descriptions were later applied in very different contexts (Abrahams and
Parsons, 1994; Chanson, 1994a; Papanicolaou et al., 2001; Zimmermann and Church,
2001), which suggests that analogies in energy dissipation and flow retardation may
exist across scales, from similar geometries and flow characteristics. This makes the
description somewhat generic, possibly used to constitute a set of flow typologies.

In Fig. 4a, the isolated roughness flow is laminar or weakly turbulent and the shade
(streamline diversion) of an obstacle does not reach the next. This setting ensures
maximum energy dissipation, which also holds for stepped cascades of natural or man-
made nature in Fig. 4b: “nappe flows” loose strength through energy-consuming fully-
developed hydraulic jumps, isolated behind the major obstacles (Peyras et al., 1992;
Chanson, 1994b; Wu and Rajaratnam, 1996, 1998). In Fig. 4c the wake-interference
flow is transitional or turbulent. The drag reduction and partial sheltering between ob-
stacles depend on their spatial distribution and arrangements, as in Fig. 4d that shows
“partial nappe flow” in relatively flat step-pool formations, with incomplete hydraulic
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jumps between obstacles of irregular sizes and spacing (Wu and Rajaratnam, 1996,
1998; Chanson, 2001). In Fig. 4e, the turbulent skimming flow exhibits a coherent
stream cushioned by the recirculating fluid trapped between obstacles and responsible
for friction losses. Similar characteristics appear in Fig. 4f, for submerged cascades
or large discharges on stepped spillways. Air entrapment begins where the boundary
layer reaches the free surface and flow aeration triggers subscale energy dissipation
(Rajaratnam, 1990; Chanson, 1994b).

At this point, our set of flow typologies should be obtained from the geometrical ar-
guments available in Fig. 4 (bed slope S, water depth H, inundation ratio A, = H/¢).
The simplest way to proceed is to work in the (S,H) plane, then to add a criterion on
A, if the values of S and H are not discriminating enough. The first two flow typolo-
gies (Overland flow, noted O, and High-gradient flow, noted Hg) may be identified by
a single criterion on H only (H <H,y; Emmett, 1970; Wainwright et al., 2008) or on S
only (S >S5 ; Grant et al., 1990; Rosgen, 1994; Montgomery and Buffington, 1997). At
least two flow typologies remained to be distinguished, Fluvial flows (F) and flows over
significant bedforms (e.g. rough plane bed, dune-ripples or pool riffles, as suggested
by Montgomery and Buffington, 1997), referred to as Bedforms (B) in the following.
Though Fluvial flows are expected to have the highest flow depths, an additional cri-
terion on A, may be used to make the difference between these last two typologies.
Figure 5 positions the selected (O, Hg, B, F) flow typologies in the (S, H) plane.

Moreover, there is a strong link between Figs. 4 and 5, which tends to ensure the
genericity (if not uniqueness) of the selected set of typologies. The Overland typology
corresponds to Fig. 4a or c, the Bedforms typology likely appears in Fig. 4c, the Fluvial
typology in Fig. 4e and the High-gradient typology in Fig. 4b, d or f. In coherence with
Fig. 5, an increase in bed slope changes the Bedforms and Fluvial typologies into the
High-gradient typology, while an increase in both water depth and bed slope is needed
to do the same from the Overland typology.
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3.2.3 Influence of flow typologies on modelling choices

Figures 6 and 7 provide a comprehensive picture of the most used associations be-
tween models (NS, RANS, SV or ASV), scales (L,T,H) and flow typologies (O, Hg, B
or F) just added to the analysis. These figures seem to indicate preferential [NS, O],
[RANS, B] and [SV, Hg] associations, in addition to the obvious [ASV, F] pair. The (L, H)
plot of Fig. 6 seems more discriminating than the (L,T) plot of Fig. 7 though identical
trends appear.

The [NS, O] association arises from the fact that several Overland studies involve
very shallow laminar flows and low sediment transport rates, best handled by adapted
formulations of the NS equations (nearly at the SV level), made suitable for low "sys-
tem evolution velocities” (L /T ~0.01m s, Fig. 6). At somewhat larger spatial scales,
the widely-used and multipurpose SV model has rather low median L /T ~ 0.02ms™"
values, mainly because many of its applications concern laminar flow modelling and
granular transport, as an alternative to the NS system or in formulations at complexity
levels intermediate between the NS and SV refinements. These are clues that the [SV,
0] association may also be of special interest, despite the closest median positions of
the NS and O points in the (L,T) and (L, H) plots.

