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Abstract 17 

Seasonal snow cover is the primary water source for human use and ecosystems along 18 

the extratropical Andes Cordillera. Despite its importance, relatively little research has 19 

been devoted to understanding the properties, distribution and variability of this natural 20 

resource. This research provides high-resolution (500-meter), daily distributed estimates 21 

of end-of-winter and spring snow water equivalent over a 152,000-km2 domain that 22 

includes the mountainous reaches of central Chile and Argentina. Remotely sensed 23 

fractional snow covered area and other relevant forcings are combined with extrapolated 24 

data from meteorological stations and a simplified physically-based energy balance 25 

model in order to obtain melt-season melt fluxes which are then aggregated to estimate 26 

end-of-winter (or peak) snow water equivalent (SWE). Peak SWE estimates show an 27 

overall coefficient of determination R2 of 0.68 and RMSE of 274 mm compared to 28 

observations at 12 automatic snow water equivalent sensors distributed across the model 29 

domain, with R2 values between 0.32 and 0.88. Regional estimates of peak SWE 30 
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accumulation show differential patterns strongly modulated by elevation, latitude and 31 

position relative to the continental divide. The spatial distribution of peak SWE shows 32 

two significant snow-volume storage zones characterized by a larger areal extent (3000-33 

4000 m.a.s.l..) and greater snow accumulation (4000 - 5000 m.a.s.l..) respectively. On 34 

average, snow accumulation peaks in early September in the western Andes, whereas 35 

maximum accumulation occurs in early October on the eastern side of the continental 36 

divide. The results presented here have the potential of informing applications such as 37 

seasonal forecast model assessment and improvement, regional climate model 38 

validation, as well as evaluation of observational networks and water resource 39 

infrastructure development. 40 

 41 

1 Introduction 42 

Accurately predicting the spatial and temporal distribution of snow water equivalent 43 

(SWE) in mountain environments remains a significant challenge for the scientific 44 

community and water resource practitioners around the world. The Andes Cordillera, a 45 

formidable mountain range that constitutes the backbone of the South American 46 

continent, remains one of the relatively least studied mountain environments due to its 47 

generally low accessibility and complex topography. The extratropical stretch of the 48 

Andes, extending south from approximately latitude 27 º S, is a snow-dominated 49 

hydrological environment that provides key water resources for a majority of the 50 

population in Chile and Argentina. Until now, a very sparse network of snow courses 51 

and automated snow measuring stations (snow pillows) has been the only source of 52 

information about this key resource. In a context of sustained climate change 53 

characterized by warming trends and likely future precipitation reductions (Vera et al., 54 

2006; Vicuña et al., 2011), it becomes ever more relevant to understand the past 55 
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dynamics of the seasonal snowpack in order to validate predictive models of future 56 

snow-water resources. This research presents the first spatially and temporally explicit 57 

high-resolution SWE reconstruction over the snow-dominated extratropical Andes of 58 

central Chile and Argentina based on a physical representation of the snowpack energy 59 

balance (Kustas et al., 1994) and remotely sensed snow extent (Dietz et al., 2012) 60 

between years 2001 and 2014. A key advantage of the presented product is its 61 

independence from notoriously scarce and unreliable precipitation measurements at 62 

high elevations. Estimates of maximum SWE accumulation and depletion curves are 63 

obtained at 500-m resolution, coincident with the MODIS Fractional Snow Cover 64 

product MOD10A1 (Hall et al., 2002). 65 

Patterns of hydroclimatic spatiotemporal variability in the extratropical Andes have 66 

been studied with increased intensity over the last couple of decades, as pressure for 67 

water resources has mounted while at the same time rapid changes in land use and 68 

climate have highlighted the societal need for increased understanding of water resource 69 

variability and trends under present and future climates. The vast majority of studies 70 

have relied on statistical analyses of instrumental records and regional climate models 71 

to present synoptic-scale summaries of precipitation (e.g. Aravena and Luckman, 2009; 72 

Falvey and Garreaud, 2007; Garreaud, 2009), temperature (Falvey and Garreaud, 2009), 73 

snow accumulation (Masiokas et al., 2006) and streamflow variability (Cortés et al., 74 

2011; Núñez et al., 2013). Currently, no high-resolution, large-scale distributed 75 

assessments of snow water equivalent are available for the Andes region.  76 

The methods and assumptions required for SWE reconstruction have been tested and 77 

refined since initial development (Cline et al., 1998). Applications across a variety of 78 

scales have been presented in recent years. In the Sierra Nevada, Jepsen et al. (2012) 79 

compared SWE reconstructions to distributed snow surveys in a 19.1 km2 basin (R2 = 80 
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0.79), while Guan et al. (2013) obtained good correlation with SWE observations from 81 

an operational snow sensor network across the entire Sierra Nevada  (R2 = 0.74). In the 82 

Rocky Mountains, Jepsen et al. (2012) obtained an R2 value of 0.61 when comparing 83 

reconstructed SWE to spatial regression from snow surveys, and Molotch (2009) 84 

estimated SWE with a mean absolute error (MAE) of 23% compared to intensive study 85 

areas. A useful discussion on the uncertainties of the SWE reconstruction method -albeit 86 

one based on temperature-index melt equations- was presented by Slater et al. (2013), 87 

who demonstrated that errors in forcing data are at least, if not more, important than 88 

snow covered area data availability. The vast majority, if not all, of SWE reconstruction 89 

exercises have been developed in the northern hemisphere, under environmental 90 

conditions quite different from those predominant in the extratropical Andes Cordillera. 91 

Here, snow distribution and properties have been analyzed in a few local studies (e.g. 92 

Ayala et al., 2014; Cortés et al., 2014; Gascoin et al., 2013), but no large-scale 93 

estimations at a relevant temporal and spatial resolution for hydrologic applications 94 

have been presented. In fact, the Andes of Chile and Argentina display near-ideal 95 

conditions for the SWE reconstruction approach due to (1) the near absence of forest 96 

cover over a large fraction of the domain where snow accumulation is hydrologically 97 

significant; (2) the sharp climatological distinction between wet (winter: June through 98 

August) and dry (spring/summer: September through March) seasons, with most of 99 

annual precipitation falling during the former; and (3) the low prevalence of cloudy 100 

conditions during spring and summer months over the mountains, which afford a high 101 

availability of remotely sensed snow cover information. Conversely, the SWE 102 

reconstruction presented here is certainly subject to a series of uncertainty sources, such 103 

as the sparseness of the hydrometeorological observational network, which limits both 104 

the availability of forcing and validation data.  105 
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However, this is the first estimation of peak SWE and snow depletion distribution at 106 

this scale and spatial resolution for the extratropical Andes, and the information shown 107 

here can be useful for several applications such as understanding year-to year 108 

differential accumulation patterns that may impact the performance of seasonal 109 

streamflow forecast models that rely on point-scale data only. Also, the SWE 110 

reconstruction can be used to validate output from global or regional climate models 111 

and reanalysis, which are being increasingly employed to estimate hydrological states 112 

and fluxes in ungauged regions. By analyzing the spatial correlation of snow 113 

accumulation and hydrometeorological variables, distributed SWE estimates can inform 114 

the design of improved climate observation networks. Likewise, from analyzing the 115 

obtained SWE estimates in light of the necessary modeling assumptions and data 116 

availability we are able to highlight future research directions aimed at quantifying and 117 

reducing these uncertainties. 118 

The objectives of this research include: 1) To assess the dominant patterns of spatio-119 

temporal variability in snow water equivalent of the snow-dominated extratropical 120 

Andes cordillera; and, 2) to explicitly evaluate the strengths and weaknesses of the 121 

SWE reconstruction approach in different sub-regions of the extratropical Andes using 122 

snow sensors and distributed snow surveys. 123 

2 Study Area 124 

¡Error! No se encuentra el origen de la referencia. shows the study area, which 125 

includes headwater basins in the Andes Mountains of central Chile and Argentina, 126 

between 27 ° S and 38 ° S. These basins supply fresh water to low valleys located on 127 

both sides of the Cordillera, a topographic barrier more than 5 km high which strongly 128 

controls the spatial variability in atmospheric processes (Garreaud, 2009; Montgomery 129 

et al., 2001). In Chile, runoff from the Andes Mountains benefits 75% of the population 130 
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(http://www.ine.cl) as well as most of the country’s agricultural output, hydropower and 131 

industrial activities. In the case of Argentina, 7% of the population is located in the 132 

provinces of La Rioja, San Juan, Mendoza and northern Neuquén 133 

(http://www.indec.gov.ar/), with primary water uses in agriculture and hydropower. The 134 

selected watersheds have unimpeded streamflow observations and a snow-dominated 135 

hydrologic regime (Figure 2). River basins included in this study have been grouped in 136 

eight clusters, or hydrologic response units, based on the seasonality of river flow; 137 

numbered C1 to C8 in Figure 1b. Due to differences in topography and locations of 138 

stream gages, the number of headwater basins contained within clusters differs 139 

markedly on both sides of the Cordillera, with larger watersheds on the Argentinean 140 

side.  141 

The hydro-climate is mostly controlled by orographic effects on precipitation (Falvey 142 

and Garreaud, 2007) and inter-annual variability associated with the Pacific Ocean 143 

through the El Niño-Southern Oscillation and Pacific Decadal Oscillation (Masiokas et 144 

al., 2006; Newman et al., 2003; Rubio-Álvarez and McPhee, 2010). Precipitation is 145 

concentrated in winter months on the western slope (Aceituno, 1988) and sporadic 146 

spring and summer storms occur on the mountain front plains of the eastern slope. The 147 

vegetation cover presents a steppe type condition on the west slope up to 33 ° S, 148 

transitioning to the south into tall bushes and sparse mountain forest. On the eastern 149 

slope the steppe vegetation prevails until 37 ° S with an intermittent presence of 150 

mountain forests in the Patagonian plains (Eva et al., 2004).  151 

¡Error! No se encuentra el origen de la referencia. summarizes the dominant 152 

climatology and associated hydrological regime of rivers in the study region. The 153 

temperature seasonality (upper left) is typical of a temperate, Mediterranean climate, 154 

and precipitation is strongly concentrated in the fall-winter months of May through 155 
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August (upper right). The hydrological regime is markedly snow-dominated in the 156 

northern part of the domain, which can be seen from the sharp increase in river flow 157 

from October and into the summer months of Dec, Jan and Feb (lower right) that 158 

follows the seasonal melt of snow (lower left). Only rivers in the southern subregion 159 

display a significant rainfall-dominated seasonal hydrograph. The importance of SWE 160 

for the region is demonstrated by the fact that for the studied basins, ablation-season 161 

