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Abstract 23 

The two-dimensional advection-dispersion equations coupled with sequential first-order decay 24 

reactions involving arbitrary number of species in groundwater system is considered to predict the 25 

two-dimensional plume behavior of decaying contaminant such as radionuclide and dissolved 26 

chlorinated solvent. Generalized analytical solutions in compact format are derived through the 27 

sequential application of the Laplace, finite Fourier cosine, and generalized integral transform to 28 

reduce the coupled partial differential equation system to a set of linear algebraic equations. The 29 

system of algebraic equations is next solved for each species in the transformed domain, and the 30 

solutions in the original domain are then obtained through consecutive integral transform inversions. 31 

Explicit form solutions for a special case are derived using the generalized analytical solutions and 32 

are compared with the numerical solutions. The analytical results indicate that the analytical solutions 33 

are robust, accurate and useful for simulation or screening tools to assess plume behaviors of decaying 34 

contaminants. 35 

 36 

Keywords: Parsimonious analytical model; reactive transport; first-order decay reaction; Bateman-37 

type source; radionuclide; dissolved chlorinated solvent. 38 
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1. Introduction 40 

    Experimental and theoretical studies have been undertaken to understand the fate and transport of 41 

dissolved hazardous substances in subsurface environments because that human health is threatened 42 

by a wide spectrum of contaminants in groundwater and soil. Analytical models are essential and 43 

efficient tools for understanding pollutants behavior in subsurface environments.  Several analytical 44 

solutions for single-species transport problems have been reported for simulating the transport of 45 

various contaminants (Batu, 1989; 1993; 1996; Chen et al., 2008a; 2008b; 2011; Gao et al., 2010; 2012; 46 

2013; Leij et al., 1991; 1993; Park and Zhan, 2001; Pérez Guerrero and Skaggs, 2010 ; Pérez Guerrero 47 

et al., 2013 ; van Genuchten and Alves, 1982; Yeh, 1981; Zhan et al., 2009; Ziskind et al., 2011). 48 

Transport processes of some contaminants such as radionuclides, dissolved chlorinated solvents and 49 

nitrogen generally involve a series of first-order or pseudo first-order sequential decay chain reactions. 50 

During migrations of decaying contaminants, mobile and toxic successor products may sequentially 51 

form and move downstream with elevated concentrations. Single-species analytical models do not 52 

permit transport behaviors of successor species of these decaying contaminants to be evaluated. 53 

Analytical models for multispecies transport equations coupled with first-order sequential decay 54 

reactions are useful tools for synchronous determination of the fate and transport of the predecessor 55 

and successor species of decaying contaminants. However, there are few analytical solutions for 56 

coupled multispecies transport equations compared to a large body of analytical solutions in the 57 

literature pertaining to the single-species advective-dispersive transport subject to a wide spectrum of 58 

initial and boundary conditions.     59 

Mathematical approaches have been proposed in the literature to derive a limited number of one-60 

dimensional analytical solutions or semi-analytical solutions for multispecies advective–dispersive 61 

transport equations sequentially coupled with first-order decay reactions. These include direct integral 62 

transforms with sequential substitutions (Cho, 1971; Lunn et al., 1996; van Genuchten, 1985, Mieles 63 
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and Zhan, 2012), decomposition by change-of-variables with the help of existing single-species 64 

analytical solutions (Sun and Clement, 1999; Sun et al., 1999a; 1999b), Laplace transform combined 65 

with decomposition of matrix diagonization (Quezada et al., 2004; Srinivasan and Clememt, 2008a; 66 

2008b), decomposition by change-of-variables coupled with generalized integral transform (Pérez 67 

Guerrero et al., 2009; 2010), sequential integral transforms in association with algebraic decomposition 68 