The RANS model (median L/T ~ O.O7ms‘1) and the ASV models (median
L/T ~0.1 ms‘1) tend to involve higher “system evolution velocities”. The former typ-
ically targets the description of numerous short-term, high-frequency events (quadrant
analysis for fluctuations in near-bed velocity, particle pick-up by turbulent bursts). The
latter is often associated with Fluvial flows: low H/L ratios with high enough H and A,
values and weak friction, often resulting in very turbulent, high-velocity flow. Moreover,
studies handling erosion issues within the ASV formalism often hypothesize particle
transport to occur as suspended load only, equating particle and flow velocities, thus
typically not extending the time scale of the study to address the long-term, low velocity
bedload transport involved in morphodynamics, for example.
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Several principles of organization between flow typologies may be inferred from ref-
erence studies (Grant et al., 1990; Montgomery and Buffington, 1997; Church, 2002)
that discuss their succession in space (along longitudinal profiles) but also in time
(which flow typologies are “experienced” by the flowing water during its course and
which are the associated time scales). Plausible “streamwise scenarios” may there-
fore be assembled (Fig. 8), routing flow aggregations across increasing spatiotemporal
scales and through several flow typologies, from the narrow-scale upland flows (runoff
initiation) to the regional scales of the main rivers.

3.3 Dimensionless numbers
3.3.1 Contextual dimensionless numbers

An angle of attack for the establishment of modelling strategies is provided by di-
mensional analysis, to delineate the domains of validity of the selected flow models
(NS, RANS, SV or ASV), across their multiple spatiotemporal scales of application
but in a powerful scale-independent analysis. Justifications for the use of dimension-
less numbers may be sought in the developments of similitude laws (Fourier, 1822;
Rayleigh, 1877; Bertrand, 1878; Vaschy, 1892; Riabouchinsky, 1911), later extended to
dimensional analysis, providing guidance for the sizing of experimental facilities used
in reduced-scale modelling as well as more general arguments for the choice of ad-
equate sets of dimensionless quantities (Buckingham’s, 1914 m-theorem; Bridgman,
1922; Langhaar, 1951; Bridgman, 1963; Barenblatt, 1987). Throughout history, the es-
tablishment of dimensionless numbers has led to the recognition of contextually dom-
inant terms in the flow equations, rendering them prone to dedicated simplifications,
provided these would not be used outside their conditions of validity, following succes-
sive hypotheses made during their derivation.

From a wide overview of free-surface flow and erosion studies, a few dimensionless
numbers stood out and will be used in the procedure presented in the following. Some
have already been mentioned (Reynolds number Re, Froude number Fr) and some

9116

Jladed uoissnosiq | Jadeq uoissnosiq | Jedeq uoissnosiq | Jaded uoissnosiqg

HESSD
12, 9091-9155, 2015

1-D free-surface flow
and erosion issues in
hydrology

B. Cheviron and
R. Moussa

' III III


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/9091/2015/hessd-12-9091-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/9091/2015/hessd-12-9091-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

others have even been used to define flow typologies (bed slope S, inundation ratio
A,). As all dimensionless numbers aim to describe flow typology, the introduction of two
more dimensionless numbers may be seen as an attempt to re-examine the influence
of flow typologies on modelling choices, from a different, more complete perspective
(especially if the dimensionless humbers not used in the definition of flow typologies
prove discriminating for the modelling choices).

— The dimensionless period T* = T /T, handles temporal aspects by comparing the
chosen time scale (T) to the natural time scale (7,) of the system, the latter ob-
tained from the spatial scale of the system and the depth-averaged flow velocity as
To = L /U (Fig. 1). This dimensionless group or equivalent formulations are used
to model wave celerity in flood propagation issues (Ponce and Simons, 1977;
Moussa and Bocquillon, 1996a; Julien, 2010) or to quantify the long character-
istic times (T">> 1) of basin-scale sedimentation. In the latter, particle transport
and significant bed modifications typically involve lower velocities (and larger time
scales) than these of water flow (Paola et al., 1992; Howard, 1994; Van Heijst et
al., 2001) and the chosen T value witnesses this discrepancy.

— The Reynolds number Re = UH/v compares flow inertia (velocity U times depth
H) with the adverse action of (kinematic) viscosity (v [L T'Z]). In natural settings,
over very rough boundaries, fully turbulent flows are often reported for Re> 2000,
while the onset of turbulence within transitional regimes occurs at Re ~ 500. Lam-
inar overland flows, especially thin film flows, may have Re values as low as
Re<100.