(September - March) river flow accounts for two-thirds of average annual streamflow. 162 

Maximum SWE accumulation is reached between the months of August and September 163 

on the western side and between late September and early October on the eastern side. 164 

Scattered snow showers in mid spring (September through November) affect the study 165 

area, but they do not affect significantly the decreasing trend of snow-covered area 166 

during the melt season (see timing of peak SWE and fractional Snow Covered Area 167 

(fSCA) analysis in online supplementary material). This feature is essential for choosing 168 

the SWE reconstruction methodology used in this work, which is most applicable to 169 

snow regimes with distinct snow accumulation and snow ablation seasons.  170 

By and large, the existing network of high-elevation meteorological stations does not 171 

include appropriately shielded solid precipitation sensors. Some climate reanalysis 172 

products exist, but their representation of Andean topography is crude, and their spatial 173 

resolution is not readily amenable to hydrological applications without significant bias 174 

correction (Krogh et al., 2015; Scheel et al., 2011). Previous attempts at estimating 175 

precipitation amounts at high elevation reaches in the Andes suggest uncertainties on 176 

the order of 50% (Castro et al., 2014; Falvey and Garreaud, 2007; Favier et al., 2009). 177 

In some basins, runoff is partially dictated by glacier contributions, which occur in 178 

summer. According to the Randolph Glacier Inventory (http://www.glims.org/RGI/) the 179 
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central Andes cordillera has a glacier area of 2,245 km2 between 27 ° S and 38 ° S, 180 

which is equivalent to 1.5% of the modeling domain surface area (~152,000 km2). 181 

 182 

3 Methods 183 

3.1 SWE reconstruction model 184 

A retrospective SWE reconstruction model based on the convolution of the fSCA 185 

depletion curve and time-variant energy inputs for each domain pixel is implemented.  186 

For each year, the model is run at a daily time step between Aug 15 (end of winter) and 187 

Jan 15 (mid-summer). This time window ensures capturing the most likely time at 188 

which peak SWE occurs –which itself is variable from year to year- and the almost 189 

complete depletion of the seasonal snowpack. Isolated pixels with non-negative fSCA 190 

values may remain after Jan 15 at glacier and perennial snowpack sites. However, the 191 

relative area that these pixels represent with respect to the entire model domain is very 192 

low (< 1.5%), and can be neglected in the context of this work. 193 

The energy balance model adopted here derives from the formulation proposed by 194 

Brubaker et al. (1996), which considers explicit net shortwave and longwave radiation 195 

terms and a conceptual, pseudo-physically based formulation for turbulent fluxes that 196 

depends only on the degree-day air temperature: 197 

!! = !"# !!"# + !!"# !!! + !!!! !, 0  [1] 

Were !! is potential melt; !!"# is the net shortwave energy flux; !!"# is the net 198 

longwave energy flux; !! is the degree-day temperature, !! [mm °C-1 day-1] is the 199 

restricted degree-day factor, and !! is the energy-to-mass conversion factor with a value 200 

of 0.26 [mm W-1 m2 day-1]. Actual melt is obtained by multiplying potential melt by 201 

fractional snow cover area:  202 



 9 

! = !!!!"#$!" [2] 

where !"#$!" is the fSCA MOD10A1 estimate adjusted to forest cover correction by a 203 

vegetation fractional !!"# (0 to 1)  from the MOD44B product (Hansen et al., 2003): 204 

!"#$!" = !"#$!"#
1 − !!"#

 [3] 

The SWE for each pixel is computed for each year by accumulating the melt fluxes 205 

back in time during the melt season, starting from the day in which fSCA reaches a 206 

minimum value, and up to a date such that winter fSCA has plateaued, according to the 207 

relations:  208 

!"#! = !"#! − !
!

!
= !!!! + !"#!!! [4] 

!"#! = !!

!

!!!
!!! ; !!!!"#! = 0 [5] 

where SWE0 is end-of-winter or initial maximum SWE accumulation, SWEn is a 209 

minimum or threshold value. The model was run retrospectively until Aug 15, an 210 

adequate date before which little melt can be expected for most of the winter seasons 211 

within the modeling period in this region (please see Fig. S5 in the online 212 

supplementary material). 213 

3.2 Fractional Snow Covered Area and land use data 214 

Spatio-temporal evolution of snow covered area was estimated using the fSCA product 215 

from the Moderate Resolution Imaging Spectroradiometer (MODIS) on-board the Terra 216 

satellite (MOD10A1 C5 Level 3). The MOD10A1 product provides daily fSCA 217 

estimates at 500-m resolution. Percentages of snow extent (i.e. 0% to 100%) are derived 218 

from an empirical linearization of the Normalized Difference Snow Index (NDSI), 219 

considering the total MODIS reflectance in the visible range (0.545 - 0.565 µm; band 4) 220 
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and shortwave infrared (1.628 - 1.652 µm; band 6) (Hall et al., 2002; Hall and Riggs, 221 

2007). 222 

Binary and fractional MODIS fSCA estimates are limited by the use of an empirical 223 

NDSI-based method. These errors are notoriously sensitive to surface features such as 224 

fractional vegetation and surface temperature (Rittger et al., 2013). Arsenault et al. 225 

(2014) reviewed MODIS fSCA accuracy estimates from several studies under different 226 

climatic conditions, and report a range between 1.5% and 33% in terms of absolute 227 

error with respect to ground observations and operational snow cover datasets. Errors 228 

stem mainly from cloud masking and detection of very thin snow (<10 mm depth), 229 

forest cover and terrain complexity. In general, commission and omission errors are 230 

greatest in the early and late portions of the snow cover season (Hall and Riggs, 2007) 231 

and decrease with increasing elevation (Arsenault et al., 2014). Molotch and Margulis 232 

(2008) compared MODIS and Landsat Enhanced Thematic Mapper performance in the 233 

context of SWE reconstruction, showing that significant differences in SWE estimates 234 

were a result of SCA estimation accuracy and less so of model spatial resolution. The 235 

latter conclusion supports the feasibility of using the snow covered area products at a 236 

500 m spatial resolution for regional scale studies. In order to minimize the effect of 237 

cloud cover on the temporal continuity and extent of the fSCA estimates, the 238 

MOD10A1 fSCA product was post-processed by a modified algorithm for non-binary 239 

products, based on the algorithm proposed by Gafurov and Bárdossy (2009). Their 240 

method is adapted here to the fractional snow cover product, applying a three-step 241 

correction consisting of: (1) a pixel-specific linear temporal interpolation over 1, 2 or 3 242 

days prior and posterior to a cloudy pixel; (2) a spatial interpolation over the eight-pixel 243 

kernel surrounding the cloudy pixel, retaining information from lower-elevation pixels 244 

only; and (3) assigning the 2001-2014 fSCA pixel specific average when steps (1) and 245 
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(2) where not feasible. This step minimized the effect of cloud cover on data availability 246 

over the spatial domain, yielding cloud cover percentages ranging from21% in 247 

September to 8% in December. 248 

The Normalized Difference Vegetation Index (NDVI) (Huete et al., 2002) derived from 249 

the product MOD13Q1 v5 MODIS Level 3 (16 days - 250 m) is used to classify forest 250 

presence for each model pixel. For pixels classified as forested, both fSCA and energy 251 

fluxes where corrected: fractional SCA was modified on the basis of percentage forest 252 

cover (Molotch, 2009; Rittger et al., 2013), using the average of the forest percentage 253 

product from MOD44B V51. Forest attenuation (below canopy) of energy fluxes at the 254 

snow surface was estimated from forest cover following the method from Ahl et al. 255 

(2006) assuming invariant LAI over each melt season. The selected LAI pattern is 256 

obtained by averaging the four LAI scenes available between December - January time 257 

window through 14 study years. This time window displays the average state of 258 

evergreen forest with the maximum amount of data. 259 

 260 

3.3 Model forcings 261 

Spatially distributed forcings are required at each grid element in order to run the SWE 262 

reconstruction model. In order to ensure the tractability of the extrapolation process, we 263 

divided the model domain into sub-regions or clusters, composed by one or more river 264 

basins. The river basins were grouped using a clusterization algorithm (please see 265 

section S2 on the online supplementary material) based on melt season river flow 266 

volume as described in Rubio-Álvarez and McPhee (2010). Then, spatially distributed 267 

variables (surface temperature, fSCA, global irradiance) are combined with 268 

homogeneous variables for each cluster (e.g. cloud cover index) and point data from 269 

meteorological stations in order to obtain a distributed product as described below. A 270 
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further benefit of the clustering process is that it allows us to analyze distinct regional 271 

features of the SWE reconstruction parameters, input variables and output estimates. 272 

Net shortwave radiation, !!"# !is estimated as a function of incoming solar radiation 273 

based on the equation: 274 

!!"# = 1 − !! !↓ !!    [6] 

where !! is snow surface broadband albedo; !↓ is incoming solar radiation (global 275 

irradiance); !! is the shortwave transmissivity as a function of LAI for mixed forest 276 

cover (Pontailler et al., 2003; Sicart et al., 2004), which in turn is estimated as: 277 

