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S1     Definition of homogenous regions 17 

Figure S1 shows the outcome of the clustering process based on spring and summer 18 

(September to March) season total river flow volume (SSRV). The procedure consists 19 

on grouping catchments in the Andes cordillera between 27 ° S and 38 ° S and 20 

calculating the SSRV (natural regime) for each one, performing a clustering procedure 21 

using an algorithm for variance minimization (Rubio-Álvares y McPhee, 2010; Wilks, 22 

2005). SSRV values are computed for 2001 – 2014, seeking minimum data loss for this 23 

purpose (Sawicz et al., 2011). After defining a consistency threshold for both Andes 24 

slopes - by identifying an abrupt slope change in the cumulative distance / algorithm-25 

step curve - a total of eight clusters are defined: three (C1, C2 and C3) on the western 26 

slope and five (C4 through C8) on the eastern slope of the Andes range. The northern 27 

clusters (C1 and C4) correspond to arid to semi-arid climates, whereas C2, C5 and C6 28 

are characterized predominantly by Mediterranean conditions. C3, C7 and C8 include 29 

basins in the southern domain, where the Andes display a lower elevation and where 30 

liquid precipitation inputs during the winter and spring seasons are more frequent. Note 31 



that each cluster contains only adjacent basins which highlights the hydro-climatic 32 

character of this classification.  33 

 34 

Figure S1. Clusterization process and outcomes for both eastern and western central Andes sides. 35 

 36 

Figure S2 shows the elevation distribution within each cluster, and illustrates the 37 

elevation of the available meteorological stations for forcing data extrapolation. It is 38 

apparent that station locations on the western slope of the domain (clusters C1, C2 and 39 

C3) are more representative of average cluster conditions under the assumption that 40 

elevation plays a major role in controlling each cluster’s climate. Eastern slope (Clusters 41 

C4 through C8) stations are located at lower elevations, which may impact the spatial 42 

extrapolation of model parameters as discussed in the main manuscript. 43 



 44 
Figure S2. Hypsometric curves of clusters in the model domain, and approximate elevation of 45 
meteorological stations. 46 
 47 

S2 Air temperature spatial distribution 48 

Figure S3 illustrates the linear correlation between air temperature differences among 49 

pairs of high elevation and valley meteorological stations and the corresponding land 50 

surface temperature differences between matching pixels in the MODIS LST product. A 51 

consequence of the strong linear relation is that it is possible to extrapolate air 52 

temperature differences across model pixels based on the spatial distribution of 53 

remotely sensed surface temperatures. 54 



 55 
Figure S3. Linear regression between MODIS LST and index station observed air temperature. 56 
Symbols refer to each modeling cluster, C1 - C3 are cluster on the western slope, C4 - C8 are 57 
clusters on the eastern slope of the mountain range. 58 

 59 

S3     Timing peak SWE for eastern and western slopes of the central Andes range 60 

Peak SWE timing estimation is carried out to in order to define a specific date for 61 

modeled SWE comparison with snow pillow data and river flow. Figure S4a shows 62 

timing peak SWE frequency between 15Aug - 15 Sep for stations on the western side of 63 

the continental divide. For eastern slope locations, peak SWE shifts into 15 Sep - 15 64 

Oct.  Notwithstanding elevation controls, a general behavior could be observed by 65 

averaging snow pillows time series fortnightly. A generalized peak SWE date could be 66 

assumed from Figure S4b as follows: for the western side we adopted September first as 67 

date for peak SWE (MSWE) validation; whereas for the eastern slope we assume 68 

October first. Note that in the case of snow surveys we considered the exact date of the 69 

field campaign. The literature reports similar behavior for MSWE (Masiokas et al., 70 

2006), showing variable timing MSWE frequency for several snow pillows located at 71 

C2, C3 and C5 clusters. 72 



 73 

Figure S4. Average timing peak SWE for eastern and western cordillera. 74 

 75 

S4  fSCA cloud cover post-processing 76 

A post-processing algorithm was applied over raw MOD10A1 fractional snow cover 77 

area (fSCA) satellite product (and also to MOD11A1 Land Surface Temperature) in 78 

order to minimize the effect generated by cloud cover and missing pixel values. The 79 

algorithm used in this work is an adaptation from Gafurov and Bárdossy (2009), 80 

extended for fractional values. Given a pixel p(x y,t, r), where x = latitude position, y = 81 

longitude position, t = day and y = year; the first step (s1) includes temporal 82 

interpolation pixel fill for consecutively ± 1, 2 and 3 days over valid pixels: 83 

𝑝(𝑥, 𝑦, 𝑡, 𝑟)𝑠1 =
𝑝 𝑥, 𝑦, 𝑡 + 𝑛, 𝑟 − 𝑝 𝑥, 𝑦, 𝑡 − 𝑚, 𝑟

𝑛 + 𝑚
𝑡 − 𝑚 + 𝑝 𝑥, 𝑦, 𝑡 − 𝑚, 𝑟  

  with  1 ≤ 𝑛,𝑚   ≤ 3 

[1] 