— The Froude number Fr = U/(gH)O'5 denotes the influence of gravity (g) on fluid
motion. Supercritical Fr>1 values indicate torrential flows, accelerated by pres-
sure effects, in which waves propagate only downstream, also compatible with
the appearance of localised energy dissipation patterns (white waters, hydraulic
jumps). Subcritical Fr< 1 values indicate tranquil flows with downstream controls.
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— Topographical effects on flow phenomenology are almost always explicitly ac-

counted for through the average bed slope S, typically ranging from nearly zero
(S <0.01 %) for large rivers to extremely high values (S ~ 100 %) for gabion weirs,
chutes or very steep cascades.

Topography also appears through the inundation ratio A, = H/e which allows a
direct, model-independent analysis of friction phenomena (Lawrence, 1997, 2000;
Ferguson, 2007; Smith et al., 2007) possibly dealing with large-size obstacles
and form-induced stresses (Kramer and Papanicolaou, 2005; Manes et al., 2007;
Cooper et al., 2013). The encountered values of A, are very high for rivers flowing
on smooth, cohesive, fine-grained beds (A, >100) and very low for all types of
flows between emergent obstacles (A, <1).

The dimensionless Shields number 6 = 7,/ge,(0, — o) compares the drag force

exerted on bed particles to theirimmersed weight, where £, [L] and p,, [M L‘3] ac-
count for the size and density of erodible particles. The ratio between the current
6 and the critical 6, values indicates local flow conditions of deposition (6<6,,),
incipient motion (6 ~ 8,), transportation as bedload (6>6.) or into suspension
(6>>6,) (Shields, 1936). This number seems appropriate for most erosion issues
because it has been widely applied and debated in the literature (Coleman, 1967;
Ikeda, 1982; Wiberg and Smith, 1987; Zanke, 2003; Lamb et al., 2008) and also
because of its numerous possible adaptations (Neill, 1968; Parker et al., 2003;
Ouriémi et al., 2007; Miedema, 2010) to various flow typologies. An impressive
review on the use of the Shields number to determine incipient motion conditions,
over eight decades of experimental studies, may be found in Buffington and Mont-
gomery (1997).

Influence of the dimensionless numbers

As the purpose here is to re-examine the influence of flow typologies from the angle of
the dimensionless numbers, the chosen representation (Fig. 9) discards the (L,T,H)
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spatiotemporal scales. It first recalls the preferential associations between models and
flow typologies (see the “model use” panel of Fig. 8) by tracing connecting dotted lines
between flow typologies and the models most used to handle them, in the legend
of Fig. 9. It then examines whether these associations still hold, for each of the six
dimensionless numbers, by plotting and comparing the median values of T*, Re,Fr,S,
A, and @ for model uses (NS, RANS, SV or ASV) and flow typologies (O, Hg, B, F).
The dotted ellipses are “confirmations” (e.g. no additional information may likely be
obtained from Re, Frand 6). Conversely, the presence of “non-associated” points (P,
forT*, P, and P, for S, P, for A,) signals something new: an influence not yet accounted
for.

For example, the isolated P, point indicates the expected [ASV-F] association does
not appear on the T* values, as the ASV applications exhibit higher median 7~ values
than the F typologies. The suggested interpretation is that large (L,T,H) scales and
Fluvial flows likely trigger the use of the ASV model, though the necessity to handle
large dimensionless periods makes the typological argument less conclusive. The P,
and P; points indicate the break of the [NS-O] and [ASV-F] associations when exam-
ined from the angle of the bed slopes. This reinforces the use of bed slopes in the
search for determinants of modelling choices, either in the definition of flow typologies
in the (S,H) plane or as such. The P, point indicates the break of the [NS-O] associa-
tion when considering the values of the inundation ratio, with the same conclusion as
above.

4 Conclusions

In a free opinion on the use of models in hydrology, De Marsily (1994) elegantly argued
that the modelling of observable phenomena should obey “serious working constraints,
well-known from classical tragedy: unity of place, unity of time, unity of action’. This re-
view paper investigates how known spatial scales, temporal scales and flow typologies
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constrain the choice of a modelling strategy. A normative procedure was built to facili-
tate the search for determinants of the modelling choices in the cited literature.

HESSD

— Each free surface flow model was placed in one of the NS, RANS, SV or ASV 12, 9091-9155, 2015
categories, whose decreasing levels of refinement account for “Navier-Stokes”,
5 “Reynolds-Averaged Navier-Stokes”, “Saint-Venant” or “Approximations to Saint-

Venant” types of approaches.