(Chen et al., 2012a; 2012b).   69 

Multi-dimensional solutions are needed for real world applications, making them more attractive 70 

than one-dimensional solutions. Bauer et al. (2001) presented the first set of semi-analytical solutions 71 

for one-, two-, and three-dimensional coupled multispecies transport problem with distinct retardation 72 

coefficients. Explicit analytical solutions were derived by Montas (2003) for multi-dimensional 73 

advective-dispersive transport coupled with first-order reactions for a three-species transport system 74 

with distinct retardation coefficients of species. Quezada et al. (2004) extended the Clement (2001) 75 

strategy to obtain Laplace-domain solutions for an arbitrary decay chain length. Most recently, Sudicky 76 

et al. (2013) presented a set of semi-analytical solutions to simulate the three-dimensional multi-77 

species transport subject to first-order chain-decay reactions involving up to seven species and four 78 

decay levels. Basically, their solutions were obtained species by species using recursion relations 79 

between target species and its predecessor species. For a straight decay chain, they derived solutions 80 

for up to four species and no generalized expressions with compact formats for any target species were 81 

obtained. Note that their solutions were derived for the first-type (Dirichlet) inlet conditions which 82 

generally bring about physically improper mass conservation and significant errors in predicting the 83 

concentration distributions especially for a transport system with a large longitudinal dispersion 84 

coefficient (Barry and Sposito, 1988; Parlange et al., 1992). Moreover, in addition to some special 85 

cases, the numerical Laplace transforms are required to obtain the original time domain solution. 86 

Besides the straight decay chain, the analytical model by Clement (2001) and Sudicky (2013) can 87 
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account for more complicated decay chain problems such as diverging, converging and branched decay 88 

chains. 89 

Based on the aforementioned reviews, this study presents a parsimonious explicit analytical model 90 

for two-dimensional multispecies transport coupled by a series of first-order decay reactions involving 91 

an arbitrary number of species in groundwater system. The derived analytical solutions have four 92 

salient features. First, the third-type (Robin) inlet boundary conditions which satisfy mass conservation 93 

are considered. Second, the solution is explicit, thus solution can be easily evaluated without invoking 94 

the numerical Laplace inversion. Third, the generalized solutions with parsimonious mathematical 95 

structures are obtained and valid for any species of a decay chain. The parsimonious mathematical 96 

structures of the generalized solutions are easy to code into a computer program for implementing the 97 

solution computations for arbitrary target species. Fourth, the derived solutions can account for any 98 

decay chain length. The explicit analytical solutions have applications for evaluation of concentration 99 

distribution of arbitrary target species of the real-world decaying contaminants. The developed 100 

parsimonious model is robustly verified with three example problems and applied to simulate the 101 

multispecies plume migration of dissolved radionuclides and chlorinated solvent. 102 

 103 

2. Governing equations and analytical solutions 104 

2.1 Derivation of analytical solutions 105 

This study consider the problem of decaying contaminant plume migration. The source zone is 106 

located in the upstream of groundwater flow. The source zone can represent leaching of radionuclide 107 

from a radioactive waste disposal facility or release of chlorinated solvent from the residual NAPL 108 

phase into the aqueous phase. After these decaying contaminants enter the aqueous phase, they migrate 109 

by one-dimensional advection with flowing groundwater and by simultaneously longitudinal and 110 

transverse dispersion processes. While migrating in the groundwater system, the contaminants undergo 111 
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linear isothermal equilibrium sorption and a series of sequential first-order decaying reactions. Sudicky 112 

et al. (2013) provided the detailed modeling scenario. The scenario considered in this study can be 113 

ideally described as shown in Fig. 1. A steady and uniform velocity in the x  direction is considered 114 

in Fig. 1. The governing equations describing two-dimensional reactive transport of the decaying 115 

contaminants and their successor species undergoing linear isothermal equilibrium sorption and a series 116 

of sequential first-order decaying reactions can be mathematically written as  117 
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where ),,( tyxCi  is the aqueous concentration of species i [ML-3]; x  and y  are the spatial 120 

coordinates in the groundwater flow and perpendicular directions [L], respectively; t  is time [T]; 121 

