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Abstract 12 

Globally, water resources management faces significant challenges from changing climate 13 

and growing populations.  At local scales, the information provided by climate models is 14 

insufficient to support the water sector in making future adaptation decisions.  Furthermore, 15 

projections of change in local water resources are wrought with uncertainties surrounding 16 

natural variability, future greenhouse gas emissions, model structure, population growth and 17 

water consumption habits.  To analyse the magnitude of these uncertainties, and their 18 

implications for local scale water resource planning, we present a top-down approach for 19 

testing climate change adaptation options using probabilistic climate scenarios and demand 20 

projections. An integrated modelling framework is developed which implements a new, 21 

gridded spatial weather generator, coupled with a rainfall-runoff model and water resource 22 

management simulation model.  We use this to provide projections of the number of days, and 23 

associated uncertainty that will require implementation of demand saving measures such as 24 

hose pipe bans and drought orders.  Results, which are demonstrated for the Thames basin, 25 

UK, indicate existing water supplies are sensitive to a changing climate and an increasing 26 

population, and that the frequency of severe demand saving measures are projected to 27 

increase. Considering both climate projections and population growth the median number of 28 

drought order occurrences may increase five-fold by the 2050s.  The effectiveness of a range 29 
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of demand management and supply options have been tested and shown to provide significant 1 

benefits in terms of reducing the number of demand saving days. A decrease in per capita 2 

demand of 3.75% reduces the median frequency of drought order measures by 50% by the 3 

2020s. We found that increased supply arising from various adaptation options may 4 

compensate for increasingly variable flows; however, without reductions in overall demand 5 

for water resources such options will be insufficient on their own to adapt to uncertainties in 6 

the projected changes in climate and population. For example, a 30% reduction in overall 7 

demand by 2050 has a greater impact on reducing the frequency of drought orders than any of 8 

the individual or combinations of supply options; hence a portfolio of measures are required. 9 

1 Introduction 10 

Climate change projections point to longer or more frequent (or both) meteorological 11 

droughts in some regions by 2100 but there remain substantial uncertainties as to how rainfall 12 

and soil moisture deficits might translate into prolonged periods of reduced streamflow and 13 

groundwater levels (IPCC, 2014). This, and other pressures, affect and will continue to affect 14 

UK water availability into the future. Climate change could cause a decline in the amount of 15 

water available for supply, particularly in summer months if lower average rainfall coincides 16 

with increased temperatures (e.g. Murphy et al., 2009).  Water demand may also be sensitive 17 

to climate variability, although few studies have examined this aspect (e.g. Parker and Wilby, 18 

2013). Population growth, alongside a greater number of single occupancy households will 19 

greatly affect water demand and this stresses the need for greater water efficiency. Water 20 

resources may therefore increasingly need to be enhanced and managed through new supply 21 

or demand management options. Supply options may include storage reservoirs, inter-basin 22 

transfers, desalination plants, effluent reuse, groundwater and river abstractions whilst 23 

demand management options may include water meters, water saving devices, efficient 24 

appliances, rainwater collection systems and grey-water recycling. 25 

A number of studies have investigated the impact of climate change on water resources, 26 

addressing the associated uncertainties, using both deterministic and probabilistic projections 27 

of climate change. For example, in the UK these include Wilby and Harris (2006), New et al. 28 

(2007), Dessai and Hulme (2007), Christensen and Lettenmaier (2007), Vidal & Wade 29 

(2009), Manning et al. (2009) and Lopez et al. (2009). Burke et al. (2010) indicated that an 11 30 

member HadRM3 perturbed physics ensemble showed uncertainty as to whether drought 31 

occurrence will decrease or increase across the UK by the end of the 21st century (consistent 32 
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with earlier results from a multi-model ensemble (Blenkinsop & Fowler, 2007)) although they 1 

identify a predominant tendency to the latter.  Burke & Brown (2010) demonstrate similar 2 

results, with relatively little spatial variation across the UK. Such studies show the sensitivity 3 

of projections to climate model structure and parameterization and suggest that methods to 4 

downscale climate information can result in large sources of uncertainty in future river flows. 5 

However, a ‘cascade’ of uncertainties arise when considering climate change impact 6 

assessments for decision making (Jones, 2000). Wilby (2005) showed that uncertainties 7 

associated with impact studies arise from model structure, choice of model calibration period, 8 

choice of parameter sets, as well as climate scenarios and downscaling methods. 9 

In this study we use the UK Climate Projections (UKCP09) which provides an ensemble of 10 

climate model outputs that capture a number of important uncertainties in climate model 11 

parameterisation and structure (Murphy et al., 2009). The UKCP09 outputs have been used to 12 

consider: flood risk (Cloke et al., 2013; Kay and Jones, 2012), changes in precipitation and 13 

PET in upland river catchments (Thompson, 2012), sediment yield in catchments (Coulthard 14 

et al., 2014), urban heat island effects (Lee and Levermore, 2013) and overheating in 15 

buildings (Patidar et al., 2014; Jenkins et al., 2014). Their release and availability has also 16 

enabled better assessment of uncertainties in projections of water availability in a changing 17 

climate (e.g. Christierson et al. 2012; Harris et al. 2013; Warren and Holman, 2012). Using 18 

the UKCP09 projections, Harris et al. (2013) found that for the North Staffordshire Water 19 

Resource Zone uncertainty in climate model parameterisation causes a greater proportion of 20 

uncertainty in estimates for the 2080s of change in overall flow and water shortage per year 21 

than emission scenario choice. Whitehead et al. (2006), Wilby and Harris (2006), Dessai and 22 

Hulme (2007), New et al. (2007) have all conducted end-to-end assessments of propagation of 23 

uncertainties in adaptation assessments. Understanding the range of uncertainties when 24 

assessing future water shortages in the face of climate change will enable policies and 25 

strategies to be designed that are robust to the full range of plausible futures. Methods such as 26 

Robust Decision Making (RDM) provide a quantitative approach to facilitate decision-making 27 

under a range of assumptions and uncertainties. RDM has been used to develop long-range 28 

water management plans in the US (Groves et al., 2008; Lempert and Groves, 2010). 29 

Matrosov et al. (2013) applied both RDM and Info-Gap Decision Theory to consider 30 

uncertainties to proposed water supply portfolios for the Thames Basin. Borgomeo et al. 31 

(2014) demonstrated a methodology based on UKCP09 that used non-stationary probabilistic 32 

climate scenarios to aid risk-based water resource management. More recently the decision-33 
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scaling method (Brown et al., 2012) or climate stress testing (Brown and Wilby, 2012) has 1 

been applied to water resources systems. Multiple sources of climate information, climate 2 

projections and stochastic assessments are used to evaluate risks (Brown et al., 2012) and 3 

subsequently applied to determine robust adaptation strategies (e.g. Whateley et al., 2014; 4 

Steinscheider et al. 2015).  5 

This paper builds on and extends this previous research to assess current and future water 6 

resources risk by developing and integrating: 7 

 simulation models of precipitation, catchment hydrology and water resource systems 8 

within an uncertainty analysis framework;  9 

 a new spatial weather generator, that unlike previous work in this area, e.g. Borgomeo 10 

et al. (2014), captures the spatial variability of rainfall in large catchments, to produce 11 

high-resolution catchment-wide precipitation simulations for the Thames Basin in the 12 

UK; 13 

 consideration of climate uncertainties as a driver of water resource availability, as in 14 

e.g. Harris et al. (2013), but also evaluating other uncertainties such as changes in 15 

future demand; 16 

 analysis and testing of the effectiveness of a number of adaptation options to manage 17 

both the demand and supply of water resources; and, 18 

 provision of end-user relevant water resource indicators increasingly referred to as 19 

‘climate services’ (Hewitt et al., 2012) such as the frequency of triggering  reservoir 20 

storage control levels, or triggering of Demand Saving Measures, that are used by 21 

water companies (e.g. Thames Water, 2014) and promoted by the UK Government 22 

(DEFRA, 2008) and the Environment Agency. 23 

Fig 1 outlines the methodological approach taken and the associated sequence of models used 24 

to simulate the Thames Valley water resource system.  Starting from the climate model 25 

outputs provided by UKCP09, spatially consistent downscaled rainfall scenarios are generated 26 

using a spatial rainfall model of the Thames and Lee river basins. These, alongside 27 

corresponding downscaled Potential Evapotranspiration (PET) data produced with a weather 28 

generator, are used to drive catchment rainfall-runoff models, which output corresponding 29 

river flows. These, in turn, are input to a model of the water resource system which enables a 30 
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range of supply and demand management options to be tested which incorporate projections 1 

of demographic change.  2 

2 Methodology 3 

2.1 Case study: Thames Basin, UK 4 

The Thames basin (Fig 2) is 10,000km2 in area, mainly underlain by permeable chalk, the 5 

basin is predominantly rural, yet densely urbanised downstream. The southeast of England is 6 

the most water scarce region in the UK, having lower than average rainfall and a very large 7 

water demand (Environment Agency, 2007a) i.e. ‘seriously’ water stressed. The basin 8 

receives an average of 690mm of rainfall each year (250mm only is effective rainfall 9 