!! = ! !!!!"# !!!; !!!!"# = !−1.323!!" 0.88 − !"#$
0.72  

  [7] 

with ! = 0.52 for mixed forest species (Dewalle and Rango, 2008). Equation 7 is valid 278 

for NDVI values between 0.16 and 0.87. Global irradiance under cloudy sky conditions 279 

is estimated considering a daily distributed spatial pattern of clear sky irradiance 280 

!!↓derived by the r.sun GRASS GIS module (Hofierka et al., 2002; Neteler et al., 2012) 281 

and the clear sky index !! derived from the insolation incident on a horizontal surface 282 

from the "Climatology Resource for Agroclimatology" project in the NASA Prediction 283 

Worldwide Energy Resource "POWER" (http://power.larc.nasa.gov/) 1°x1° gridded 284 

product. 285 

!↓ = !!!!↓!!!; !!!!! = ! !!↓ !!!↓    [8] 

In Equation 8, !!↓ and !!↓ are spatial averages over each hydrologic response unit 286 

(cluster) of the POWER and r.sun-derived products, respectively. 287 

 A snow-age decay function based on snowfall detection is implemented to estimate 288 

daily snow surface albedo (Molotch and Bales, 2006) constrained between values of 289 

0.85 and 0.40 (Army Corps of Engineers - USACE, 1960). Snowfall events were 290 
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diagnosed using a unique minimum threshold for fSCA increments of 2.5% for each 291 

hydrologic unit area. 292 

Net long wave radiation estimates are derived using: 293 

!!"# = !↓!!"!! + !!!! 1 − !!" !!" − !!!!!! [9] 

!↓ = 0.575!!!!/!!!!!! 1 + !!!!  [10] 

Where !! is air temperature, !! is the snow surface temperature, !! is the snow 294 

emissivity (i.e. 0.97), !!" is the canopy emissivity (i.e. 0.97), !!" is the sky-view factor 295 

(i.e. assumed equal to shortwave transmissivity; Pomeroy et al., 2009; Sicart et al., 296 

2004), ! is the Stefan-Boltzmann constant, and!!↓ is the incoming long wave radiation. 297 

Air vapor pressure (!!) required for long wave radiation estimates was derived from air 298 

temperature and relative humidity, which in turn was assumed constant throughout the 299 

melt period and equal to 40% based on observations at selected high-elevation 300 

meteorological stations. The multiplying factor 1+ !!!!  represents an increase in 301 

energy input relative to clear sky conditions due to cloud cover, where !! equals 0.17 302 

and ! = 1− !!  is an estimate of the cloud cover fraction (DeWalle and Rango, 2008). 303 

Spatially distributed air temperature is generated by combining daily air temperature 304 

recorded at index meteorological stations and a weekly spatial pattern of skin 305 

temperature derived from the MODIS Land Surface Temperature product 306 

(MOD11A1.V5) (Wan et al., 2004; Wan et al., 2002). The product MOD11A1 V5 307 

Level 3 estimates surface temperature from thermal infrared brightness temperatures 308 

under clear sky conditions using daytime and nighttime scenes and has been shown to 309 

adequately represent measurements at meteorological stations (R2 ≥ 0.7), displaying 310 

moderate overestimation in spring and underestimation in fall (Neteler, 2010). Other 311 

studies have reported similar accuracies, with RSME values around 4.5 ºK in cold 312 
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mountain environments (Williamson et al., 2014).  Taking into account the high 313 

correlation between air temperature and LST (Benali et al., 2012; Colombi et al., 2007; 314 

Williamson et al., 2014), we define: 315 

!! = !!!!"#$ + ∆!! = !!!!"#$ + !! !"# − !"#!"#$ + !  [11] 

were !!!!"#$ is daily air temperature at an index station for each cluster and ∆!!!is the 316 

difference in air temperature between any pixel and the pixel where the index station is 317 

located. To determine ∆!! we use a linear regression between MODIS LST data and 318 

∆!! considering pairs of stations located at high altitude and valley (base) sites, taking 319 

into account the melt season average values over the 2001-2014 period. In equation 11, 320 

!"# − !"#!"#$ denotes the difference between skin temperatures from any pixel and the 321 

index station pixel. The linear regression between skin temperature and air temperature 322 

differences has a slope ! of 0.65, an intersect ! of -0.5 and R2 of 0.93 (Figure S3 in 323 

online supplementary material). Estimation of LST during cloudy conditions is done as 324 

follows: (1) a pixel-specific linear temporal interpolation is performed over 1 and 2 days 325 

prior and posterior to the cloudy pixel; and (2) estimation of remaining null values by 326 

an LST-elevation linear regression (Rhee and Im, 2014). 327 

This spatial extrapolation method was preferred over more traditional methods -for 328 

example based on vertical lapse-rates (Minder et al., 2010; Molotch and Margulis, 329 

2008)- after initial tests showed that the combined effect of the relatively low elevation 330 

of index stations and the large vertical range of the study domain resulted in 331 

unreasonably low air temperatures at pixels with the highest elevations. Likewise, the 332 

scarcity of high-elevation meteorological stations and the large spatial extent of the 333 

model domain precluded us from adopting more sophisticated temperature estimation 334 

methods (e.g. Ragettli et al., 2014). 335 
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Snow surface temperature and degree-day temperature are estimated (Brubaker et al., 336 

1996) as: 337 

!! = !"# !! , 0 !! ; !!!!! = !"! !! − ∆! , 0 ! [12] 

where ∆! is the difference between air and snow surface temperature. To the best of our 338 

knowledge, no direct, systematic values of snow surface temperature exist in this 339 

region, so for the purposes of this paper we adopt an average value ∆! = 2.5 [°C], 340 

following the suggestion in Brubaker et al., (1996). Slightly higher values ranging from 341 

3 to 6°C are shown for continental and alpine snow types (Raleigh et al., 2013) 342 

indicating an additional source of uncertainty over net long wave radiation 343 

computations. More sophisticated parametrizations for !! , for example based on heat 344 

flow through the snowpack, have been proposed (e.g. Rankinen et al., 2004; Tarboton 345 

and Luce, 1996) but those require explicit knowledge about the snowpack temperature 346 

profile and/or more complex model formulations to estimate the internal snowpack heat 347 

and mass budgets simultaneously.  348 

The !! coefficient in the restricted degree-day energy balance equation was computed 349 

using a combination of station and reanalysis data, and assumed spatially homogeneous 350 

within each of the clusters that subdivide the model domain. Brubaker et al. (1996) 351 

propose a scheme in which this parameter can be explicitly computed from air and snow 352 

surface temperature, air relative humidity, and atmospheric pressure and wind speed. 353 

Wind speed was obtained from the NASA POWER reanalysis described previously. A 354 

correction for atmospheric stability is applied on the bulk transfer coefficient !! 355 

according to the formulation presented by Kustas et al. (1994), assuming a surface 356 

roughness of 0.0005 m: 357 
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!! =
1 − 58!! !.!"!!"#!!! < 0

1 + 7!! !!.!!!"#!!! > 0
!!! ; !!!!! =

!" !! − !!
!!!!

 [13] 

Where !! is the Richardson number, ! is the gravity acceleration (9.8 [m s-2]), z is the 358 
standard air temperature measurement height (2 m) and ! is wind speed. The 359 
calculation of !! and !! is based on the standard assumptions of !! at the freezing point 360 
and a water vapor saturated snow surface over all high-elevation meteorological stations 361 
with available air temperature and relative humidity records (Molotch and Margulis, 362 
2008). Further in the text, we discuss some implications of these assumptions and of the 363 
input data used on the ability of the model of simulating relevant components of the 364 
snowpack energy exchange.  365 
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Table 1. Study area subdivision, relevant characteristics and model parameters 369 

Cluster 
  

Area 
x103 
[km2] 

Average 
elevation 
[m.a.s.l.] 

Average 
cluster 

latitude [°] 

Clear sky 
Index 
(Kc) 

Avg. ar 
[cm/°C/day] 

 

Ta 
[°C] 

 

Forest Cover 
[%] 

 
C1 26.5 3300 -29.4 0.78 0.02 18.3 2.0 
C2 17.9 2760 -33.7 0.89 0.11 16.1 5.5 
C3 9.20 1890 -36.4 0.83 0.18 12.2 13.8 
C4 49.3 3520 -30.1 0.8 0.04 20.4 1.4 
C5 18.5 2855 -33.4 0.83 0.15 15.6 3.0 
C6 7.60 2807 -34.8 0.83 0.21 13.9 2.3 
C7 14.8 2167 -36.1 0.85 0.20 16.7 2.5 
C8 8.30 1840 -37.0 0.82 0.23 15.7 4.9 

Total / 
Average 152.1 2320 *** 0.83 0.14 *** 3.3 

 370 

  371 
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Table 2. Snow pillow measurements available within the study domain 372 

  373 
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Table 3. Summary of snow depth and density intensive study campaigns 374 

Table 4. Model validation statistics against intensive study area observations around 375 
snow pillows and at catchment scale 376 

Table 5. Coefficient of determination R2 between river melt season flows (SSRV), 377 
estimated and observed SWE (end-of-winter).  378 
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Table 5. Coefficient of determination R2 between river melt season flows (SSRV), estimated and 379 
observed SWE (end-of-winter). 380 

 R2 values specific SSRV vs. 
Estimated SWE per cluster 

R2 values specific SSRV vs. SWE at snow pillows 
(2001 – 2013)* 
 

  2001 - 2014 Neglecting 2009 at 
Argentinean 
clusters** 

Best 2nd best 

c1 0.84 *** 0.74 (CVN) 0.69 (QUE) 

c2 0.78 *** 0.82 (LAG) 0.68 (POR) 

c3 0.57 *** 0.17 (LOA) 0.16 (ALT) 

c4 0.87 *** *** - 

c5 0.66 0.82 0.81 (TOS) - 

c6 0.45 0.76 0.87 (ATU) 0.77 (DIA) 

c7 0.64 0.89 0.77 (VAL) 0.41 (PEH) 

c8 0.48 0.64 *** - 

* 2014 flows in Argentina unavailable to us at the moment of writing. 381 
** 2009 is considered an outlier year for the reconstruction at Argentinean sites. 382 
  383 
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Table 6. Peak SWE 2001 - 2014 climatology for river basins within the study region. 384 
Basin-wide averages, SCA-wide averages and basin-wide water volumes shown 385 

 shows the main cluster characteristics and regionalized model parameters. It can be 386 

seen that for those clusters located in the southern and middle reaches of the model 387 

domain, the !! parameter values range from 0.10 to 0.23 [cm °C-1 day-1], which is 388 

similar to values reported in previous studies performed in other mountain ranges in the 389 