Jaded uoissnosiq

1-D free-surface flow
and erosion issues in

— The explored (L, T, H) spatiotemporal scales cover multiple orders of magnitude in hydrology

the streamwise direction (1 cm <L <1000 km), the time duration (1s<T7T <1 year) CE? B. Cheviron and
and flow depth (1 mm<H <10m). & '
. R. Moussa
10 — This study also encompasses a wide variety of free-surface flows, reduced to four S
typologies from arguments on bed geometry, friction, flow retardation and energy ;g?
dissipation processes. These typologies are Overland flow (O: diffuse or concen-  ® _
trated), High-gradient flow (Hg: cascades, step-pools), flows over significant Bed-
forms (B: rough plane beds, dune ripples, pool riffles) and Fluvial flows (F: rivers, - -
15 canals). Overland flows have the shallowest depths, High-gradient flows the high- % - -
est bed slopes, Fluvial flows have high flow depths and negligible bed roughness £
while Bedforms flows may have any flow depth, over pronounced, non-negligible 2 - -
=}
bedforms. T - -
— In addition to the spatiotemporal scales and flow typologies, the determinants of c'j - -
20 modelling choices are also sought in a series of six popular dimensionless num-
bers: the dimensionless period (T*), Reynolds and Froude numbers (Re,Fr), the - -
bed slope (S), the inundation ratio (A, = H/& where ¢ is the size of bed asperities) = _
and the Shields number (8) that compares drag forces to particle weight. g
(2}
In summary, each case-study may be defined by its signature, comprised of the S _
2 chosen model (NS, RANS, SV or ASV), the given spatiotemporal scales (L,7,H), flow 7  [SiSeEeciveDiscission
typology (O, H, B or F) and dimensionless numbers (T*,Re,Fr,S, A,, ). Though non- 8
~
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unique, this signature is a generic and normative classification of studies interested in
free-surface flow modelling, with or without erosion issues.

HESSD

— The present review first illustrated the expected dominant trend of decreasing 12, 9091-9155, 2015
model refinement with increasing (L, T, H) spatiotemporal scales. It appeared then
that model uses could also be sorted by their L /T and H/L ratios, though less
clearly, which nevertheless provided indications that the spatiotemporal scales

were not the only determinant of modelling choices. This result suggested that
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1-D free-surface flow
and erosion issues in

: . . hydrology
flow typologies (reduced here to the L /T "system evolution velocity” and H/L ©
“fineness of the flow”) were also influential factors. § B. Cheviron and
@ R.M
— A more exhaustive set of flow typologies was then derived from simple geometri- § oussa
cal arguments, combining criteria on S, H and A, represented in the (S, H) plane. T
This allowed quantifying the median scales associated with studies interested in =~ © _
the Overland (O), Bedforms (B), High-gradient (Hg) and Fluvial (F) typologies,
sorted here by increasing spatiotemporal scales. Then came the identification of — - -
preferential associations between flow models, scales and typologies: [NS, Ol or
[SV, O], [RANS, B] or [SV, B], [SV, Hg] or [ASV, Hg] and [ASV, F] for increasing g - -
spatiotemporal scales. 2 - -
o
— The final step was to re-examine the previous associations from the values of the %
dimensionless numbers, thought here as more detailed, scale-independent de- % - -
scriptors of flow typologies. Several associations were confirmed by the median = - -
values of the associated dimensionless numbers but the 7" (dimensionless pe- — - -
riod), S (bed slope) and A, (inundation ratio) introduced additional information.,
i.e. correcting trends. o _
(=
All arguments prevailing in the identification and sorting of flow models, scales, ty- g _
pologies and dimensionless numbers may easily be debated and adapted, within the %
hydrology-erosion community or for other research purposes. For example, multiple 2 _
flow models, scales, typologies and dimensionless numbers also intervene in the fields =
i B
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of pesticide fate modelling and groundwater contamination issues, so the same pro-
cedure could be applied. Finally, this procedure offers the possibility to enrich the
database of signatures if each modeller records his (or her) conceptual choices (flow
models) in the proposed reading grid, together with the contextual elements (scales,
typologies, dimensionless numbers) handled, for present and past studies. This would
first help forming a comprehensive view of modelling choices, thus seeking guidance
from “what has been done in similar cases”, which however does not provide any crit-
ical analysis. Complementary investigations could certainly address the question of
“what should be done”, this time deciding the “model” part of the signatures from rec-
ommendations based on the scales, typologies and dimensionless humbers, as well
as from additional elements, typically the modelling objectives.