(Environment Agency, 2014)) compared to a national average for England and Wales of 10 

897mm. The River Thames and River Lee supply most of the water for London and southeast 11 

England, with 70% of all water being taken from upstream of Teddington Weir; the remainder 12 

is abstracted from aquifers (GLA, 2011). Per capita, Londoners consume more water per day 13 

(167 litres) than the UK average (146 litres). Much of the water resource system’s 14 

infrastructure is more than 150 years old and leakage is a major issue which is currently being 15 

addressed. The GLA (2011) expect London’s population to rise from 7.56 million at present 16 

to between 8.79 and 9.11 million by 2031.  UKCP09 probabilistic projections (Murphy et al. 17 

2009) identify potential future climatic pressures in this region (50th percentile figures), 18 

suggesting that average summer temperatures could increase by 2.7°C and winter 19 

temperatures by 2.2°C.  Average summer rainfall are projected to decrease by 18% and winter 20 

rainfall to increase by 15% (GLA, 2011). 21 

2.2 Probabilistic climate scenarios 22 

Uncertainties in projections of future climate originate from a number of sources, including 23 

modelling uncertainty, and it is not meaningful to use only one model realisation in climate 24 

change assessments.  UKCP09 provides a perturbed physics ensemble (PPE) of simulations, 25 

downscaled using the regional climate model (RCM) HadRM3 at a resolution of 25km where 26 

each ensemble member uses different parameter values within expert-specified bounds.  27 

UKCP09 also incorporates projections from 12 other climate models possessing different 28 

structures, allowing the sampling of structural modelling errors from a multi-model ensemble.  29 

These two ensembles are combined within a Bayesian statistical framework to produce the 30 
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UKCP09 probabilistic projections (Murphy et al., 2009). Additional downscaling onto a 5km 1 

grid through a combined change factor (CF) and weather generator approach, provides a 2 

spatial resolution more appropriate for considering catchment response.  3 

Here we use an extended version of UKCP09 stochastic weather generator (Jones et al., 2009) 4 

(referred to hereafter as UKCP09-WG), which provides simulations of daily and hourly 5 

weather variables for both a “baseline” (1961-1990) and a selected future climate (emissions 6 

scenario and time horizon) for each member of a probabilistic projection. Projections for two 7 

30-year periods centred on the 2020s (SCN20) and 2050s (SCN50) were identified as most 8 

relevant to stakeholders who expressed the greatest need for near- to medium-term future 9 

scenarios (Hallett, 2013).  The analysis was restricted to the A1B (medium) emissions 10 

scenario, although a complete consideration of future uncertainties would need to examine 11 

alternative scenarios.  These future projections were assessed against the 1961-1990 baseline 12 

(BSL) which also served to provide information on current hazard. 13 

The standard UKCP09-WG framework is extended here by replacing the single-site rainfall 14 

model with a spatial rainfall model, the stochastic Spatial-Temporal Neyman-Scott 15 

Rectangular Pulses model (STNSRP; Cowpertwait, 1995, Burton et al., 2008). This models 16 

spatial rainfall variability and so helps to capture non-linear impacts of climate change on 17 

water resources - in particular correlated weather events between sub-basins. Whilst this is not 18 

necessary for small catchments (e.g. Harris et al. (2013) use a simple scaling relationship) 19 

such an approach is required here due to the larger scale of the Thames basin. The spatially 20 

continuous nature of the STNSRP process is therefore advantageous as it may be sampled at 21 

any location (Burton et al., 2010a) or even on a regular grid (e.g. Blanc et al., 2012; Burton et 22 

al., 2013). Here, we present one of the first published applications to generate, and assess the 23 

impact of, future climate gridded rainfall datasets using the STNSRP model. 24 

Ten, 100-year gridded daily rainfall simulations were generated using the BSL climatology 25 

(Perry and Hollis, 2005a,b). Following the UKCP09 approach (Jones et al., 2009) 100 sets of 26 

monthly change factors for each time-slice for the A1B emissions scenario were randomly 27 

sampled and applied to the observed daily rainfall statistics. The rainfall model was refitted to 28 

these perturbed statistics and used to generate 100-year gridded daily simulations for each of 29 

the randomly sampled 100 sets of CFs for both SCN20 and SCN50. Batch processing of these 30 

scenarios was facilitated through the use of the efficient STNSRP simulation scheme 31 

described in Burton et al. (2010a). The CRU Daily Weather Generator was used to generate 32 



 7 

long time series of synthetic daily weather variables, conditioned by the synthetic daily 1 

rainfall generated with the NSRP process (Kilsby et al., 2007). For simulation, input rainfall 2 

series were derived for each sub-catchment from the weather generator output by averaging 3 

simulated point rainfall records generated over the 5km grid cells covering the sub-catchment. 4 

Here, only the PET output variable was required as input to the rainfall-runoff model.. Since 5 

the region under study concerns only 10,000km2, with a maximum elevation of 330m, PET is 6 

not very variable, so a single PET record has been used for all catchments, representative of 7 

the point rainfall record generated at the centroid of the whole Thames basin. It is recognised 8 

that within each of the catchments the variety of land cover uses would in turn affect moisture 9 

losses. However, given the similarity of the catchments in terms of elevation and 10 

heterogeneity of land cover, and that the rainfall-runoff model is lumped, a single PET record 11 

generated at the centroid of the whole Thames basin was used; the representative 5km grid 12 

cell is highlighted in Fig 2. A forthcoming paper will present the application of a spatial 13 

weather generator which will feed a physically based, spatially distributed hydrological model 14 

which will allow better representation of both the climatological and land cover heterogeneity 15 

of the catchment. Furthermore, it will enable changes in land cover i.e. increasing urban areas 16 

to be considered. 17 

Supplementary resources present further details about the validation of the UKCP09-WG and 18 

presents a brief assessment of the robustness of the random sample of CFs used in this study. 19 

2.3 Catchment models 20 

Flow time-series were generated using the CATCHMOD rainfall-runoff model, which is a 21 

water balance model used for water resource planning by the UK Environment Agency, and 22 

has been described in detail elsewhere (Wilby et al., 1994; Davis, 2001). CATCHMOD is a 23 

lumped parameter conceptual model, which allows for the subdivision of the catchment into a 24 

number of zones, according to its geological and surface runoff characteristics. Input to the 25 

model is in the form of time series of daily rainfall and potential evapotranspiration 26 

representative of the entire catchment and the output is a time series of the daily flow at the 27 

catchment output. Three parameterisations of this model were used, to produce flow series for 28 

each of the three input sub-catchments locations of the water resource model. Each of these 29 

involves three zones, representing clay, limestone and urban regions. Parameters were chosen 30 

by optimisation of the Nash-Sutcliffe efficiency in reproducing historically observed flow, 31 

and validated by comparison with flows in a different historical period (see Manning et al., 32 
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2009 and Fig. 3). The following Nash-Sutcliffe efficiencies were achieved for each 1 

catchment: Teddington Weir: calibration: 0.88; validation 0.86; Feildes Weir: calibration: 2 

0.68; validation 0.69; Days Weir: calibration: 0.86; validation 0.90. 3 

 4 

The ensemble of 100 future 100-year scenarios of rainfall and PET generated by UKCP09-5 

WG for both the SCN20 and SCN50, alongside the 10 BSL scenarios were used to drive 6 

CATCHMOD to produce synthetic river flow data for use as input into the water resource 7 

model. 8 

2.4 Water resource modelling 9 

To enable assessment of London’s Water Resource Zone scenarios a rule-based water 10 

resource management simulation program was developed for this study in the MatLab© 11 

programming language. This was parameterised with the same operational rules, flow, 12 

demand and capacity data as the Environment Agency’s implementation of the AQUATOR 13 

software (Oxford Scientific Software Ltd., 2004) for the Thames basin but is orders of 14 

magnitude faster and able to simulate 100 years’ conditions in ~1s. The London Area Rapid 15 

Water Resource Model (LARaWaRM) is a network model comprising nodes and links 16 

representing various water resource components and interactions.  Nodes can represent 17 

diversions, natural lakes, reservoirs, aquifers, wetlands, gauge sites with a defined time-series 18 

flow, and demand consumption sites. At each (daily) time step, water is moved according to 19 

the input data, with rules defining the behaviour of each node and link, and connectivity 20 

between components. 21 

Fig 4 presents a schematic of LARaWaRM which was used to investigate the potential 22 

impacts of climate change, socio-economic change and supply/demand options on the 23 

resource system. Synthetic river flows generated by CATCHMOD were input into 24 

LARaWaRM to evaluate the impacts of the downscaled climate change UKCP09 25 

probabilistic projections. 26 

Drought risk is estimated by the frequency, in terms of the number of days, that a demand 27 

saving (DS) measure is imposed. In water resources planning, demand saving measures or 28 