LD  and TD  represent the longitudinal and transverse dispersion coefficients [L2T-1], respectively; 122 

v  is the average steady and uniform pore-water velocity [LT-1]; ik  is the first-order decay rate 123 

constant of species i [T-1]; iR  is the retardation coefficient of species i [-]. Note that these equations 124 

consider that the decay reactions occur simultaneously in both the aqueous and sorbed phases. If the 125 

decay reactions occur only in the aqueous phase, the retardation coefficients in the decay terms in the 126 

right-hand sides of Eqs. (1a) and (1b) become unity. For such case, ik  and 1ik  in the left-hand sides 127 

could be modified as 
i

i

R

k
 and 

1

1





i

i

R

k
 to facilitate the application of the derived analytical solutions 128 

obtained by Eqs. (1a) and (1b). 129 
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The initial and boundary conditions for solving Eqs. (1a) and (1b) are: 130 

WyLxtyxCi  0 ,0     0)0,,(       ....1 Ni                                  (2) 131 
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where )(tfi  is the arbitrary time-dependent source concentration of species i applied at the source 136 

segment ( )()( 21 yyHyyH  ) at boundary (x = 0) which will be specified later [L], )(H is the 137 

Heaviside function, L and W are the length and width of the transport system under consideration 138 

[L]. Eq. (2) implies that the transport system is free of solute mass at the initial time. 139 

Eq. (3) means that a third-type boundary condition satisfying mass conservation at the inlet boundary 140 

is considered. Eq. (4) considers the concentration gradient to be zero at the exit boundary based on 141 

the mass conservation principle. Such a boundary condition has been widely used for simulating 142 

solute transport in a finite-length system. Eqs. (5) and (6) assume no solute flux across the lower and 143 

upper boundaries. It is noted that in Eq. (3), we assume arbitrary time-dependent sources of species i 144 

uniformly distributed at the segment ( 21 yyy  ) of the inlet boundary ( 0x ), the so-called 145 

Heaviside function source concentration profile. Relative to the first type boundary conditions used 146 

by Sudicky et al. (2013), the third-type boundary conditions which satisfy mass conservation at the 147 

inlet boundary (Barry and Sposito, 1988; Parlange et al., 1992) are used herein. Sudicky et al. (2013) 148 

considered the source concentration profiles as Gaussian or Heaviside step functions. If Gaussain 149 

distributions are desired, we can easily replace the Heaviside function in the right-hand side of Eq. 150 
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(3) with a Gaussian distribution. 151 

Eqs. (1)-(6) can be expressed in dimensionless form as  152 
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Our solution strategy used is extended from the approach proposed by Chen at al. (2012a; 2012b). 161 

The core of this approach is that the coupled partial differential equations are converted into an 162 

algebraic equation system via a series of integral transforms and the solutions in the transformed 163 

domain for each species are directly and algebraically obtained by sequential substitutions.   164 

  Following Chen et al. (2012a; 2012b), the generalized analytical solutions in compact formats can 165 

be obtained as follows (with detailed derivation provided in Appendix A) 166 
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  Concise expressions for arbitrary target species such as described in Eqs. (13) to (15) facilitate the 175 

development of a computer code for implementing the computations of the analytical solutions.  176 

The generalized solutions of Eq. (13) accompanied by two corresponding auxiliary functions 177 

),,( Tnp li   and ),,( Tnq li  in Eqs. (14)-(15) can be applied to derive analytical solutions for some 178 
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special-case inlet boundary sources.  Here the time-dependent decaying source which represents the 179 

specific release mechanism defined by the Bateman equations (van Genuchten, 1985) is considered.   180 

A Bateman-type source is described by  181 
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or in dimensionless form, 183 
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The coefficients imb  and mmm    account for the first-order decay reaction rate ( m ) of each 185 

species in the waste source and the release rate ( m ) of each species from the waste source,  186 
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By substituting Eq. (16b) into Eqs. (13)-(15), we obtain  188 
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 195 