Appendix A: References used in the figures

Abrahams and Parsons (1994); Afzalimehr and Anctil (2000); Afzalimehr et
al. (2007); Akan and Yen (1981); Alonso et al. (2002); Audusse et al. (2008);
Aziz and Scott (1989); Bajracharya and Barry (1997); Bates and De Roo (2000);
Bathurst (2006); Belaud and Paquier (2001); Beltaos et al. (2012); Berger and Stock-
still (1995); Blandford and Meadows (1990); Booker et al. (2001); Bounvilay (2003);
Burguete et al. (2008); Camacho and Lees (1999); Canovaro and Solari (2007);
Cao et al. (2004); Cassan and Belaud (2012); Cassan et al. (2012); Chahinian et
al. (2005); Charlier (2007); Charlier et al. (2009); Charpin and Myers (2005); Charru
et al. (2004); Chartrand and Whiting (2000); Chen and Wu (2000); Chiari (2008);
Chin (1999); Chinnarasri and Wongwise (2006); Choi and Molinas (1993); Church
and Zimmermann (2007); Davies et al. (1997); Devauchelle et al. (2007); Dunker-
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Figure 1. Quantities most often used in the literature of free-surface flow and erosion modelling, % - -
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1-D (x) spatial representations for simplicity, focusing on the streamwise (x) component of the = - -
mass and momentum conservation equations. The streamwise length (L) and depth-averaged &
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Figure 2. How increasing (L, T) spatiotemporal scales of the flow domain tend to be associated Ry - -
with decreasing complexity in the choice of flow models, sorted here into four levels of re- o
finement: Navier-Stokes (NS), Reynolds-Averaged Navier-Stokes (RANS), Saint-Venant (SV) = - -
or Approximations to Saint-Venant (ASV). A transverse analysis involves forming L /T ratios,
searching for clues to model selection according to these “system evolution velocities” or gov- - -
erned by flow typologies that would exhibit specific L /T ratios. This figure was assembled from =/ _
information available in the studies cited in Appendix A. =
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refinement: Navier-Stokes (NS), Reynolds-Averaged Navier-Stokes (RANS), Saint-Venant (SV)
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Figure 6. Position of the flow typologies in the (L,T) plane for the studies listed in Appendix A - -
(a). Median positions for the choice of free-surface flow models (Navier-Stokes: NS, Reynolds- 5
Averaged Navier-Stokes: RANS, Saint-Venant: SV or Approximations to Saint-Venant: ASV) & _
and the study of flow typologies (Overland, High-gradient, Bedforms or Fluvial) across scales &
in the (L,T) plane (b). A transverse analysis involves forming L /T ratios, searching for cluesto & _
model selection according to these “system evolution velocities” or governed by flow typologies %
that would exhibit specific L /T ratios. = _
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Figure 7. Position of the flow typologies in the (L, H) plane for the studies listed in Appendix A
(a). Median positions for the choice of free-surface flow models (Navier-Stokes: NS, Reynolds-
Averaged Navier-Stokes: RANS, Saint-Venant: SV or Approximations to Saint-Venant: ASV)
and the study of flow typologies (Overland, High-gradient, Bedforms or Fluvial) across scales
in the (L,H) plane (b). A transverse analysis involves forming H/L ratios, searching for clues
to model selection according to these “finenesses” of the flow domain or governed by flow
typologies that would exhibit specific H/L ratios.
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Figure 8. Streamwise scenario for a convexo-concave landscape topography, from runoff initi- =
ation to the main rivers, across flow typologies (Overland O, High-gradient Hg, Bedforms B or _é:' - -
Fluvial F) and spatiotemporal scales (L,7,H). The indicated L, T and H values are the median @ - -
values for the spatial scale, time scale and water depth, respectively, from the literature cited
in Appendix A (Figs. 6 and 7). All sketches and drawings for the High-gradient and Bedforms - -
typologies were taken from Montgomery and Buffington (1997). The top view for Overland flow 5
is from Tatard et al. (2008) and that of a meandering river from Rosgen (1994). The “model & _
use” panel indicates the model refinement most used (Navier-Stokes NS, Reynolds-Averaged &
Navier-Stokes RANS, Saint-Venant SV or Approximations to Saint-Venant ASV) to describe a & _
given flow typology in the cited literature. % _
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Figure 9. Comparative overview of the median values of the six selected dimensionless num-
bers (dimensionless period 7" = T /T, ratio of the chosen time scale on the “natural” time scale

of the flow, Reynolds number Re, Froude number

Fr, slope S, inundation ratio A, and Shields

parameter 8) obtained for the use of systems of equations (NS, RANS, SV and ASV) and the
description of flow typologies (O, Hg, B and F) in the cited literature. The expected associa-
tions are indicated by dotted connecting lines in the legend box. The confirmed associations
are indicated by dotted ellipses. Broken associations (isolated points P, to £,) are discussed in
the text. The typical and extreme ranges of the mentioned dimensionless numbers have been
added for indication. This figure was assembled from information available in the studies cited

in Appendix A.
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