Levels of Service describe the average frequency that a company will apply restrictions on 29 

water use, triggered by reservoir control curves. In robust analysis of water resource systems,  30 

failure to meet a particular Level of Service can act as a suitable metric of risk and one against 31 
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which the effectiveness of interventions to a system can be judged (Hall et al., 2012; Groves 1 

and Lempert, 2007).  Table 1 describes these Levels of Service, restrictions and their target 2 

frequencies for the Thames basin.  3 

To explore the impact of population growth on drought risk, population and employment 4 

growth estimates were also used to scale current demand. Population estimates were taken 5 

from the Greater London Authority’s strategic plan for London (GLA, 2011) for up to 2031 6 

and then extrapolated at the same average annual growth rate of 51,000 to provide an estimate 7 

of population for 2050. Employment growth estimates were calculated using the Tyndall 8 

Centre for Climate Change’s methodology derived for the Urban Integrated Assessment 9 

Facility (see Hall et al., 2009; Walsh et al., 2011).  In addition, demand per capita was altered 10 

to reflect technological advances such as improved water efficiency measures. By altering the 11 

properties of existing links and nodes or introducing new links and nodes into the model 12 

domain, a number of supply adaptation options were also investigated.  13 

Adaptation options considered included: 14 

 Demand reduction: sensitivity analysis considering reduction in per capita demand 15 

between 0- 35%, at 5% intervals which represent a range of behavioural and technical 16 

efficiencies;  17 

 Desalination plant: capacity providing 150ML/day, which represents the Thames 18 

Water site at Beckton;  19 

 Leakage reduction: in 2010/11, Thames Water reported leakage losses of 26%; the UK 20 

water company average is 18.5% (GLA, 2011), a linear reduction in leakage to 18.5% 21 

by 2050 is applied;  22 

 New reservoir: storage capacity of 100 million m3 added to the 2050 runs, as 23 

realistically such infrastructure is planned over a 30 year timeframe;  24 

 Combinations of the above: the model’s computational efficiency enables a range of 25 

different combinations of adaptation options to be tested. 26 

3 Results 27 

3.1 Changes in rainfall and potential evapotranspiration  28 

For each sub-catchment, mean monthly precipitation was calculated for each of the 100 29 

simulated series for SCN20 and SCN50 and changes were examined relative to the median 30 

monthly precipitation derived from the 10 BSL simulations.  There is relative uniformity 31 
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across the 3 sub-catchments with a greater range in projections in summer months - the 1 

median estimate of change indicates a pattern of wetter winters and drier summers.  For 2 

SCN20 projected changes in mean precipitation are relatively small, <+10% in winter and >-3 

10% in summer but increase in magnitude to ~+15% to +20% and ~-10% to -30% 4 

respectively for SCN50 (see Fig 5).  The ensemble uncertainty shows that there could be 5 

substantially greater pressure on water resources - the 10th percentile indicating decreases 6 

projected for all seasons; for SCN50 this represents a typical decrease of ~45% during 7 

summer with a small (<~-5%) decrease in winter.  However, the 90th percentile suggests less 8 

stress with an increase in precipitation throughout the year. Mean seasonal precipitation was 9 

also calculated for each season and expressed as an anomaly from the long-term mean to 10 

determine the longest sequence of negative seasonal anomaly. This suggested the potential 11 

lengthening of periods with below average rainfall - for BSL the longest sequence was 10, 12 

whereas for SCN50 it was 18. However, we note that a limitation of applying change factors 13 

through a Weather Generator to assess future projections in rainfall is that it does not readily 14 

produce the longer sequences of dry periods (Wilby et al. 2014) that may produce multi-15 

seasonal droughts and hence stress the water supply system. 16 

The projected change in occurrence of precipitation was also assessed through the 17 

examination of dry day probabilities (PDD). Fig 6a demonstrates that for SCN20 the central 18 

estimate shows relatively little change in PDD relative to the BSL during winter and spring 19 

but that PDD is projected to increase in summer.  For SCN50 (Fig 6b) there remains little 20 

change in PDD during winter but there is a further increase between May and October with 21 

the median estimate of up to ~0.8 in August. 22 

Mean daily PET is projected to increase throughout the year (Fig 6c and 6d).  For SCN20 the 23 

largest increase occurs in summer, the central estimate indicating an absolute increase of 24 

~+0.3 mm d-1 relative to a BSL value of ~3.0 mm d-1.  For winter the change is smaller, ~+0.1 25 

mm d-1 relative to a BSL value of ~0.4 mm d-1.  However, these figures represent a larger 26 

relative increase in PET in winter.  For SCN50 the increase in summer is ~+0.6 mm d-1 with 27 

an additional increase in winter ~+0.1 mm d-1.  These combined changes demonstrate 28 

potential future pressure on water resources arising from climate change which is investigated 29 

further through the application of these ensemble projections to a rainfall runoff model and 30 

water resource model for the Thames. 31 
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3.2 Changes in river flows 1 

Precipitation and PET series for the two 100 member future scenario ensembles are used to 2 

generate river flows for the three sub-catchments using the CATCHMOD rainfall-runoff 3 

model.  Fig 7 shows the percentage change in monthly and seasonal flows for each sub-4 

catchment for SCN20 and SCN50 compared to the 10 BSL simulations. The bars show the 5 

median changes in flows, with the upper and lower horizontal bars showing the 10th and 90th 6 

percentiles, indicating the degree of uncertainty in the climate projections. Generally there is a 7 

large spread in the projections.  For SCN20, from February to June there is a small increase in 8 

median flows for the Upper Thames, and an even smaller increase in the Lower Thames, with 9 

the Lee showing a decrease during these months. All other months, for each catchment show 10 

decreases in median flows, with substantial decreases from July to December in SCN50. 11 

Plotted seasonally, the greatest decreases are evident in the autumn months (September, 12 

October and November). Mean estimates for flow quantiles (not shown) at Kingston, the 13 

outlet of the catchment, when compared with BSL, indicate a decrease for SCN20 across the 14 

entire flow duration curve, with greater decreases in Q90 and Q95 of 14% and 15% 15 

respectively. For SCN50 the simulations also show a decrease in mean flow quantiles across 16 

the entire flow duration curve, with the exception of higher flows i.e. Q5 and above. 17 

Decreases in lower flows are more substantial, with mean decreases of 33% and 37% in Q90 18 

and Q95 respectively. 19 

3.3 Water resource availability 20 

Initial analysis determined the relative impacts of climate change and population growth on 21 

drought risk, in terms of change in frequency of demand saving measures derived from 22 

LARaWaRM. Fig 8 presents the number of days that each of the DS measures are 23 

implemented for the baseline and SCN20 and SCN50 runs for i) the climate projections only; 24 

ii) changes in population growth only (where per capita allocation remains the same); iii) 25 

climate and population growth signals combined. Both climate projections (i) and population 26 

growth scenarios (ii) increase the frequency of all DS measures. The climate scenarios 27 

introduce a greater degree of variability and uncertainty into the frequency estimations which 28 

increases as the severity of the DS measure worsens. Considering the population signal alone, 29 

there is a smaller increase in SCN20 frequencies compared to the BSL scenarios. However, 30 

there is a greater shift in median values from SCN20 to SCN50. The relative contribution to 31 

drought risk from population growth is greater than that from the climate projections. 32 
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However, these simulations assume that per capita demand remains the same as present in 1 

SCN20 and SCN50.  2 

Fig 9 demonstrates the effectiveness of reducing demand, i.e. per capita allocation, on the 3 

frequency of DS4 measures for BSL, SCN20 and SCN50. Although probably unrealistic, a 4 

reduction in per capita allocation of 35% would eliminate the need for drought orders in the 5 

2020s. Even a small decrease of 3.75% in SCN20 reduces the median frequency by 50%. 6 

However, by the 2050s the growing population and intensification of the climate change 7 

signal means that the 35% reduction in per capita allocation is no longer effective, suggesting 8 

that new supply options may be required to complement demand management strategies by 9 

the 2050s.  10 

Therefore, we also investigated a number of supply options to supplement the currently 11 

available water. Fig 10 presents the frequency of DS4 days for a number of supply adaptation 12 

options for the 2020s and 2050s: i) a desalination plant: capacity of providing 150ML/day, 13 

which represents the Thames Water site at Beckton; ii) a linear reduction in leakage to 18.5% 14 

by 2050 is applied to the simulations; iii) reservoir: storage capacity of 100 million m3 is 15 

added to the 2050 runs as realistically such infrastructure is planned over a 30 year timeframe; 16 

iv) various combinations of i, ii and iii. In addition, results are shown for all cases with no 17 

reduction in per capita demand and for a reduction in per capita demand of 15% by 2020 and 18 

30% by 2050. Per capita demand is reduced by 15% in 2020 to bring this in line with the 19 