2.2 Convergence behavior of the Bateman-type source solution 196 

   Based on the special-case analytical solutions in Eq. (17) supported by two auxiliary functions, 197 

defined in Eqs. (18) and (19), a computer code was developed in FORTRAN 90 language with double 198 

precision. The details of the FORTRAN computer code are described in Supplement. The derived 199 

analytical solutions in Eqs. (17)-(19) consist of summations of double infinite series expansions for 200 

the finite Fourier cosine and generalized integral transform inversions, respectively. It is 201 

straightforward to sum up these two infinite series expansions term by term. To avoid time-consuming 202 

summations of these infinite series expansions, the convergence tests should be routinely executed to 203 

determine the optimal number of the required terms for evaluating analytical solutions to the desired 204 

accuracies. Two-dimensional four-member radionuclide decay chain 205 

RaThUPu
226230234238

  is considered herein as convergence test example 1 to demonstrate 206 

the convergence behavior of the series expansions. This convergence test example 1 is modified from 207 

a one-dimensional radionuclide decay chain problem originated by Higashi and Pigford (1980) and 208 

later applied by van Genuchten (1985) to illustrate the applicability of their derived solution.  The 209 

important model parameters related to this test example are listed in Tables 1 and 2. The inlet source 210 

is chosen to be symmetrical with respect to the x -axis and conveniently arranged in the 211 

mym  60 40   segment at the inlet boundary.    212 

In order to determine the optimal term number of series expansions for the finite Fourier cosine 213 

transform inverse to achieve accurate numerical evaluation, we specify a sufficiently large number of 214 
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series expansions for the generalized transform inverse so that the influence of the number of series 215 

expansions for the generalized integral transform inverse on convergence of series expansion for finite 216 

Fourier cosine transform inverse can be excluded. A similar concept is used when investigating the 217 

required number of terms in the series expansions for the generalized integral transform inverse. An 218 

alternative approach is conducted by simultaneously varying the term numbers of series expansions 219 

for the generalized integral transform inverse and the finite Fourier cosine transform inverse.   220 

Tables 3, 4 and 5 give results of the convergence tests up to 3 decimal digits of the solution 221 

computations along the three transects (inlet boundary at x =0 m, x =25 m, and exit boundary at x222 

=250m). In these tables M  and N  are defined as the numbers of terms summed for the generalized 223 

integral transform inverse and finite Fourier cosine transform inverse, respectively. It is observed that 224 

M  and N  are related closely to the true values of the solutions. For smaller true values, the solutions 225 

must be computed with greater M  and N . However, convergences can be drastically speeded up if 226 

lower calculation precision (e.g. 2 decimal digits accuracy) is acceptable. For example, 227 

)200,100(),( NM  is sufficient for 2 decimal digits accuracy, while for 3 decimal digits accuracy we 228 

need )8000,1600(),( NM . Two decimal digits accuracy is acceptable for most practical problems. 229 

It is also found that M  increases and N  decreases with increasing x .  230 

To further examine the series convergence behavior, example 2 considers a transport system of 231 

large aspect ratio (
m

m

W

L

100

500,2
 ) and a narrower source segment, m 55 45  ym , on the inlet 232 

boundary. Tables 6 and 7 present results of the convergence tests of the solution computations along 233 

two transects (inlet boundary and x =250 m). Tables 6 and 7 also show similar results for the 234 

dependences of M  and N on x . Note that larger M  and N  are required for each species in this 235 

test example, suggesting that the evaluation of the solution for a large aspect ratio requires more series 236 

expansion terms to achieve the same accuracy as compared to example 1. Detailed results of the 237 
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convergence test examples 1 and 2 are provided in Supplement.  238 

Using the required numbers determined from the convergence test, the computational time for 239 

evaluation of the solutions at 50 different observations only takes 3.782s, 11.325s, 23.95s and 67.23s 240 

computer clock time on an Intel Core i7-2600 3.40 MHz PC for species 1, 2, 3, and 4 in the comparison 241 

of example 1.  242 

 243 

3. Results and discussion 244 

3.1 Comparison of the analytical solutions with the numerical solutions  245 

Three comparison examples are considered to examine the correctness and robustness of the 246 

analytical solutions and the accuracy of the computer code. The first comparison example is the four-247 

member radionuclide transport problem used in the convergence test example 1. The second 248 

comparison example considers the four-member radionuclide transport problem used in the 249 

convergence test example 2. The third comparison example is used to test the accuracy of the computer 250 

code for simulating the reactive contaminant transport of a long decay chain. The three comparison 251 

examples are executed by comparing the simulated results of the derived analytical solutions with the 252 

numerical solutions obtained using the Laplace transformed finite difference (LTFD) technique first 253 

developed by Moridis and Reddell (1991). A computer code for the LTFD solution are written in 254 