Northern Hemisphere (0.20 – 0.25 in Martinec (1989), 0.17 in Kustas et al., (1994), 390 

0.20 in Brubaker at al., (1996), 0.15 in Molotch and Margulis (2008)). However, values 391 

associated to the northernmost clusters of our study area are quite low, reaching under 392 

0.02 for the C1 cluster in northern Chile.  393 

Clear sky index (!!) values range between 0.78 and 0.89 which is similar to values 394 

reported by Salazar and Raichijk (2014) who estimate !! values on the order of 0.90 for 395 

a single location at 1200 m.a.s.l. in northern Argentina. A 5 to 6 °C difference can be 396 

observed in mean air temperature at index stations between the northern and southern 397 

edge of the domain. Temperatures for the C4 cluster are subject to greater uncertainty, 398 

because no high-elevation climate station data was available for this study. Forest cover 399 

values are lower than 6% throughout the model domain, with the exception of cluster 400 

C3, with a value of 13.8%. The difference in forest cover between clusters C3 and C8 401 

can be attributed to the precipitation shadow effect induced by the Andes ridge. Forest 402 

corrections applied to MODIS fSCA resulted in a 17% increase with respect to the 403 

original values over the southern sub-domain (C3). 404 

3.4 Evaluation data: SWE, snow depth and river flow observations 405 

Operational daily snow-pillow data from stations maintained by government agencies in 406 

Chile and Argentina were available for this study (Table 2). Only stations with ten or 407 

more years of record were included and manual snow course data were neglected 408 
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because of their discontinuous nature. Approximately 10% of observed maximum SWE 409 

accumulation values were discarded due to obvious measurement errors and data gaps. 410 

An analysis of the seasonal variability of snow-pillow records on the western and 411 

eastern slopes of the Andes suggests that peak-SWE date is somewhat delayed on the 412 

latter, by approximately one month. Therefore, peak-SWE estimates for Chilean and 413 

Argentinean stations are evaluated on September 1 and October 1, respectively, 414 

although in the results section we show values for September 15 in order to use a unique 415 

date for the entire domain. Manual snow depth observations were taken in the vicinity 416 

of selected snow-pillow locations in order to evaluate the representativeness of these 417 

measurements at the MODIS grid scale during the peak-SWE time window. These 418 

depth observations were obtained in regular grid patterns within an area the 419 

approximate size of a MODIS pixel (500 m), centered about the snow-pillow location. 420 

On average, 120 depth observations spaced at approximately 50-m increments were 421 

obtained at each snow pillow site. Snow density was estimated by a depth-weighted 422 

average of snow densities measured in snow pits with a 1000-cc snow cutter. Samples 423 

where obtained either at regular 10-cm depth intervals along the snow pit face, or at the 424 

approximate mid depth of identifiable snow strata for very shallow snow pack 425 

conditions. Weights were computed as the fraction of total depth represented by each 426 

snow sample.   427 

Distributed snow depth observations were available from snow surveys carried out 428 

during late winter between 2010 and 2014 at seven study catchments in the western side 429 

of the Andes, between latitudes 30 ° S and 37 ° S (¡Error! No se encuentra el origen 430 

de la referencia., Table 3). Snow depths were recorded with 3 m graduated avalanche 431 

probes inserted vertically into the snow pack. Depending on the terrain conditions, 432 

between three and five individual point snow depth measurements were obtained at 433 
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each location, from which a mean snow depth and standard error are calculated; i.e. 434 

three-point observations are made forming a line with a spacing of one meter and five-435 

point observations are made forming a cross with an angle of 90 degrees and a spacing 436 

of one meter. Pixel-scale SWE estimates are obtained by averaging all depth 437 

observations within the limits of MODIS pixels and multiplying them by density 438 

observations from snow pits excavated at the time of each snow survey; i.e. two or three 439 

snow pits per field campaign. After this, individual depth observations are converted 440 

into SWE for model validation. Modeled SWE values are averaged at all MODIS pixels 441 

where manual depth observations are available, and their summary statistics are 442 

compared to those of SWE estimated from manual depth observations at the same 443 

pixels, multiplied by average density from snow pits.  444 

Spring and summer season (September to March) total river flow volume (SSRV) for 445 

the 2001-2014 period are obtained from unimpaired streamflow records at river gauges 446 

located in the mountain front along the model domain. Data were pre-selected leaving 447 

out series that showed too many missing values, and verified through the double mass 448 

curve method (Searcy and Hardison, 1960) in order to discard anomalous values and to 449 

ensure homogeneity throughout the period of study. Regional consistency was verified 450 

through regression analysis, only including streamflow records with R2 values greater 451 

than 0.5 among neighboring catchments. Missing values constituted about 3.7% of the 452 

entire period and were filled through linear regression.  453 

 454 

4 Results 455 

4.1 Model validation 456 

¡Error! No se encuentra el origen de la referencia. compares reconstructed peak 457 

SWE (gray circles) to observed values at three snow-pillow locations (black diamonds) 458 
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where additional validation sampling at the MODIS pixel scale was conducted (box 459 

plots). At the Cerro Vega Negra site (CVN), located in cluster C1, the model 460 

overestimates peak SWE (September 1) with respect to the snow-pillow value by 97% 461 

in 2013 and by 198% in 2014. At the Portillo site (POR, cluster C2), reconstructed SWE 462 

underestimates recorded values by 51% in 2013 and 72% 2014. At the Laguna Negra 463 

site (LAG, also C2), reconstructed peak SWE slightly overestimates recorded values 464 

(8%) (Table 4). However, reconstructed SWE compares favorably to distributed manual 465 

SWE observations obtained in the vicinity of the snow pillows at the POR and LAG 466 

sites. 467 

¡Error! No se encuentra el origen de la referencia. depicts the comparison between 468 

reconstructed SWE and snow surveys carried out at pilot basins throughout the model 469 

domain. From left to right, it can be seen that the model slightly overestimates SWE 470 

with respect to observations at CVN (i.e. 18% overestimation). Further south, there is a 471 

very good agreement at ODA - MAR (i.e. 4% underestimation), with less favorable 472 

results at MOR - LVD (i.e. 39% underestimation) and OB - RBL (i.e. 36% 473 

underestimation). At CHI the model significantly underestimates SWE (i.e. by 67%); 474 

note this site is heavily forested. For the 2013a and 2014a boxes (Figure 4) –which 475 

correspond to clearing sites-, there is still underestimation, but of lesser magnitude 476 

(20%). Summarizing, we detect model overestimation respect to snow survey medians 477 

in four cases and underestimation in fifteen cases. In 11 out of 19 cases, reconstructed 478 

SWE lies within the snow survey data uncertainty bounds (standard deviation).   479 

Figure 5 shows a comparison between model estimates of peak (Sep 15th) SWE and 480 

corresponding observations at snow pillow sites. In general, directly contrasting pixel-481 

based estimates with sensor observations should be attempted with caution. In areas 482 

with complex topography, slight variations in the position of the sensor with respect to 483 
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the model grid, combined with high spatial variability in snow accumulation could lead 484 

to large differences between model estimates and observations. Also, small-scale 485 

variations in snow accumulation near the sensor, for example induced by protective 486 

fences, could introduce bias to the results (e.g. Meromy et al., 2013; Molotch and Bales, 487 

2006; Rice and Bales, 2010). Taking the above into consideration, ¡Error! No se 488 

encuentra el origen de la referencia. suggests that the model tends to overestimate 489 

observed peak SWE at the two northernmost sites on the Chilean side (QUE and CVN); 490 

the equivalent cluster on the Argentinean side (C4) lacks SWE observations. Overall, 491 

we find a better agreement at the eastern slope sites (i.e. R2 = 0.74) than at their western 492 

counterparts (i.e. R2 = 0.43), with a combined R2 value of 0.61. Individually, the worst 493 

and best linear agreements are obtained at POR (R2=0.32) and LOA (R2=0.88), 494 

respectively. Time series of observed SWE and model estimates for these two extreme 495 

cases are shown in the supplementary online material, and indicate a significant degree 496 

of inter-annual variability in model discrepancies in terms of peak SWE, but less in 497 

terms of, for instance, snow cover duration. Average standard error, SE! is 284 mm 498 

(SE! =242 mm at the west slope; SE!=302 mm at the east slope), with a range between 499 

72 mm (TOS) and 378 mm (ATU) (Table 4). Relative errors display some variability, 500 

with overestimation higher than 30% at the two northernmost (QUE and CVN) and at 501 

the southernmost (PEH) snow pillows. For all other snow pillows, the model estimates 502 

are lower than the sensor observation; the range of relative errors for those sites with 503 

underestimation goes from -52% to -5%. 504 

4.2 Correlation with melt-season river flows 505 

Under the assumption of unimpaired flows (no human extractions), peak SWE and 506 

seasonal flow volume should show some degree of correlation, even though no 507 

assumptions can be made here about other relevant hydrologic processes, such as flow 508 
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contributions from glaciated areas, subsurface storage carryover at the basin scale and 509 

influence of spring and summer precipitation. Differences can be expected due to losses 510 

to evapotranspiration and sublimation affecting the snowpack and soil water throughout 511 

the melt season.  Hence, basin-averaged peak SWE should always be higher than melt 512 

season river volume. A clear regional pattern emerges when inspecting the results of 513 

this comparison in ¡Error! No se encuentra el origen de la referencia.. Correlation 514 

between peak SWE and melt season river flow is higher in clusters C1 and C4 with R2 515 

values of 0.84 and 0.86, respectively. The result for Cluster C4 indicates that liquid 516 

precipitation during the melt season (Figure 2) does not result in decreased correlation 517 

between peak SWE and river flow. Clusters C2, C5, C6 and C7 display a somewhat 518 

lower correlation, with some individual years departing more significantly from the 519 

overall linear trend. R2 values range between 0.46 and 0.78 in these cases. Finally, not 520 

only are correlation coefficients lower for the southern clusters C3 (R2 = 0.56) and C8 521 