UK’s average per capita usage. By 2050 it is reduced by a further 15% to 30% to reflect the 20 

potential impact of demand saving measures e.g. water meters alone can create water savings 21 

of 10-15% per household (Environment Agency, 2007b).  22 

Individually, all options considered have a positive effect in reducing the frequency of DS4 23 

measures. The availability of 150ML/day from the desalination plant in 2020 reduces the 24 

median frequency value by around 100%; however, its effectiveness is diluted by 2050. For 25 

SCN50, reducing leakage has a greater impact than the desalination plant itself. Combinations 26 

of adaptation options improve the situation further. To obtain a 100% reduction in the median 27 

number of DS4 days by 2050, a combined contribution from leakage reduction and a new 28 

storage reservoir is necessary. An additional 37.5% improvement can be obtained by adding 29 

the contribution of the desalination plant to this portfolio. A 15% reduction in overall demand 30 

in 2020 and 30% in 2050 has a greater impact on reducing the frequency of DS4 days than 31 
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any of the individual or combined supply options. Introducing demand reduction also reduces 1 

the variability significantly.  2 

4 Discussion 3 

Between 2003 and 2006, England and Wales reported the third lowest rainfall since 1932-4 

1934; the Thames and the South East experienced exceptional regional rainfall deficits. Of 5 

particular importance was the disproportionate concentration of overall rainfall deficit in the 6 

winter and spring, when typically modest evaporation losses allow the bulk of reservoir 7 

replenishment and aquifer recharge (Marsh, 2007). Drought Severity Index analysis for the 8 

Thames catchment, as for other water resource regions in the south, shows an historical 9 

increase in drought intensity, and frequency of drought months in both wet and dry seasons, 10 

as well as frequency of drought events with persistence of at least 3 and 6 months (Rahiz and 11 

New, 2013). In this study, the combined projection of increased PDD and PET during 12 

summer months and lasting further into autumn, highlight the potential for increased 13 

frequency of such climate-driven water resource pressures in the future.  14 

The largest decreases in river flows are projected for September to November; with the 15 

greatest effects being decreases in low flows. At the outlet of the catchment projected mean 16 

change in Q90 is a 14% decrease, with a similar value, 15% for Q95 (SCN20). However, the 17 

changes are much greater for SCN50 – 33% for Q90 and 37% for Q95. Manning et al. (2009), 18 

found mean decreases in Q95 of 45% using the HadRM3H model and 37% using the 19 

HadRM3P model for the 2080s, using the medium-high scenario for the Thames. In their UK-20 

wide study, Christierson et al. (2012) highlight that the largest flow decrease was found in the 21 

Thames, Anglian and Severn river-basin regions, with a high probability assigned to decline 22 

in summer flows. They also conclude that the dispersion of distributions in projected monthly 23 

flows for the Thames catchment to be larger than the range of natural variability.  24 

There have been five major water resource droughts in the Thames catchment over the last 90 25 

years (Thames Water, 2014): 1920-21; 1933-34; 1943-44; 1975-76; 2010-2012. Most 26 

recently, the 24-month period from April 2010 to March 2012 was the driest in the 128 year 27 

record for the Thames catchment. During this period intensive media campaigns highlighted 28 

the drought and promoted water efficiency; in 2012 both a Temporary Use Ban and Non-29 

Essential Use ban restrictions were implemented (i.e. Level of Service 3 restrictions). Our 30 

results (see Fig 8a) clearly show that existing water supplies are sensitive to changing climate. 31 

In particular, the requirement for DS3 and DS4 measures is projected to increase by the 2020s 32 
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and more so by the 2050s. Similarly, Darch et al. (2011) found their central estimates of 1 

supply-demand deficiency for the London Water Resource Zone may increase from 51 2 

ML/day under the 2020s medium emissions scenario to 516 ML/day under the 2080s high 3 

emissions scenario, albeit with large uncertainties. Although they considered a wider range of 4 

climate projections, they did not consider how such impacts may be compounded by 5 

population growth; resulting in increasing demand for resources. 6 

Population growth, especially in London and the south-east will inevitably place increased 7 

pressure on already limited water resources. By 2031, the GLA (2011) expect London’s 8 

population to increase by 16-21%. Our analysis demonstrates the potential impacts of both 9 

climate change and population growth on water availability. Population projections are 10 

available up to 2031, beyond which we have extrapolated the average growth rate to 2050. It 11 

could be argued that this may be a conservative estimate as London continues to regenerate, 12 

expand and invest in major infrastructure projects to attract increased investment and 13 

agglomerations of organisations, and hence ultimately population. However, both climate 14 

changes and population growth will occur simultaneously, therefore the starting point for 15 

assessing the benefit of any supply and demand adaptation measures needs to be based upon 16 

the projections shown in Fig 8c. When comparing the expected frequency of level of 17 

service/demand saving measures from Thames Water (see Table 1), results show that targets 18 

are increasingly less likely to be met. For example, currently the target is to never implement 19 

DS4 measures, but our analysis indicates that these may be required once every two years by 20 

the 2020s and once every year by the 2050s.  21 

Globally, the greatest demand for water is driven by agriculture and industry; however, in the 22 

UK, given reduced industrial and mining demand for water, more emphasis has been placed 23 

on the demand management of potable water (McDonald, 2007). Supply-side solutions have 24 

dominated water management, with little attention given to long-term demand forecasting. 25 

Parker and Wilby (2013) reviewed approaches to water demand estimation and forecasting for 26 

daily-season and years-decade timescales for household water use. They concluded that little 27 

consideration has been given to UK household water demand estimation and forecasting 28 

under a changing climate. However, water demand management is increasingly recognised as 29 

a ‘low regret’ adaptation from both a financial and environmental point of view, which can be 30 

implemented at a range of scales from individuals and households to communities. Water 31 

meters have been shown to decrease water use by 10-15% per household (GLA, 2011), as 32 
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well as improve energy efficiency, given the substantial proportion of energy used to heat 1 

water within a household. The GLA have ambitious targets for the installation of water meters 2 

in London properties (all houses and blocks of flats by 2020 and all individual flats by 2025 3 

(GLA, 2011)). There are no guarantees on the uptake of demand saving measures such as 4 

water meters, grey water recycling or water efficient appliances; however, our analysis (see 5 

Fig 10) has demonstrated that even small reductions in per capita demand can reduce the 6 

median frequency of DS4 measures, for e.g. by 50% by the 2020s. A 35% reduction in per 7 

capita demand by 2020, which is perhaps unrealistic, would eliminate the risk of drought 8 

orders. The Future Water Strategy (DEFRA, 2008) suggests a target of reducing per capita 9 

usage from 150l to 130l per day, a 13% reduction, by 2030. By 2050, even a 35% reduction in 10 

per capita demand is no longer effective and new supply options need to be considered. 11 

The London Water Resource Zone supply-demand deficit is currently finely balanced and it is 12 

recognised that a new supply resource will be required by the end of the 2020s (Thames 13 

Water, 2014). The UK’s first desalination plant built in the Thames Gateway became 14 

operational in 2010. Our results show that this new resource increases the reliability of supply 15 

through the 2020s; however, by the 2050s, consistent with Borgomeo et al (2014), our 16 

analysis shows that further new resource may be required. Here, we go further to consider 17 

additional supply options. A new reservoir with a storage capacity of 100 million m3 is a 18 

beneficial new resource in the 2050s; however, in addition to the socio-economic costs of new 19 

schemes, climate sensitivity of both supply and demand reduction options also need to be 20 

considered. For instance leakage reduction and artificial recharge are not as sensitive to 21 

externalities as new storage options which require adequate precipitation or personal usage 22 

reductions given a warmer climate. In their 2011 study, Darch et al. found that the cost 23 

effectiveness of new reservoir options for the Thames catchment are sensitive to assumptions 24 

about climate change. Compulsory metering and leakage reduction schemes were selected 25 

under all of the scenarios, with a new reservoir option becoming plausible by the 2050s under 26 

medium emissions scenarios. By the 2080s it was found that a strategic transfer e.g. Severn-27 

Thames would also be necessary; alternatives such as indirect reuse and further desalination 28 

capacity were also considered but are much more expensive and carbon intensive (Darch et al. 29 

2011).  30 

Results from this study advocate the twin-track approach of demand reductions and new 31 

supply options to minimise the risk of severe imposed restrictions on water resources. 32 
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Considering a plausible representation of future climate, demand scenarios and potential 1 

adaptation strategies will aid water managers’ assessment of where vulnerabilities occur. Hall 2 

and Borgomeo (2013) proposed a framework to test strategies for adapting to risks that 3 

enables testing large numbers of synthetic hydrological sequences and allows exploration of 4 

different sources of uncertainty including climate, catchment responses and demands. In their 5 

case study on Adelaide’s southern water supply system, Beh et al., 2015a,b and Paton et al., 6 