Values of n and m are chosen in order to minimize 𝑛 +𝑚 . The second step (s2) 84 

includes a spatial kernel-average pixel filling with x ± 1, y ±1 setting considering only 85 

those valid pixels with lower elevation 𝑧 = (𝑥,𝑦) than the central pixel: 86 



𝑝(𝑥, 𝑦, 𝑡, 𝑟)𝑠2 =
1
𝑘
𝑝 𝑖, 𝑗, 𝑡, 𝑟 𝑖≠𝑗

𝑠1
𝑖=𝑗

𝑖=−𝑗

𝑖=1

𝑖=−1

 

where  𝑘 = 1  𝑖𝑓  𝑧(𝑥, 𝑦)!!! ≤ 𝑧 𝑥, 𝑦   
  0                otherwise

 

[2] 

The third step includes filling with the average value over the 2001- 2014 period over 87 

valid pixels if steps 1 and 2 are infeasible. This step ensures the absence of null pixels: 88 

𝑝(𝑥, 𝑦, 𝑡, 𝑟)𝑠3 =
1
𝑘
𝑝(𝑥, 𝑦, 𝑡, 𝑟)𝑠2      ,      where  𝑘 = 1  for  null  values  

  0  otherwise

𝑟=2014

𝑟=2001

 [3] 

For MOD11A1 Land Surface Temperature, algorithm uses (1) temporal interpolation 89 

pixel fill considering 2 days prior and posterior to the estimated day. Subsequently, 90 

MOD11A1 post-processing algorithm uses an alternative step 2 based on skin 91 

temperature – elevation linear correlation (Colombi, 2007) over 𝑝(𝑥,𝑦, 𝑡, 𝑟)𝑠1 null 92 

pixels: 93 

𝑝(𝑥, 𝑦, 𝑡, 𝑟)𝑠2 = 𝑎  𝑧 𝑥, 𝑦 + 𝑏 [4] 

The outcomes from fSCA post-processing are shown in Figure S5. Cluster 3 (C3) and 94 

cluster 4 (C4) represent most wet (southern) and dry (northern) zones in the spatial 95 

domain. The dots represent raw data and the continuous line represents post-processed 96 

time series from a spatial average estimation. Cloudy conditions in C3 impose 97 

significant uncertainty between August and November. Post-processed fSCA seems to 98 

alleviate this problem (15% or lower cloud cover area) especially in 2005, 06, 08, 09, 99 

10, 11 and 12 for peak and lower values. C3 maximum fSCA reaches 70% – 90% 100 

unlike C4, where fSCA reaches up to 25% - 50%. In this zone, cloud cover introduces 101 

less uncertainty than C3, showing good agreement with raw data (also for 15% or lower 102 

cloud cover area) almost every year. Temporal dynamics from fSCA reveals partial 103 

SCA decay interrupted by occasional spring snowfall events and high frequency noise. 104 



 105 
Figure S5a. Cloud cover post-processing for cluster 3 – southern Chile fSCA (spatial average). 106 

 107 
Figure S5b. Cloud cover post-processing for cluster 4 – northern Argentina fSCA (spatial average). 108 

 109 

S5 Turbulent energy flux analysis at meteorological stations 110 

In order to diagnose differential performance of the model across the hydrologic units 111 

defined in this study, we estimate latent and sensible heat fluxes at point scale from data 112 

available only at the few high elevation meteorological stations in the region (with 113 

recorded relative humidity). Our analysis confirms that for the stations located within 114 

cluster C1, latent heat fluxes have opposite sign and dominate over sensible heat fluxes 115 

(Figure S6), which results in net turbulent cooling of the snowpack. On the other hand, 116 

data from stations located on the eastern side of the continental divide show positive 117 

latent heat fluxes, indicating predominance of condensation over sublimation at those 118 

sites. 119 

 120 



 121 
Figure S6. Computed from meteorological records at index stations associated with each basin 122 
cluster. 123 
 124 

S6      Modeled SWE decay and spatial patterns 125 

Figure S7 shows spatial modeled SWE spatial average (2001 – 2014) for 1 Sep, 1 Oct, 1 126 

Nov, 1 Dec and 1 Jan. From September to October, SWE depth is reduced, keeping an 127 

almost invariant snow line from C2 – C5 and southern units. For C1 and C4, the snow 128 

line experiments a notorious ablation to higher elevation areas. Starting in October, 129 

SWE depth and snow line vary abruptly. At regional scale, most of the SWE depletion 130 

process is observed from September to November in C1 and C4 (northern zones). Units 131 

C2, C5 and C6 shows a delayed SWE depletion, which stabilizes in January. Units C3, 132 

C7 and C8 show an intermediate behavior between the northern and central zones 133 

possibly due to the elevation decrease of the Andes cordillera south of 35 ° S. Some 134 

differences in the SWE spatial pattern are notorious in both sides of the continental 135 

divide: the eastern side experiments slightly faster SWE depletion than the western side, 136 

process that is clearly evident in southern (C3, C7, C8) and central (C2, C5, C6) 137 

clusters.  138 



 139 

Figure S7. Evolution of SWE depletion (spatial pattern) – 2001 – 2014 average. 140 

 141 
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