(R2 = 0.48), but also estimated peak SWE is always lower than river flow, which 522 

indicates the importance of spring and summer precipitation in determining streamflow 523 

variability. In fact, Castro et al. (2014) analyze patterns of daily precipitation in this area 524 

and document average spring and summer rainfall amounts of approximately 520 mm in 525 

C3 and 85 mm in C8. A promising avenue for further research in this region emerges 526 

when comparing the correlation between melt-season river flow and the spatially 527 

distributed reconstructed product versus that of river flows and snow pillow data. Table 528 

5 shows values of R2 for the linear regression between these variables. It can be seen 529 

that for two of the three clusters on the western side of the continental divide, the end-530 

of-winter distributed reconstruction has more predictive power than observed SWE. 531 

Only for central Chile the Laguna Negra (LAG, with a value of 0.82) site has a better 532 

correlation with river flows, but the reconstructed product has a value of 0.78, which 533 
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lies in between those found for LAG and for Portillo (POR, with a value of 0.68). For 534 

the eastern side of the continental divide, the distributed product shows similar skill 535 

than that of snow pillows except for Atuel, which has a very high correlation (R2 of 536 

0.87) with cluster C6 river flows, and for cluster C7, in which the reconstruction shows 537 

higher predictive power (R2 of 0.89) than the available SWE observations (VAL and 538 

PEH). 539 

 540 

4.3 Regional SWE estimates 541 

¡Error! No se encuentra el origen de la referencia. shows the Sep 15 SWE average 542 

over the 2001 – 2014 period obtained from the reconstruction model, and the percent 543 

annual deviations (anomalies) from that average. Steep elevation gradients can be 544 

inferred from the climatology, as well as the latitudinal variation expected from 545 

precipitation spatial patterns. For the northern clusters (C1 and C4), the peak SWE 546 

averaged over snow covered areas is on the order of 300 mm while in the middle of the 547 

domain (C2, C5, C6), it averages approximately 750 mm. The southern clusters (C3, 548 

C7, C8) do show high accumulation averages (approximately 650 mm), despite the 549 

sharp decrease in the Andes elevation south of latitude 34 º S. The anomaly maps 550 

convey the important degree of inter-annual variability, as well as distinct spatial 551 

patterns associated with it. Between 2001 and 2014, years 2002 and 2005 stand out for 552 

displaying large positive anomalies throughout the entire mountainous region of the 553 

model domain, with values 2000 mm and more above the simulation period average. 554 

Other years prior to 2010 show differential accumulation patterns, where either the 555 

northern or southern parts of the domain are more strongly affected by positive or 556 

negative anomalies. Overall, the northern clusters (C1 and C4) show above-average 557 

accumulation in only three (2002, 2005 and 2007) of the 14 simulated years, whereas 558 
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the other clusters show above-average accumulation for six years (2001, 2002, 2005, 559 

2006, 2008 and 2009). In particular, years 2007 and 2009 show a bimodal spatial 560 

structure, with excess accumulation (deficit) in the northern (southern) clusters during 561 

the former, and the inverse pattern in the latter year.  562 

A longitudinal pattern in the distribution of negative anomalies can be discerned from 563 

Figure 7, whereby drought conditions tend to be more acute on one side of the divide 564 

versus the other. Conversely, during positive anomaly years, both sides of the Andes 565 

seem to show similar behavior. Further research on the mechanisms of moisture 566 

transport during below-average precipitation years may shed light on this result.  567 

¡Error! No se encuentra el origen de la referencia. provides a different perspective on the 568 

region’s peak SWE climatology by presenting our results aggregated into elevation 569 

bands for each hydrologic unit. Elevation bands are defined at 1000-m increments 570 

starting from 1000 m.a.s.l. Crosses indicate average peak SWE for each band (mm), and 571 

circle areas are proportional to the surface area covered by each elevation band. From 572 

north to south, hydrologic unit C4 shows slightly higher SWE than C1 between 3000 573 

and 5000 m.a.s.l.., but much larger surface areas (~32,000 vs. ~17,000 km2), indicating 574 

a larger water resource potential. C2 stands out as having the greatest area-weighted 575 

cluster SWE and the greatest SWE for each elevation band. Compared to its counterpart 576 

on the eastern side of the Andes range (C5), C2 shows higher accumulations (up to 577 

~1800 mm) at all elevations. The area included between 2000 and 4000 m.a.s.l. 578 

(~13,000 km2), which shows an estimated peak SWE accumulation on the order of 600 579 

mm, represents the most predominant snow volume accumulation zone. Although the 580 

4000-5000 m.a.s.l. elevation band contributes approximately half the 2000 - 4000 band 581 

surface area in C2, its average peak SWE is roughly twice that of the 3000-4000 band 582 

(~6,000 km2). This makes this subregion interesting for future research, because most 583 
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snow observations in the area are obtained below 4000 m.a.s.l.; the same is true for unit 584 

C5. Further to the south, the barrier effect of the Andes is also suggested by the 585 

displacement of the SWE-elevation distribution in C6 and C7 when compared to C3. On 586 

the eastern side of the model domain, it is interesting to see a steepening of the average 587 

peak SWE elevation profile between C6 and C8, suggesting that C8 is less affected by 588 

Andes blockage than its northern counterparts. 589 

Estimated net energy inputs (¡Error! No se encuentra el origen de la referencia.) 590 
shows a decrease from the northern (C1 and C4) into the mid-range clusters (C2, C5 591 
and C6), with increases again in the southern reaches of the domain (C3, C7 and C8). 592 
This is a result of a combination of an increasing trend in net shortwave radiation in the 593 
south-north direction and a reverse spatial trend in net long wave radiation exchange, 594 
which increases (approaches less-negative values) in the north-south direction. Modeled 595 
turbulent energy fluxes (Equation 1) are negligible in the northern clusters, but their 596 
contribution to the net energy exchange increases with latitude as a result of the spatial 597 
variation in the !! parameter.¡Error! No se encuentra el origen de la referencia. 598 
shows the temporal (seasonal) variation in average fSCA and SWE for each cluster, and   599 
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Table 5. Coefficient of determination R2 between river melt season flows (SSRV), estimated and 600 
observed SWE (end-of-winter). 601 

 R2 values specific SSRV vs. 
Estimated SWE per cluster 

R2 values specific SSRV vs. SWE at snow pillows 
(2001 – 2013)* 
 

  2001 - 2014 Neglecting 2009 at 
Argentinean 
clusters** 

Best 2nd best 

c1 0.84 *** 0.74 (CVN) 0.69 (QUE) 

c2 0.78 *** 0.82 (LAG) 0.68 (POR) 

c3 0.57 *** 0.17 (LOA) 0.16 (ALT) 

c4 0.87 *** *** - 

c5 0.66 0.82 0.81 (TOS) - 

c6 0.45 0.76 0.87 (ATU) 0.77 (DIA) 

c7 0.64 0.89 0.77 (VAL) 0.41 (PEH) 

c8 0.48 0.64 *** - 

* 2014 flows in Argentina unavailable to us at the moment of writing. 602 
** 2009 is considered an outlier year for the reconstruction at Argentinean sites. 603 
  604 
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Table  shows peak SWE at the watershed scale, averaged both over the entire basin and 605 

over the snow covered area. Maximum fSCA increases in the north-south direction, 606 

consistently with the climatological increase in winter precipitation and decrease in 607 

temperature. A dramatic increase in snow coverage is observed between the northern 608 

(i.e. C1 and C4) and adjacent southern clusters (i.e. C2 and C5), with average peak 609 

fSCA increasing from 20% to 50%. The highest average snow coverage is observed for 610 

cluster C8, with more than 60%. Snow water equivalent displays a similar regional 611 

variability with lower seasonal variability than snow cover for all clusters except for C2, 612 

where fSCA and SWE variability throughout the melt season are identical. Mean peak 613 

SWE in northern Chile is the lowest among the eight clusters, with approximately 100 614 

mm SWE over the 2001-2014 period. The largest estimate is for cluster C2, central 615 

Chile, where mean peak SWE exceeds 500 mm. The rain shadow effect of the Andes 616 

range is apparent in the comparison of SWE and fSCA in C2 and C5-C6-C7. Fractional 617 

snow covered area is lower on the east side because of the larger basin sizes which 618 

increases the proportional area of lower elevation terrain.  In addition, peak SWE is 619 

approximately 25% lower on the east side, with less than 400 mm SWE for the eastern 620 

clusters. Cluster C4 is not affected by this phenomenon, showing higher snow coverage 621 

and water equivalent accumulation than its counterpart, C1. Cluster C8 represents an 622 

interesting exception in that its average fSCA is the largest within the model domain, 623 

but peak SWE is not significantly higher than the estimates in the other clusters on the 624 

Argentinean side of the Andes.  625 

 626 
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5 Discussion 627 

5.1 Sensitivity analysis 628 

The Andes cordillera, on one hand, displays ideal conditions for SWE reconstruction, 629 

including low cloud cover, infrequent snowfall during spring and summer, and very low 630 

forest cover. On the other hand, the scarcity of basic climate data poses challenges that 631 

would affect any modeling exercise. A local sensitivity analysis is implemented in order 632 

to gain insights regarding the influence of some of the assumptions required for SWE 633 

modeling (¡Error! No se encuentra el origen de la referencia.). The influence of the 634 

clear sky factor (Kc), snow surface albedo (∝!), the slope of the ∆!"# vs. ∆!" 635 

relationship (!), the !! parameter, and the difference between air and snow surface 636 

temperature are explored. Results are shown for the model pixels corresponding to two 637 

of the snow pillow sites, each located at the northern and southern sub-regions of the 638 

model domain respectively. The clear sky factor, snow albedo and ∆!"# vs. ∆!" slope 639 

are the most sensitive parameters at the northern (CVN) site. Increasing the slope in the 640 