2014 demonstrate a multi-objective evolutionary algorithm framework to consider the trade-7 

offs between reducing greenhouse gas emissions while planning sustainable urban water 8 

supply systems. Applied to North Carolina, Zeff et al., 2014 investigated how more flexible 9 

and adaptable water supply portfolios can be implemented alongside financial mitigation tools 10 

to reduce trade-offs between fluctuations of revenues and costs of implementing new 11 

solutions. Haasnoot et al. 2014 demonstrate the development of adaptation pathways whereby 12 

environment and policy responses are analysed through time to develop an ensemble of 13 

plausible futures to support decision making under uncertainty. Applying the approach and 14 

outcomes from this research in such risk frameworks would be valuable in considering costs, 15 

benefits and trade-offs of adaptation measures. This would facilitate adaptive strategies that 16 

are able to evolve as new information becomes available; this is particularly useful given 17 

climate model, demographic and supply uncertainty.   18 

This study has advanced understanding of the potential future water resource risk and possible 19 

adaptation options for managing these risks for the Thames catchment. However, the study 20 

has a number of limitations. We used the UKCP09 probabilistic climate scenarios only for the 21 

medium emission scenario, for two time periods; although Harris et al. (2013) indicate that for 22 

the 2080s the uncertainty in the UKCP09 PPE is the cause of a greater proportion of 23 

uncertainty in flow and water shortage probability than is caused by emissions scenario.  We 24 

used only one hydrological model, CATCHMOD, and one parameter set although this has 25 

been extensively tested for the Thames catchment (e.g. Davies, 2001; Wilby, 2005; Wilby and 26 

Harris, 2006; Manning et al., 2009). Wilby and Harris (2006) showed how both choice of 27 

hydrological model and choice of model parameters can affect the outcome of the modelling 28 

study. We have only considered the impacts of climate change and demand change on water 29 

resource availability at defined points in the future i.e. 2020s and 2050s; however, there is a 30 

growing practical interest on how changes play-out throughout a planning horizon such as an 31 

Asset Management Plan period. For this a transient implementation of the single-site NSRP 32 
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model and Climatic Research Unit (CRU) weather generator (Burton et al., 2010a; 1 

Blenkinsop et al., 2013) could be implemented (e.g. Goderniaux et al., 2011). 2 

5 Conclusions 3 

The application of a sequence of models, including an extension of the UKCP09 weather 4 

generator that generates downscaled, probabilistic projections of rainfall on a grid over the 5 

Thames catchment, indicates that the hazard of inadequate water supply is expected to 6 

increase as a function of both climatic and socio-economic drivers. Here we show that these 7 

hazards can be managed most effectively through a portfolio of adaptation measures.  8 

Population growth exhibits a greater contribution to drought risk than climate projections. An 9 

extreme reduction of 35% in daily per capita allocation would be necessary to offset 10 

application of drought orders by 2020. However, a relatively small decrease would have a 11 

significant impact, yet moving towards 2050 the need for new supply options could intensify. 12 

We found that increased supply from various adaptation options may compensate for 13 

increasingly variable flows; however, without reductions in overall demand for water 14 

resources such options will not be sufficient to adapt to both climate change projections and a 15 

growing population. For example, a 100% reduction in the median number of DS4 days by 16 

2050 can be achieved through leakage reduction and a new storage reservoir. An additional 17 

37.5% improvement can be obtained by adding the contribution of the desalination plant to 18 

this portfolio. A 15% reduction in overall demand in 2020 and 30% in 2050 has a greater 19 

impact on reducing the frequency of DS4 days than any of the individual or combinations of 20 

supply options. Water demand reductions are clearly important in reducing water resource 21 

deficits; however, given projected population growth these will need to be significant to offset 22 

demand increases alongside climate change.   23 

Like other cities, London is at risk from and needs to adapt to a range of climate-related 24 

hazards e.g. flooding, urban heat, subsidence (Hallett, 2013) that need to be managed 25 

synergistically to avoid any potential conflicts (Dawson, 2007).  Many urban areas have set 26 

greenhouse gas emission reduction targets (Heidrich et al., 2013), reducing water demand can 27 

reduce energy consumption as water use in the home accounts for 89% of all carbon 28 

emissions resulting from water use (EA, 2008), conversely the introduction of energy 29 

intensive adaptation options such as desalination plants or inter-basin transfers may conflict 30 

emission reduction targets.  31 
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Given the typical investment timescale to plan for, get approved and implement changes, 1 

decisions for water management infrastructure development can have consequences over long 2 

timescales (Hallegatte, 2009); when considering any major infrastructure investment and 3 

development such as a new reservoir a range of environmental, economic and social 4 

consequences need to be critically analysed.  The approach demonstrated here can be used to 5 

assess a range demand and supply adaptations that can be implemented and be effective on 6 

short and long timescales to make robust decisions about water resource management.  7 

This study of the Thames catchment and subsequent analysis has highlighted the following 8 

priorities for future research. Firstly, which will be addressed in a forthcoming paper, is an 9 

extension of the climate scenarios to include the 2080s time period, coupled with the 10 

application of a spatial weather generator feeding a physically based, spatially distributed 11 

hydrological model which will allow better representation of both the climatological and land 12 

cover heterogeneity of the catchment. Furthermore, it will enable changes in land cover i.e. 13 

increasing urban areas to be considered. Secondly, recognising the importance of groundwater 14 

in the Thames catchment and hence the potential impact that multi-season droughts may have 15 

on the area, further research is needed to understand how trends in such phenomena may 16 

affect or influence the choice of adaptation options. This, alongside a third research priority 17 

looking more generally about the sequencing of implementation of adaptation options over 18 

indicative planning horizons taking account of trade-offs with reducing greenhouse gas 19 

emissions or investment portfolios could make use of more robust decision making 20 

frameworks under uncertainty such as those proposed by for example Beh et al., 2015b or 21 

Haasnoot et al., 2014. 22 

 23 

Acknowledgements 24 

This work was undertaken as part of the SWERVE project which was funded by the 25 

Engineering and Physical Sciences Research Council (EPSRC) project no. EP/F037422/1. 26 

Richard Dawson was supported by an EPSRC Fellowship EP/H003630/1, and Hayley Fowler 27 

supported by a NERC post-doctoral Fellowship award (NE/D009588/1). Hayley Fowler is 28 

funded by the Wolfson Foundation and the Royal Society as a Royal Society Wolfson 29 

Research Merit Award (WM140025) holder. We would like to thank the reviewers for their 30 

valuable suggestions and comments. 31 

32 



 19 

References 1 

Beh, E. H. Y., Maier, H. R. and Dandy, G. C.: Scenario driven optimal sequencing under deep 2 

uncertainty, Environ. Modell. Softw., 68, 181-195, doi:10.1016/j.envsoft.2015.02.006, 2015a. 3 

Beh, E. H. Y., Maier, H. R. and Dandy, G. C.: Adaptive, multiobjective optimal sequencing 4 

approach for urban water supply augmentation under deep uncertainty, Water Resour. Res., 5 

51, 1529-1551, doi:10.1002/2014WR016254, 2015b. 6 

Blanc, J., Hall, J. W., Roche, N., Dawson, R. J., Cesses, Y., Burton, A., Kilsby, C. G.: 7 

Enhanced efficiency of pluvial flood risk estimation in urban areas using spatial-temporal 8 

rainfall simulations, Journal of Flood Risk Management, 5, 143-152, doi: 10.1111/j.1753-9 

318X.2012.01135.x, 2012. 10 

Blenkinsop, S., and Fowler, H. J.:  Changes in drought frequency, severity and duration for 11 

the British Isles projected by the PRUDENCE regional climate models.  J. Hydrol., 342, 50 – 12 

71, doi:10.1016/j.jhydrol.2007.05.003, 2007. 13 

Blenkinsop S., Harpham, C., Burton, A., Goderniaux, P., Brouyère, S. and Fowler, H. J.: 14 

Downscaling transient climate change with a stochastic weather generator for the Geer 15 

catchment, Belgium, Clim. Res., 57, 95-109, doi:10.3354/cr01170, 2013. 16 

Borgomeo E., Hall, J. W., Fung, F., Watts, G., Colquhoun, K., and Lambert C.: Risk-based 17 

water resources planning: Incorporating probabilistic nonstationary climate uncertainties, 18 

Water Resour. Res., 50, 6850-6873, doi: 10.1002/2014WR015558, 2014. 19 

Brown, C. and Wilby, R. L.: An alternate approach to assessing climate risks, Eos, Trans. 20 

Am. Geophys. Union, 93, 41, 401–402, doi: 10.1029/2012EO410001, 2012. 21 

Brown, C., Ghile, Y., Laverty, M. and Li, K.: Decision scaling: Linking bottom-up 22 

vulnerability analysis with climate projections in the water sector. Water Resour. Res., 48(9): 23 

W09537, doi:10.1029/2011WR011212, 2012. 24 

Burke E.J., and Brown, S. J.: Regional drought over the UK and changes in the future, J. 25 

Hydrol., 394, 471-485, doi:10.1016/j.jhydrol.2010.10.003, 2010. 26 

Burton, A., Kilsby, C. G., Fowler, H. J., Cowpertwait, P. S. P. and O'Connell, P. E.: RainSim: 27 

A spatial-temporal stochastic rainfall modelling system, Environ. Modell. Softw., 23, 1356-28 

1369, doi:10.1016/j.envsoft.2008.04.003, 2008. 29 

http://dx.doi.org/10.1016/j.jhydrol.2007.05.003


 20 

Burton, A., Fowler, H. J., Kilsby, C. G. and O'Connell P. E.: A stochastic model for the 1 

spatial-temporal simulation of nonhomogeneous rainfall occurrence and amounts, Water 2 

Resour. Res., 46, W11501, doi:10.1029/2009WR008884, 2010a. 3 

Burton A., Fowler, H. J., Blenkinsop, S. and Kilsby C. G.: Downscaling transient climate 4 

change using a Neyman-Scott Rectangular Pulses stochastic rainfall model, J. Hydrol., 381, 5 

18-32, doi:10.1016/j.jhydrol.2009.10.031, 2010b. 6 

Burton, A., Glenis, V., Jones, M. R. and Kilsby, C. G.: Models of daily rainfall cross-7 

correlation for the United Kingdom, Environ. Modell. Softw., 49, 22-33, 8 

doi: 10.1016/j.envsoft.2013.06.001, 2013. 9 

Christensen, N. S. and Lettenmaier, D. P.: A multimodel ensemble approach to assessment of 10 

climate change impacts on the hydrology and water resources of the Colorado River Basin, 11 

Hydrol. Earth Syst. Sc., 11, 1417–1434, doi:10.5194/hess-11-1417-2007, 2007. 12 

Christierson, B., Vidal, J. P. and Wade, S. D.: Using UKCP09 probabilistic climate 13 

information for UK water resource planning, J Hydrol., 48-67, 14 

doi:10.1016/j.jhydrol.2011.12.020, 2012.  15 

Cloke, H. L., Wetterhall, F., He, Y., Freer, J. E. and Papenberger, F.: Modelling climate 16 

impact on floods with ensemble climate projections, Q. J. Roy. Meteor. Soc., 139, 282-297, 17 

doi:10.1002/qj.1998, 2013. 18 

Coulthard, T. J., Ramirez, J.,  Fowler, H. J. and Glenis, V.: Using the UKCP09 probabilistic 19 

scenarios to model the amplified impact of climate change on river basin sediment yield, 20 

Hydrol. Earth Syst. Sc., 9, 8799-8840, doi:10.5194/hessd-9-8799-2012, 2014. 21 

Cowpertwait P. S. P.: A generalized spatial–temporal model of rainfall based on a clustered 22 

point process, P. R. Soc. A, 450, 163–175, doi:10.1098/rspa.1995.007, 1995. 23 

Darch. G., Arkell, B. and Tradewell, J.: Water resource planning under climate uncertainty in 24 

London. Atkins Report (Reference 5103993/73/DG/035) for the Adaptation Sub-Committee 25 

and Thames Water. Atkins, Epsom, 2011. 26 

Davis, R. J.: The effects of climate change on river flows in the Thames Region, Hydrology 27 

and Hydrometry report 00/04, Environment Agency, Reading, UK, 2001. 28 

Dawson, R.J.: Re-engineering cities: a framework for adaptation to global change, P. Roy. 29 

Soc. Lond. A Mat., 365, 3085-3098, doi:10.1098/rsta.2007.0008, 2007. 30 

http://dx.doi.org/10.1016/j.jhydrol.2011.12.020
http://www.ncl.ac.uk/ceg/research/publication/100237


 21 

Defra: Future Water: the Government's Water Strategy for England, London: TSO Cm7319, 1 

2008. 2 

Dessai, S., and Hulme M.: Assessing the robustness of adaptation decisions to climate change 3 

uncertainties: a case study on water resources management in the East of England, Global 4 

Environ. Chang., 17, 59 –72, doi:10.1016/j.gloenvcha.2006.11.005, 2007. 5 

Environment Agency: Water for the Future: Managing water resources in the South East of 6 

England – A discussion document, Environment Agency, Bristol, 2007a. 7 

Environment Agency: Towards water neutrality in the Thames Gateway: summary report. 8 

Science Report SC060100/SR3, Environment Agency, Bristol, 2007b. 9 

Environment Agency: Greenhouse gas emissions of water supply and demand management 10 

options. Science Report – SC070010. Environment Agency, Bristol, 2008. 11 

Environment Agency: Thames catchment abstraction licensing strategy, Environment 12 

Agency, Bristol, 2014. 13 

Goderniaux P, Brouyère, S., Blenkinsop, S., Burton, A., Fowler, H. J. Orban, P. and 14 

Dassargues, A.: Modeling climate change impacts on groundwater resources using transient 15 

stochastic climatic scenarios, Water Resour. Res., 47, W12516, doi:10.1029/2010WR010082, 16 

2011. 17 

Greater London Authority: Securing London’s Water Future, The Mayor’s Water Strategy, 18 

Greater London Authority, 2011. 19 

Groves, D. G. and Lempert R. J.: A new analytic method for finding policy-relevant 20 

scenarios, Global Environ. Chang, 17, 73-85, doi:10.1016/j.gloenvcha.2006.11.006, 2007.  21 

Groves, D. G., Yates, D. and Tebaldi C.: Developing and applying uncertain global climate 22 

change projections for regional water management planning, Water Resour. Res., 44, 23 

W12413, doi:10.1029/2008WR006964, 2008. 24 

Hall, J.W. and Borgomeo E.: Risk-based principles for defining and managing water security, 25 

Philos. T. R. Soc. A, 371, doi: 10.1098/rsta.2012.0407, 2013. 26 

Hall J. W., Dawson R. J., Walsh, C. L., Barker, T., Barr, S. L., Batty M., Bristow, A. L., 27 

Burton, A., Carney, S., Dagoumas, A., Evans, S., Ford, A. C., Glenis, V., Goodess, C. G., 28 

Harpham, C., Harwatt, H., Kilsby, C. G., Kohler, J., Jones, P., Manning, L., McCarthy, M., 29 

Sanderson, M., Tight, M. R., Timms, P. M. and Zanni, A.: Engineering Cities: How can cities 30 

http://dx.doi.org/10.1098/rsta.2012.0407


 22 

grow whilst reducing emissions and vulnerability? The Tyndall Centre for Climate Change 1 

Research, 2009.  2 

Hall, J.W., Watts, G., Keil, M.,. de Vial, L., Street, R., Conlan, K., O'Connell, P. E., Beven, 3 

K. J. and Kilsby C. G.: Towards risk-based water resources planning in England Wales under 4 

a changing climate. Water Environ. J., 26, 118-129, doi:10.1111/j.1747-6593.2011.00271.x, 5 

2012. 6 

Hallegatte, S.: Strategies to adapt to an uncertain climate change, Global Environ. Chang., 19, 7 

240-247, doi:10.1016/j.gloenvcha.2008.12.003, 2008.  8 

Hallett, S.: Community Resilience to Extreme Weather – the CREW Project: Final Report. 9 

http://www.extreme-weather-impacts.net, 2013. 10 

Harris, C. N. P, Quinn, A. D. and Bridgeman, J.: Quantification of uncertainty sources in a 11 

probabilistic climate change assessment of future water shortages, Climatic Change, 121, 317-12 

329, 2013. 13 

Haasnoot, M., van Deursen, M. P. A., Guillaume, J. H. A., Kwakkel, J. H., van Beek, E. and 14 

Middelkoop, H.: Fit for purpose? Building and evaluating a fast, integrated model for 15 

exploring water policy pathways, Environ. Modell. Softw, 60, 99-120, 16 

doi:10.1016/j.envsoft.2014.05.020, 2014. 17 

Heidrich, O., Dawson, R. J., Reckien, D. and Walsh C. L., Assessment of the climate 18 

preparedness of 30 urban areas in the UK, Climatic Change, 120, 4, 771-784, doi: 19 

10.1007/s10584-013-0846-9, 2013.  20 

Hewitt C., Mason, S. and Walland, D.: The global framework for climate services, Nature 21 

Climate Change, 2, 831-832, doi:10.1038/nclimate1745, 2012. 22 

IPCC: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III 23 

to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core 24 

Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp. 25 

2014. 26 

Jenkins, D.P., Patidar, S., Banfill, P. and Gibson, G.: Developing a probabilistic tool for 27 

assessing the risk of overheating in buildings for future climates, Renew. Energ., 61, 7-11, 28 

doi: 10.1016/j.renene.2012.04.035, 2014. 29 

http://dx.doi.org/10.1111/j.1747-6593.2011.00271.x
http://dx.doi.org/10.1111/j.1747-6593.2011.00271.x
http://www.extreme-weather-impacts.net/