∆!"# vs. ∆!" relationship results in decreasing temperature at pixels with higher 641 

elevations than the index station, thus lowering long wave cooling and resulting in 642 

higher SWE estimates. The impact of increasing slope values decreases progressively, 643 

because an increasing slope results in increased pixel air temperature, but snow surface 644 

temperature cannot exceed 0º C. The influence of snow albedo is analyzed by 645 

perturbing the entire albedo time series for each season from the values predicated by 646 

the USACE model. Increasing albedo values restricts the energy available for melt 647 

therefore decreasing peak SWE estimates. Again, a nonlinear effect is observed, 648 

constrained by a minimum albedo value of 0.4. The sensitivity of the clear sky factor, 649 

on the other hand, is monotonic, with increasing values generating more available solar 650 

energy, resulting in higher SWE estimates. At the southern site (ALT), the shape of the 651 
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sensitivity functions is the same as at CVN, but the magnitude of SWE variations as a 652 

function of parameter perturbations is smaller. This is likely related to the fact that 653 

turbulent fluxes constitute a larger fraction of the simulated overall energy balance at 654 

the southern sites; !! parameter values are greater in the southern portions of the 655 

domain. Therefore, perturbations of the other terms account for a smaller fraction of the 656 

energy exchange at the southern sites. 657 

5.2 Model performance and conceptual energy balance representation 658 

Among the many factors that influence model performance, the sub-region delineation 659 

involves the selection of index meteorological stations for extrapolating input data at the 660 

domain level. Thus, for example, two adjacent pixels that are part of different sub-661 

regions may be assigned input data derived from two different meteorological stations 662 

that are many kilometers apart. It would be preferable to use distributed inputs only, but 663 

these were not available for this domain. Future research is needed to explore 664 

alternative strategies for domain clustering. 665 

Overall, the model performance, evaluated against SWE observations, is comparable to 666 

that achieved in other mountain regions of the world. Our average coefficient of 667 

determination R2 of 0.68 is lower than that obtained by Guan et al. (2013) in the Sierra 668 

Nevada (0.74) when comparing operational snow pillow observations, although this 669 

value is affected by three stations with much lower agreement (POR, LAG, ATU); the 670 

median R2 in our study, on the other hand, is 0.73, which we consider satisfactory in 671 

light of the scarcity of forcing data and direct snow properties observations available in 672 

this region. The overall relative error is -2% for observations from snow pillows within 673 

our study region, but this value is strongly affected by two stations where we observed 674 

significant overestimation (QUE and CVN). When including the remaining ten snow 675 

pillows only, relative error increases to -16%. Given that forest cover is minimal in our 676 
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modeling domain, we can attribute this bias to either weaknesses in the simplified 677 

energy balance model formulation or to errors in the MOD10A1 fSCA product. 678 

Previous work in the northern hemisphere (Rittger et al., 2013) has shown that MODIS 679 

can underestimate fractional snow cover during the snowmelt season. On one hand, land 680 

cover heterogeneity at spatial resolutions lower than the MODIS scale (i.e. 500 m) 681 

result in mixed-pixel detection problems. On the other hand, spectral unmixing based on 682 

the NDSI approach tends to underestimate fSCA under patchy snow distributions. In 683 

addition, surface temperatures greater than 10 °C –more likely to exist during late 684 

spring- induce MODIS fSCA underestimation. Molotch and Margulis (2008) tested the 685 

SWE reconstruction model using Landsat ETM and MOD10A1 and found that 686 

maximum basin-wide mean SWE estimates were significantly lower when using 687 

MOD10A1. More recently, Cortés et al. (2014) showed that a similar pattern can be 688 

seen for the extratropical Andes, whereby MODIS fSCA consistently underestimated 689 

LANDSAT TM fSCA retrievals. MODIS fSCA underestimation during spring 690 

combined with increased net energy fluxes over the snowpack can result in a marked 691 

underestimation (~20%) for available energy flux for snowpack melting and 692 

consequently (~45%) for maximum SWE (Molotch and Margulis, 2008).  693 

Comparisons against spatial interpolations from intensive-study areas in the Sierra 694 

Nevada or Rocky Mountains (e.g. Erxleben et al., 2002; Jepsen et al., 2012) are not 695 

directly applicable, because in this study we do not employ interpolation methods to 696 

derive our manual snow survey SWE estimates. However, the average overestimation 697 

found with respect to snow survey data could be explained by the fact that manual 698 

surveys are limited by site accessibility and sampling procedures. For example, snow 699 

probes utilized are only 3.0 m long, which precludes observation of deeper snowpack; 700 

likewise, deep snow is expected in sites exposed to avalanching, which were generally 701 
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avoided in snow survey design due to safety considerations. On the other hand, manual 702 

snow surveys do not visit steep snow-free areas where snow depth is expected to be 703 

lower than the 500-m pixel reconstruction. The combined effect of these two contrasting 704 

effects is the subject of further research in this region. 705 

Another possible explanation for model errors is the simplified formulation of the 706 

energy balance equation which may be problematic when applied over a large, 707 

climatically variable model domain. To explore the implications of the simplified 708 

energy balance with respect to model errors, we focus on the representation of turbulent 709 

energy fluxes, represented here through a linear temperature-dependent term. ¡Error! 710 

No se encuentra el origen de la referencia. describes the spatial distribution of the !! 711 

parameter, and its dependence on air temperature and relative humidity observed at 712 

index meteorological stations. The implication for energy balance modeling is that 713 

turbulent fluxes would account for a very small portion of the snowpack energy and 714 

mass balance in the northern area (C1 and C4), which is characterized by low air 715 

temperatures and relative humidity, which yield very low !! values. The reader must 716 

recall that !! !values were computed based on index station data and assumed spatially 717 

homogeneous over each cluster. The simplified model formulation used in this research, 718 

however, although pseudo-physically based -compared to degree-day or fully calibrated 719 

models- allows only for positive net turbulent fluxes, because both the !! !and the 720 

degree-day temperature index are positive values. However, previous studies in this 721 

region (Corripio and Purves, 2005; Favier et al., 2009) have suggested that latent heat 722 

fluxes have a relevant role because of high sublimation rates favored by high winds and 723 

low relative humidity conditions predominant in the area.  724 

In order to diagnose differential performance of the model across the hydrologic units 725 

defined in this study, we compute the Bowen ratio (!) at the point scale from data 726 
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available only at the few high elevation meteorological stations in the region with 727 

recorded relative humidity.  The calculations show that at stations located within cluster 728 

C1, latent heat fluxes are opposite in sign and larger in magnitude than sensible heat 729 

fluxes (Figure S6 in supplementary material).  While this results in net turbulent cooling 730 

of the snowpack, this energy loss is not considered in our simplified energy balance 731 

approach. Note that for the clusters C5, C6, C7 and C8, all located on the eastern 732 

(Argentinean) slope of the Andes, sensible and latent heat fluxes are positive, compared 733 

to negative latent heat fluxes for all the index stations within clusters C2 and C3 on the 734 

Chilean side. This result is consistent with Insel et al. (2010), who applied a Regional 735 

Circulation Model (RegCM3) in the area and showed a significant difference in relative 736 

humidity (~70% east side vs. ~40% west side). The fact that we extrapolate the !! 737 

parameter value based on relatively low elevation meteorological observations 738 

throughout the southern Argentinean hydrologic units may result in a yet not quantified 739 

overestimation of seasonal energy inputs and peak SWE for those clusters.  740 

 741 

6 Conclusions 742 

Snow water equivalent is the foremost water source for the extratropical Andes region 743 

in South America. This paper presents the first high-resolution distributed assessment of 744 

this critical resource, combining instrumental records with remotely sensed snow 745 

covered area and a physically-based snow energy balance model. Overall errors in 746 

estimated peak SWE, when compared with operational station data, amount to -2.2%, 747 

and correlation with observed melt-season river flows is high, with a value of 0.80. 748 

MODIS Fractional SCA data proved adequate for the goals of this study, affording high 749 

temporal resolution observations and an appropriate spatial resolution given the extent 750 

of the study region. These results have implications for evaluating seasonal water 751 
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supply forecasts, analyzing synoptic-scale drivers of snow accumulation, and validating 752 

precipitation estimates from regional climate models. In addition, the strong correlation 753 

between peak SWE and seasonal river flow indicates that our results could be useful for 754 

the evaluation of alternative water resource projects as part of development and climate 755 

change adaptation initiatives. Finally, the regional SWE and anomaly estimates 756 

illustrate the dramatic spatial and temporal variability of water resources in the 757 

extratropical Andes, and provide a striking visual assessment of the progression of the 758 

drought that has affected the region since 2009. These results should motivate further 759 

research looking into the climatic drivers of this spatially distributed phenomenon. 760 
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Table 1. Study area subdivision, relevant characteristics and model parameters 955 

Cluster 
  

Area 
x103 
[km2] 

Average 
elevation 
[m.a.s.l.] 