 23 

Jones, R. N.: Managing uncertainty in climate change projections: issues for impact 1 

assessment, Climatic Change, 45, 403 –419, doi: 10.1023/A:1005551626280, 2000. 2 

Jones, P. D., Kilsby, C. G., Harpham, C., Glenis, V. and Burton, A.:  UK Climate Projections 3 

science report: Projections of future daily climate for the UK from the Weather Generator. 4 

University of Newcastle, UK, 2009. 5 

Kay, A. L. and Jones, D. A.: Transient changes in flood frequency and timing in Britain under 6 

potential projections of climate change, Int. J. Climatol., 32, 489-502, doi:10.1002/joc.2288, 7 

2012. 8 

Kilsby, C.G., Jones, P. D., Burton, A., Ford, A.C., Fowler, H. J., Harpham, C., James, P., 9 

Smith, A. and Wilby, R. L.: A daily weather generator for use in climate change studies, 10 

Environ. Modell. Softw, 22, 1705-1719, doi:10.1016/j.envsoft.2007.02.005, 2007. 11 

Lee, S.E. and Levermore G.: Simulating urban heat island effects with climate change on a 12 

Manchester house, Build. Serv. Eng. Res. T., 34, 203-221, doi: 10.1177/0143624412439485, 13 

2013. 14 

Lempert, R.J. and Groves, D.G.: Identifying and evaluating robust adaptive policy responses 15 

to climate change for water management agencies in the American west, Technol. Forecast. 16 

Soc., 77, 960-974, 10.1016/j.techfore.2010.04.007, 2010. 17 

Lopez, A., Fung, F., New, M. Watts, G., Weston, A. and Wilby, R. L.: From climate model 18 

ensembles to climate change impacts and adaptation: A case study of water resource 19 

management in the southwest of England, Water Resour. Res., 45, W08419, 20 

doi:10.1029/2008WR007499, 2009. 21 

Manning L.J., Hall, J. W., Fowler, H. J., Kilsby, C. G. and Tebaldi, C.: Using probabilistic 22 

climate change information from a multi-model ensemble for water resources assessment. 23 

Water Resour. Res., 45, W11411, doi:10.1029/2007WR006674, 2009. 24 

Marsh, T.: The 2004-2006 drought in southern Britain, Weather, 62, 7, 191-196, 2007. 25 

Matrosov, E. S., Woods, A. M. and Harou, J.: Robust Decision Making and Info-Gap 26 

Decision Theory for water resources system planning, J. Hydrol., 494, 43–58, doi: 27 

10.1016/j.jhydrol.2013.03.006, 2013. 28 

McDonald A. T.: Water demand and water needs in the UK [Chapter 2]. Royal Society of 29 

Chemistry Report on Water Management, 2007. 30 

http://dx.doi.org/10.1029/2008WR007499


 24 

Murphy J. M., Sexton, D. M. H., Jenkins, G.J., Boorman, P. M., Booth, B. B. B., Brown, C. 1 

C., Clark, R. T., Collins, M., Harris, G. R., Kendon, E. J., Betts, R. A., Brown, S. J., Howard, 2 

T. P., Humphrey, K. A., McCarthy, M. P., McDonald, R. E., Stephens, A., Wallace, C., 3 

Warren, R., Wilby, R., Wood, R. A.: UK Climate Projections Science Report: Climate change 4 

projections, Met Office Hadley Centre, Exeter, 2009. 5 

New, M., Lopez, A., Dessai, S. and Wilby, R.: Challenges in using probabilistic climate 6 

change information for impact assessments: An example from the water sector, Philos. T. R. 7 

Soc. A, 365, 2117–2131, doi:10.1098/rsta.2007.2080, 2007. 8 

Oxford Scientific Software Ltd.: A guide to AQUATOR. Oxford Scientific Software Ltd. 9 

2004. 10 

Parker, J. M. and Wilby, R. L.: Quantifying household water demand: a review of theory and 11 

practice in the UK, Water Resour. Manag., 27, 9581-1011, doi: 10.1007/s11269-012-0190-2, 12 

2013. 13 

Patidar, S., Jenkins, D. P., Banfill, P. and Gibson, G.: Simple statistical model for complex 14 

probabilistic climate projections: overheating risk and extreme events, Renew. Energ., 61, 23-15 

28, doi:10.1016/j.renene.2012.04.027, 2014. 16 

Paton, F. L., Maier, H. R. and Dandy, G. C.: Including adaptation and mitigation responses to 17 

climate change in a multi-objective evolutionary algorithm framework for urban water 18 

supply systems incorporating GHG emissions, Water Resour. Res., 50, 8, 6285-6304, doi: 19 

10.1002/2013WR015195, 2014. 20 

Perry, M., and Hollis, D.: The development of a new set of long-term climate averages for the 21 

UK, Int. J. Climatol., 25, 8, 1023-1039, doi:10.1002/joc.1160, 2005a. 22 

Perry, M., and Hollis, D.: The generation of monthly gridded datasets for a range of climatic 23 

variables over the UK, Int. J. Climatol., 25, 1041-1054, doi: 10.1002/joc.1161, 2005b. 24 

Rahiz, M and New, M.: Does a rainfall-based drought index simulate hydrological droughts? 25 

Int. J. Climatol., 34, 9, 2853-2871, doi:10.1002/joc.3879, 2013. 26 

Steinschneider, S., McCrary, R., Wi, S., Mulligan, K., Mearns, L., and Brown, C.: Expanded 27 

Decision-Scaling Framework to Select Robust Long-Term Water-System Plans under 28 

Hydroclimatic Uncertainties, Journal Water Res. Pl-ASCE, 141, 11, 04015023, 29 

10.1061/(ASCE)WR.1943-5452.0000536, 2015. 30 

http://dx.doi.org/10.1098/rsta.2007.2080
http://dx.doi.org/10.1007/s11269-012-0190-2
https://pureapps2.hw.ac.uk/portal/en/publications/simple-statistical-model-for-complex-probabilistic-climate-projections(491fc63c-90c5-45cf-a537-d8cd9950eed2).html
https://pureapps2.hw.ac.uk/portal/en/publications/simple-statistical-model-for-complex-probabilistic-climate-projections(491fc63c-90c5-45cf-a537-d8cd9950eed2).html
http://dx.doi.org/10.1016/j.renene.2012.04.027


 25 

 1 

Thames Water: Final Water Resources Management Plan 2015-2040. Thames Water Ltd. 2 

http://www.thameswater.co.uk/tw/common/downloads/wrmp/WRMP14_Section_1.pdf, 2014. 3 

Thompson, J. R.: Modelling the impacts of climate change on upland catchments in southwest 4 

Scotland using MIKE SHE and the UKCP09 probabilistic projections, Hydrol. Res., 43, 507-5 

530, doi:10.2166/nh.2012.105, 2012.  6 

Vidal J. P., and Wade, S.: A multimodel assessment of future climatological droughts in the 7 

United Kingdom, Int. J. Climatol., 29, 2056-2071, doi: 10.1002/joc.1843, 2009. 8 

Walsh, C. L., Dawson, R. J., Hall, J. W., Barr, S. L., Batty, M.,  Bristow, A. L., Carney S., 9 

Dagoumas, A., Ford, A. C., Harpham, C., Tight, M. R., Watters, H. and Zanni, A.: 10 

Assessment of climate change mitigation & adaptation in cities, Urban Design and Planning, 11 

164, 75-84, doi: 10.1680/udap.2011.164.2.75, 2011. 12 

Warren, A.J. and Holman, I. P.: Evaluating the effects of climate change on the water 13 

resources for the city of Birmingham, UK, Water Environ. J., 26, 361-370, 14 

doi: 10.1111/j.1747-6593.2011.00296.x, 2012.  15 

Whateley, S., Steinschneider, S., Brown, C.: A climate change range based method for 16 

estimating robustness for water resources supply. Water Resour. Res., 50(11): 8944-8961. 17 

Whitehead, P. G., Wilby, R. L., Butterfield, D. and Wade, A. J.: Impacts of climate change on 18 

in-stream nitrogen in a lowland chalk stream: An appraisal of adaptation strategies, Sci. Total 19 

Environ., 365, 1-3, 260-273, doi:10.1016/j.scitoenv.2006.02.040, 2006. 20 

Wilby, R. L.: Uncertainty in water resource model parameters used for climate change impact 21 

assessment, Hydrol. Process, 19, 3201 –3219, doi: 10.1002/hyp.581, 2005. 22 

Wilby, R. L., and Harris, I.: A framework for assessing uncertainties in climate change 23 

impacts: Low-flow scenarios for the River Thames, UK, Water Resour. Res., 42, W02419, 24 

doi:10.1029/2005WR004065, 2006.  25 

Wilby, R. L., Charles, S. P., Zorita, E., Timbal, B., Whetton, P. and Mearns, L. O.: Guidelines 26 

for Use of Climate Scenarios Developed from Statistical Downscaling Methods. IPCC Task 27 

Group on Scenarios for Climate Impact Assessment (TGCIA), Geneva, Switzerland. 28 

http://www.narccap.ucar.edu/doc/tgica-guidance-2004.pdf, 2004. 29 

http://www.thameswater.co.uk/tw/common/downloads/wrmp/WRMP14_Section_1.pdf
https://dspace.lib.cranfield.ac.uk/handle/1826/8243
https://dspace.lib.cranfield.ac.uk/handle/1826/8243
http://dx.doi.org/10.1029/2005WR004065
http://www.narccap.ucar.edu/doc/tgica-guidance-2004.pdf


 26 

Wilby, R. L., Greenfield, B and Glenny, C.: A coupled synoptic hydrological model for 1 

climate change impact assessment, J. Hydrol., 153, 265–290, doi:10.1016/0022-2 

1694(94)90195-3, 1994.  3 

Zeff, H. B., Kasprzyk, J. R., Herman, J. D., Reed, P. M. and Characklis, G. W.: Navigating 4 

financial and supply reliability tradeoffs in regional drought management portfolios, Water 5 

Resour. Res., 50, 4906-4923, 2014. 6 

 7 

8 



 27 

Figure 1. Methodological approach for the study of current and future water resources for the 1 

Thames. 2 

Figure 2. Map of the Thames basin showing the gauging stations at the outlet of the three sub-3 

basins: Upper Thames, Lower Thames and Lee. The grid cells correspond to the 5km spatially 4 

correlated gridded rainfall; the black grid cell indicates the catchment’s centroid cell for 5 

which PET was generated. 6 

Figure 3. Validation of CATCHMOD reproduction of observed flows. The calibration period 7 

against historical flows was 1/1/1961 - 31/12/1978 for Teddington and Days Weir, and  8 

1/1/1961 - 31/12/1975 for Feildes Weir. The validation period for all catchments was 9 

1/1/1979 - 31/12/2002. 10 

Figure 4. A schematic of LARaWaRM indicating the various water resource system 11 

components and interactions.  (NB: groundwater is include as an aggregate inflow of 467.4 12 

Ml/d to meet London’s demand. A proportion of the inflow to the water treatment works is 13 

leakage, this is equivalent to 12% of demand and is returned back to the river and modelled as 14 

a contribution to the minimum environmental flow.) 15 

Figure 5. Percentage change in precipitation for a) SCN20 and b) SCN50.  The bars denote 16 

the median change from the 100 member ensemble, the upper and lower horizontal lines 17 

indicate the ensemble 90th and 10th monthly percentiles respectively. 18 

Figure 6. Projected and baseline (BSL) statistics for dry day probability (PDD) and mean 19 

daily PET for SCN20 and SCN50 for Thames catchment.  For the ensemble projections the 20 

central estimate (p50) and upper and lower estimates represented by the 90th (p90) and 10th 21 

(p10) percentiles are shown. 22 

Figure 7. Percentage change in Upper Thames, Lower Thames, Lee catchments for monthly 23 

river flows for a) SCN20, monthly flows, b) SCN50, monthly flows, c) SCN20, seasonal 24 

flows, d) SCN50, seasonal flows (standard seasons plus winter half-year (WH) and summer 25 

half-year (SH). The bars denote the median change from the 100 member ensemble, the upper 26 

and lower horizontal lines indicate the ensemble 90th and 10th percentiles respectively. 27 

Figure 8. Number of demand saving days per 100 years (DS1 – DS4) under BSL, SCN20 and 28 

SCN50 scenarios for a) climate change projections only; b) population growth projections 29 

only; c) both climate and population projections, in all cases per capita demand remains 30 



 28 

constant at present day value. Box plots indicate the median, 25th and 75th percentile values; 1 

whiskers show the 10th and 90th percentile values. 2 

Figure 9. Number of DS4 days per 100 years for BSL, SCN20 and SCN50 under climate and 3 

population projections, for a range of reductions in per capita demand. Box plots indicate the 4 

median, 25th and 75th percentile values; whiskers show the 10th and 90th percentile values. 5 

Figure 10. Number of DS4 days per 100 years for SCN20 and SCN50 under climate and 6 

population projections, given a range of supply and demand management options. No = no 7 

supply measures; D=desalination plant providing up to 150ML/day; L = leakage targets 8 

(24.2% by 2020; 18.5% by 2050); R = reservoir of 100 million m3. Results are presented with 9 

no reduction in per capita demand and 15% reduction in 2020 and 30% reduction in 2050. 10 

Box plots indicate the median, 25th and 75th percentile values; whiskers show the 10th and 11 

90th percentile values. 12 
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 14 

15 
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Table 1. Levels of service: restrictions and frequency of restrictions (Source: GLA, 2011; 1 

Thames Water, 2014). See Supplementary Material Table 1 for reservoir total storage 2 

capacity trigger levels for the different levels of restrictions. 3 

Level of Service Restrictions Frequency of restrictions 

(Thames Water, 2014) 

DS1 Media campaigns, additional 

water efficiency activities, 

enhanced activity and 

restrictions to reduce risk to 

water supply    

1 in 5 years on average 

DS2 Enhanced media campaign, 

customer choice/voluntary 

constraint, sprinkler ban. 

1 in 10 years on average 

DS3 Temporary Use Ban (formerly 

hosepipe ban), Drought 

Direction 2011 (formerly non-

essential use bans) requiring 

the granting of an Ordinary 

Drought Order. 

1 in 20 years on average 

DS4 Severe water rationing e.g. 

rota cuts, stand pipes i.e. 

Emergency Drought Order.      

Never 
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Figure 1. Methodological approach for the study of current and future water resources for the 3 

Thames. 4 
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 1 

Figure 2. Map of the Thames basin showing the gauging stations at the outlet of the three sub-2 

basins: Upper Thames, Lower Thames and Lee. The grid cells correspond to the 5km spatially 3 

correlated gridded rainfall; the black grid cell indicates the catchment’s centroid cell for 4 

which PET was generated. 5 
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 1 

Figure 3. Validation of CATCHMOD reproduction of observed flows. The calibration period 2 

against historical flows was 1/1/1961 - 31/12/1978 for Teddington and Days Weir, and  3 

1/1/1961 - 31/12/1975 for Feildes Weir. The validation period for all catchments was 4 

1/1/1979 - 31/12/2002. 5 
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 2 

Figure 4. A schematic of LARaWaRM indicating the various water resource system 3 

components and interactions.  (NB: groundwater is included as an aggregate inflow of 467.4 4 

Ml/d to meet London’s demand. A proportion of the inflow to the water treatment works is 5 

leakage, this is equivalent to 12% of demand and is returned back to the river and modelled as 6 

a contribution to the minimum environmental flow.) 7 

8 
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 1 

Figure 5. Percentage change in precipitation for a) SCN20 and b) SCN50.  The bars denote 2 

the median change from the 100 member ensemble, the upper and lower horizontal lines 3 

indicate the ensemble 90th and 10th monthly percentiles respectively. 4 

5 
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 2 

Figure 6. Projected and baseline (BSL) statistics for dry day probability (PDD) and mean 3 

daily PET for SCN20 and SCN50 for Thames catchment.  For the ensemble projections the 4 

central estimate (p50) and upper and lower estimates represented by the 90th (p90) and 10th 5 

(p10) percentiles are shown. 6 
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 1 

Figure 7. Percentage change in Upper Thames, Lower Thames, Lee catchments for monthly 2 

river flows for a) SCN20, monthly flows, b) SCN50, monthly flows, c) SCN20, seasonal 3 

flows, d) SCN50, seasonal flows (standard seasons plus winter half-year (WH) and summer 4 

half-year (SH). The bars denote the median change from the 100 member ensemble, the upper 5 

and lower horizontal lines indicate the ensemble 90th and 10th percentiles respectively. 6 
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Figure 8. Number of demand saving days per 100 years (DS1 – DS4) under BSL, SCN20 and 1 

SCN50 scenarios for a) climate change projections only; b) population growth projections 2 

only; c) both climate and population projections, in all cases per capita demand remains 3 

constant at present day value. Box plots indicate the median, 25th and 75th percentile values; 4 

whiskers show the 10th and 90th percentile values. 5 

 6 

Figure 9. Number of DS4 days per 100 years for BSL, SCN20 and SCN50 under climate and 7 

population projections, for a range of reductions in per capita demand. Box plots indicate the 8 

median, 25th and 75th percentile values; whiskers show the 10th and 90th percentile values. 9 
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 1 

Figure 10. Number of DS4 days per 100 years for SCN20 and SCN50 under climate and 2 

population projections, given a range of supply and demand management options. No = no 3 

supply measures; D=desalination plant providing up to 150ML/day; L = leakage targets 4 

(24.2% by 2020; 18.5% by 2050); R = reservoir of 100 million m3. Results are presented with 5 

no reduction in per capita demand and 15% reduction in 2020 and 30% reduction in 2050. 6 

Box plots indicate the median, 25th and 75th percentile values; whiskers show the 10th and 7 

90th percentile values. 8 

 9 