Average 
cluster 

latitude [°] 

Clear sky 
Index 
(Kc) 

Avg. ar 
[cm/°C/day] 

 

Ta 
[°C] 

 

Forest Cover 
[%] 

 
C1 26.5 3300 -29.4 0.78 0.02 18.3 2.0 
C2 17.9 2760 -33.7 0.89 0.11 16.1 5.5 
C3 9.20 1890 -36.4 0.83 0.18 12.2 13.8 
C4 49.3 3520 -30.1 0.8 0.04 20.4 1.4 
C5 18.5 2855 -33.4 0.83 0.15 15.6 3.0 
C6 7.60 2807 -34.8 0.83 0.21 13.9 2.3 
C7 14.8 2167 -36.1 0.85 0.20 16.7 2.5 
C8 8.30 1840 -37.0 0.82 0.23 15.7 4.9 

Total / 
Average 152.1 2320 *** 0.83 0.14 *** 3.3 

 956 

  957 
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Table 2. Snow pillow measurements available within the study domain 958 

  959 
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Table 3. Summary of snow depth and density intensive study campaigns 960 

Table 4. Model validation statistics against intensive study area observations around 961 
snow pillows and at catchment scale 962 

Table 5. Coefficient of determination R2 between river melt season flows (SSRV), 963 
estimated and observed SWE (end-of-winter).  964 
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Table 5. Coefficient of determination R2 between river melt season flows (SSRV), estimated and 965 
observed SWE (end-of-winter). 966 

 R2 values specific SSRV vs. 
Estimated SWE per cluster 

R2 values specific SSRV vs. SWE at snow pillows 
(2001 – 2013)* 
 

  2001 - 2014 Neglecting 2009 at 
Argentinean 
clusters** 

Best 2nd best 

c1 0.84 *** 0.74 (CVN) 0.69 (QUE) 

c2 0.78 *** 0.82 (LAG) 0.68 (POR) 

c3 0.57 *** 0.17 (LOA) 0.16 (ALT) 

c4 0.87 *** *** - 

c5 0.66 0.82 0.81 (TOS) - 

c6 0.45 0.76 0.87 (ATU) 0.77 (DIA) 

c7 0.64 0.89 0.77 (VAL) 0.41 (PEH) 

c8 0.48 0.64 *** - 

* 2014 flows in Argentina unavailable to us at the moment of writing. 967 
** 2009 is considered an outlier year for the reconstruction at Argentinean sites. 968 
  969 
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Table 6. Peak SWE 2001 - 2014 climatology for river basins within the study region. 970 
Basin-wide averages, SCA-wide averages and basin-wide water volumes shown 971 

  972 
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Table 1. Study area subdivision, relevant characteristics and model parameters 973 

Cluster 
  

Area 
x103 
[km2] 

Average 
elevation 
[m.a.s.l.] 

Average 
cluster 

latitude [°] 

Clear sky 
Index 
(Kc) 

Avg. ar 
[cm/°C/day] 

 

Ta 
[°C] 

 

Forest Cover 
[%] 

 
C1 26.5 3300 -29.4 0.78 0.02 18.3 2.0 
C2 17.9 2760 -33.7 0.89 0.11 16.1 5.5 
C3 9.20 1890 -36.4 0.83 0.18 12.2 13.8 
C4 49.3 3520 -30.1 0.8 0.04 20.4 1.4 
C5 18.5 2855 -33.4 0.83 0.15 15.6 3.0 
C6 7.60 2807 -34.8 0.83 0.21 13.9 2.3 
C7 14.8 2167 -36.1 0.85 0.20 16.7 2.5 
C8 8.30 1840 -37.0 0.82 0.23 15.7 4.9 

Total / 
Average 152.1 2320 *** 0.83 0.14 *** 3.3 

 974 

  975 
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Table 2. Snow pillow measurements available within the study domain 976 

ID SWE data Symbol Lat. (S) Long. (W) Elevation 
[m.a.s.l.] 

Reference 
cluster 

CHILE  
1 Quebrada Larga QUE 30° 43’ 70° 16’ 3500 C1 
2 Cerro Vega Negra CVN 30° 54’ 70° 30’ 3600 C1 
3 El Soldado SOL 32° 00’ 70° 19’ 3290 C2 
4 Portillo POR 32° 50’ 70° 06’ 3000 C2 
5 Laguna Negra LAG 33° 39’ 70° 06’ 2780 C2 
6 Lo Aguirre LOA 35° 58’ 70° 34’ 2000 C3 
7 Alto Mallines ALT 37° 09’ 70° 14’ 1770 C3 

ARGENTINA  
8 Toscas TOS 33° 09’ 69° 53’ 3000 C5 
9 Laguna Diamante DIA 34° 11’ 69° 41’ 3300 C6 
10 Laguna Atuel ATU 34° 30’ 70° 02’ 3420 C6 
11 Valle Hermoso VAL 35° 08’ 70° 12’ 2250 C7 
12 Paso Pehuenches PEH 35° 08’ 70° 23’ 2545 C7 
 977 

  978 
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Table 3. Summary of snow depth and density intensive study campaigns 979 

Year ID Symbol Field site Date Snow-pit SWE SWE SWE Sample 
 (Figure 1)    density average std. dev. range size 
          [kg/m3] [mm] [mm] [mm]   

2010 2 ODA Ojos de Agua 25-sep 352 450 163 848 - 0 134 
2011 2 ODA Ojos de Agua 30-ago 341 705 199 1194 - 136 374 

 5 MOR Morales 01-sep 367 642 282 1101 - 0 171 
 8 OBL Olla Blanca DET 31-ago 333 539 217 1032 - 79 289 

2012 1 CVN Cerro Vega Negra 28-ago 308 296 115 700 - 40 166 
 3 MAR Juncal - Mardones 30-ago 373 530 230 1120 - 40 163 
 5 MOR Morales 12-sep 412 590 360 1240 - 150 152 
 8 OBL Olla Blanca DET 03-sep 411 590 260 1230 - 0 309 
 4 POR Portillo 15-sep 410 170 180 1230 - 0 181 

2013 1 CVN Cerro Vega Negra 21-ago 356 405 165 1040 - 10 282 
 2 ODA Ojos de Agua 23-ago 355 540 220 1310 - 100 300 
 10 CHI Nevados Chillána 27-ago 416 980 240 1270 - 30 104 
 10 CHI Nevados Chillánb 27-ago 416 600 240 1230 - 70 216 
 4 POR Portillo 23-ago 392 340 210 1120 - 0 91 
 6 LAG Laguna Negra 30-ago 455 480 250 1770 - 0 32 

2014 1 CVN Cerro Vega Negra 05-ago 321 163 85 620 - 0 326 
 5 MOR Morales 12-ago 401 510 250 1190 - 0 329 
 7 LVD Lo Valdez 13-ago 365 710 290 1260 - 0 186 
 8 OBL Olla Blanca DET 12-sep 363 420 240 1210 - 0 334 
 9 RBL Río Blanco DET 06-sep 354 620 290 1210 - 0 99 
 10 CHI Nevados Chillána 26-sep 504 830 400 380 - 1510 18 
 10 CHI Nevados Chillánb 26-sep 504 980 250 530 - 1500 87 
 4 POR Portillo 19-ago 436 170 140 850 - 0 73 
  6 LAG Laguna Negra 30-ago 365 300 110 540 - 0 117 

(a) without forest cover (upper part of basin). 
(b) with of forest cover (lower part of basin). 

 980 

 981 

982 
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Table 4. Model validation statistics against intensive study area observations around snow pillows 983 
and at catchment scale 984 

Reconstructed SWE vs. MODIS pixel (grid) sampling (selected snow-pillows) 
! Avg. 

Sampling 
Std. Dev. 
Sampling 

Avg. 
Model 

SP (sensor) RE% 

 (avg.) 
RE%  

(avg.) 
RE% 

(avg.) 
! [mm] (1) [mm] (2) [mm] (3) [mm] (4) (1) vs. (3) (1) vs. (4) (3) vs. (4) 

CVN 223 110 334 200 49% -10% 98% 
POR 227 177 170 353 -25% 35% -51% 
LAG 395 180 283 280 -28% -30% 8% 

Reconstructed SWE vs. snow surveys (pilot-basins) 

 
avg. 

Sampling 
std. dev. 
Sampling 

avg. 
Model 

std. dev. 
Model 

RE%  
(avg.) 

RE%  
(std. dev.)  

! [mm] (1) [mm] (2) [mm] (3) [mm] (4) (1) vs. (3) (2) vs. (4)  
CVN 253 133 298 63 18% -53%  ODA-MAR 556 203 535 128 -4% -37%  MOR-LVD 613 295 375 115 -39% -61%  OBL-RBL 497 252 317 89 -36% -65%  CHI (forest) 790 245 257 46 -67% -81%  CHI (clear) 905 320 724 170 -20% -47%  

Reconstructed SWE vs. snow -pillows (Sep 1 – Chile & Oct 1 – Argentina) 

 

R2 !"!  
[mm] 

RE% RMSE 
[mm] 

Mod. SWE 
average 
[mm] 

Mod. SWE 
std. dev. 

[mm]  

QUE 0.71 208 79 335 529 350 !CVN 0.78 140 56 251 609 281 !SOL 0.68 112 -19 127 401 241 !POR 0.32 277 -36 398 437 324 !LAG 0.42 217 -21 230 424 263 !LOA 0.88 123 -5 171 734 316 !ALT 0.83 89 -41 332 489 296 !TOS 0.78 72 -52 251 120 141 !DIA 0.76 141 -4 137 455 291 !ATU 0.56 378 9 349 1263 496 !VAL 0.72 211 -24 273 457 371 !PEH 0.74 334 32 436 1302 580 !Average 0.68 192 -2 274 602 330  
 985 

  986 
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Table 5. Coefficient of determination R2 between river melt season flows (SSRV), estimated and 987 
observed SWE (end-of-winter). 988 

 R2 values specific SSRV vs. 
Estimated SWE per cluster 

R2 values specific SSRV vs. SWE at snow pillows 
(2001 – 2013)* 
 

  2001 - 2014 Neglecting 2009 at 
Argentinean 
clusters** 

Best 2nd best 

c1 0.84 *** 0.74 (CVN) 0.69 (QUE) 

c2 0.78 *** 0.82 (LAG) 0.68 (POR) 

c3 0.57 *** 0.17 (LOA) 0.16 (ALT) 

c4 0.87 *** *** - 

c5 0.66 0.82 0.81 (TOS) - 

c6 0.45 0.76 0.87 (ATU) 0.77 (DIA) 

c7 0.64 0.89 0.77 (VAL) 0.41 (PEH) 

c8 0.48 0.64 *** - 

* 2014 flows in Argentina unavailable to us at the moment of writing. 989 
** 2009 is considered an outlier year for the reconstruction at Argentinean sites. 990 
  991 
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Table 6. Peak SWE 2001 - 2014 climatology for river basins within the study region. Basin-wide 992 
averages, SCA-wide averages and basin-wide water volumes shown 993 

ID 
 

Basin - gauge station 
 

Lat. S 
 

Long. W 
 

Outlet 
Elev. 
[m .a.s.l..] 

Area 
[km2] 

SWE 

      Basin-wide 
[mm] 

Over- 
SCA 
[mm] 

Basin-wide 
[m3x10-6] 

 CHILE        
1 Copiapó en Pastillo 27° 59’ 69° 58’ 1300 7470 45 120 336 
2 Huasco en Algodones 28° 43’ 70° 30’ 750 7180 68 161 488 
3 Elqui en Algarrobal 29° 59’ 70° 35’ 760 5710 151 269 862 
4 Hurtado en San Agustín 30° 27’ 70° 32’ 2050 676 302 325 204 
5 Grande en Puntilla San Juan 30° 41’ 70° 55’ 2140 3545 137 306 486 
6 Cogotí en La Fraguita 31° 06’ 70° 53’ 1021 491 182 335 89 
7 Illapel en Huintil 31° 33’ 70° 57’ 650 1046 180 305 188 
8 Chalinga en San Agustín 31° 41’ 70° 43’ 920 437 142 332 62 
9 Choapa en Salamanca 31° 48’ 70° 55’ 560 2212 214 356 473 
10 Sobrante en Piñadero 32° 12’ 70° 42’ 2057 126 172 198 22 
11 Alicahue en Colliguay 32° 18’ 70° 44’ 852 344 92 184 32 
12 Putaendo en Resg. Los Patos 32° 30’ 70° 34’ 1218 890 273 346 243 
13 Aconcagua en Chacabuquito 32° 51’ 70° 30’ 950 2110 609 692 1285 
14 Mapocho en Los Almendros 33° 22’ 70° 27’ 970 640 269 342 172 
15 Maipo en El Manzano 33° 35’ 70° 22’ 850 4840 692 760 3349 
16 Cachapoal en Puente Termas 34° 15’ 70° 34’ 700 2455 700 814 1719 
17 Tinguiririca en Los Briones 34° 43’ 70° 49’ 560 1785 532 677 950 
18 Teno en Claro 34° 59’ 70° 49’ 650 1210 438 524 530 
19 Lontué en Colorado - Palos 35° 15’ 71° 02’ 600 1330 656 759 872 

20 Maule en Armerillo 35° 42’ 70° 10’ 470 5465 525 554 2869 
21 Ñuble en San Fabián 36° 34’ 71° 33’ 410 1660 376 430 624 
22 Polcura en Laja 37° 19’ 77° 32’ 675 2088 358 378 748 

 ARGENTINA        
23 Jachal en Pachimoco 30° 12’ 68° 49’ 1563 24266 79 175 1917 

24 San Juan en km 101 31° 15’ 69° 10’ 1129 23860 308 569 7349 
25 Mendoza en Guido 32° 54’ 69° 14’ 1479 7304 460 672 3360 
26 Tunuyán en Zapata 33° 46’ 69° 16’ 852 11230 289 592 3245 

27 Diamante en La Jaula 34° 40’ 69° 18’ 1451 19332 395 489 7636 
28 Atuel en Loma Negra 35° 15’ 69° 14’ 1353 3696 338 525 1249 
39 Malargue en La Barda 35° 33’ 69° 40’ 1568 1055 171 284 180 
30 Colorado en Buta Ranquil 37° 04’ 69° 44’ 817 14896 288 495 4290 
31 Neuquén en Rahueco 37° 21’ 70° 27’ 870 8266 356 446 2943 

 994 

  995 



 59 

List of Figures 996 

Figure 1. Study area and model domain: (a) river basins, stream gages (red circles) and 997 
sites where snow survey data are available (green circles), (b) hydrologic units (C1 to 998 
C8) and snow-pillow stations (white circles). 999 

Figure 2. Summarized hydro-climatology of the model domain. Data from 1000 
meteorological stations located within zones C1, C4, C3 and C8 summarized the hidro-1001 
climatology regime of northern-west, northern-east, southern-west and southern-east 1002 
zones respectively. 1003 

Figure 3. Reconstructed SWE validation at selected snow-pillow sites. Black diamonds 1004 
are instrumental records, gray circles are model estimates, and box-plots summarize 1005 
manual verification dataset around the pillow site. Upper and lower box limits are the 1006 
75% and 25% quartiles, horizontal line is the median, white box is the mean, upper and 1007 
lower dashes represent plus and minus 2.5 standard deviations from the mean, and 1008 
crosses are outlying values. 1009 

Figure 4. Reconstructed SWE validation at pixels with snow survey data. Box plots 1010 
summarize all individual measurements at pixels co-located with SWE reconstruction. 1011 
Symbology analogous to Figure 3. 1012 

Figure 5. Comparison between peak reconstructed and observed SWE at snow-pillow 1013 
sites. Solid line represents the 1:1 line. 1014 

Figure 6. Area-specific spring - summer runoff volume (SSRV) versus peak SWE. 1015 
Clusters 1 through 3 include rivers on the Chilean (western) slope of the Andes range; 1016 
clusters 4 through 8 correspond to Argentinean (eastern) rivers. Solid line represents 1:1 1017 
line. C4 and C8 SSRV were estimated by area-transpose method. 1018 

Figure 7. Regional peak (Sep 15th) SWE Climatology for the 2001 - 2014 period (upper 1019 
left panel), and annual peak SWE anomalies. 1020 

Figure 8. Maximum SWE through 1000 m elevation bands (EB). Crosses are mean 1021 
values within EB, lines are estimated SWE-elevation profile. Circle radius indicate EB 1022 
area [km2] scaled by 0.05 and takes values from SWE axis. 1023 

Figure 9. Time series of energy fluxes over snow surface (average over 14 years) and 1024 
global average per cluster. Unique axes scale for all plots. 1025 

Figure 10. Average seasonal evolution of fSCA and SWE in the study region. Lower 1026 
right panel shows the spatial correlation between time-averaged fSCA, SWE and 1027 
Specific melt-season river discharge. 1028 

Figure 11. Sensitivity of peak SWE estimates to model forcings and parameters. 1029 
Average over the 2001 - 2014 period at selected snow pillow sites. ∆_x represents the 1030 
percentage change over each parameter studied respect to the base case. 1031 
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Figure 12. Restricted Degree Day factor as a function of space (basin cluster) and 1032 
climatological properties. Bowen (β) coefficient shown between parenthesis in legend. 1033 

 1034 
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 1 

Figure 1. Study area and model domain: (a) river basins, stream gages (red circles) and sites where 2 
snow survey data are available (green circles), (b) hydrologic units (C1 to C8) and snow-pillow 3 
stations (white circles). 4 
 5 
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 6 

Figure 2. Summarized hydroclimatology of the model domain. Data from meteorological stations 7 
located within zones C1, C4, C3 and C8 summarized the hidro-climatology regime of northern-8 
west, northern-east, southern-west and southern-east zones respectively. 9 
  10 
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 11 

Figure 3. Reconstructed SWE validation at selected snow-pillow sites. Black diamonds are 12 
instrumental records, gray circles are model estimates, and box-plots summarize manual 13 
verification dataset around the pillow site. Upper and lower box limits are the 75% and 25% 14 
quartiles, horizontal line is the median, white box is the mean, upper and lower dashes represent 15 
plus and minus 2.5 standard deviations from the mean, and crosses are outlying values. 16 
  17 
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 18 

Figure 4. Reconstructed SWE validation at pixels with snow survey data. Box plots summarize all 19 
individual measurements at pixels co-located with SWE reconstruction. Symbology analogous to 20 
Figure 3. 21 
 22 

 23 
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 24 

Figure 5. Comparison between peak reconstructed and observed SWE at snow-pillow sites. Solid 25 
line represents the 1:1 line. 26 
 27 
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 28 
Figure 6. Area-specific spring - summer runoff volume (SSRV) versus peak SWE. Clusters 1 29 
through 3 include rivers on the Chilean (western) slope of the Andes range; clusters 4 through 8 30 
correspond to Argentinean (eastern) rivers. Solid line represents 1:1 line. C4 and C8 SSRV by 31 
precipitation-area regressions. 32 
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 33 

Figure 7. Regional peak (Sep 1st) SWE Climatology for the 2001 - 2014 period (upper left panel), 34 
and annual peak SWE anomalies. 35 
 36 
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 37 

Figure 8. Maximum SWE through 1000 m elevation bands (EB). Crosses are mean values within 38 
EB, lines are estimated DEM-elevation profile. Circle areas are proportional to EB areas [km2]. 39 
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 41 

Figure 9. Time series of energy fluxes over snow surface (average over 14 years) and global average 42 
per cluster. Unique axes scale for all plots. 43 
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 45 
Figure 10. Average seasonal evolution of fSCA and SWE in the study region. Lower right panel 46 
shows the spatial correlation between time-averaged fSCA, SWE and specific melt-season river 47 
discharge. 48 
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 50 

Figure 11. Sensitivity of peak SWE estimates to model forcings and parameters. Average over the 51 
2001 - 2014 period at selected snow pillow sites. ∆! represents the percentage change over each 52 
parameter studied respect to the base case. 53 
  54 
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 55 

Figure 12. Restricted Degree Day factor as a function of space (basin cluster) and climatological 56 
properties. Bowen (!) coefficient shown between parenthesis in legend. 57 
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