FORTTRAN language with double precision. The details of the FORTRAN computer code is 255 

described in Supplement. 256 

Figures 2, 3 and 4 depicts the spatial concentration distribution along one longitudinal direction 257 

( 50y  m) and two transverse directions ( 0x  m and 25x  m) for convergence test example 1 258 

at t = 1,000 year obtained from analytical solutions and numerical solutions. Figures 5, 6 and 7 present 259 

the spatial concentration distribution along one longitudinal direction ( 50y  m) and two transverse 260 

directions ( 0x  m and 25x  m) for the convergence test example 2 at t = 1,000 year obtained 261 
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from analytical solutions and numerical solutions. Excellent agreements between the two solutions for 262 

both examples are observed for a wide spectrum of concentration, thus warranting the accuracy and 263 

robustness of the developed analytical model. 264 

The third example involves a 10 species decay chain previously presented by Srinivasan and 265 

Clement (2008a) to evaluate the performance of their one-dimensional analytical solutions. The 266 

relevant model parameters are summarized in Tables 8 and 9. Our computer code is also compared 267 

against the LTFD solutions for this example. Figure 8 depicts the spatial concentration distribution at 268 

t = 20 days obtained analytically and numerically. Again there is excellent agreement between the 269 

analytical and numerical solutions, demonstrating the performance of our computer code for 270 

simulating transport problems with a long decay chain. The three comparison results clearly establish 271 

the correctness of the analytical model and the accuracy and capability of the computer code. 272 

 273 

3.2 Assessing physical and chemical parameters on the radionuclide plume migration 274 

    Physical processes and chemical reactions affect the extent of contaminant plumes, as well as 275 

concentration levels. To illustrate how the physical processes and chemical reactions affect 276 

multispecies plume development, we consider the four-member radionuclide decay chain used in the 277 

previous convergence test and solution verification.  The model parameters are the same, except that 278 

the longitudinal ( LD ) and transverse ( TD ) dispersion coefficients are varied. Three sets of 279 

longitudinal and transverse dispersion coefficients LD =1,000, TD =100; LD =1,000, TD  =200; 280 

LD =2000, TD =200 (all in m2/year) are tested, all for a simulation time of 1,000 years.   281 

Figure 9 illustrates the spatial concentration of four species at t = 1,000 year for the three sets of 282 

dispersion coefficients.  The mobility of plumes of 234U and 230Th is retarded because of their stronger 283 

sorption ability. Hence the least retarded  226Ra plume extensively migrated to 200 m × 60 m area 284 
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in the simulation domain, whereas the 234U and 230Th plumes are confined within 60 m × 50 m area 285 

in the simulation domain. The moderate mobility of 238Pu reflects the fact that it is a medial sorbed 286 

member of this radionuclide decay chain. The high concentration level of 234U accounts for the high 287 

first-order decay rate constant of its parent species 238Pu and its own low first-order decay rate constant. 288 

The plume extents and concentration levels may be sensitive to longitudinal and transverse dispersion. 289 

Increase of the longitudinal and/or transverse dispersion coefficients enhances the spreading of the 290 

plume extensively along the longitudinal and/or transverse directions, thereby lowering the plume 291 

concentration level. Because the concentration levels of the four radionuclides are influenced by both 292 

source release rates and decay chain reactions, 230Th has the least extended plume area, while 226Ra 293 

has the greatest plume area for all three set of dispersion coefficients. These dispersion coefficients 294 

only affect the size of plumes of the four radionuclide, but the order of their relative plume size remains 295 

the same (i.e. 226Ra > 238Pu > 234U > 230Th for the simulated condition). Indeed, in the reactive 296 

contaminant transport, the chemical parameters of sorption and decay rate are more important than the 297 

physical parameters of dispersion coefficients that govern the order of the plume extents and the 298 

concentration levels. 299 

 300 

3.3 Simulating the natural attenuation of chlorinated solvent plume migration 301 

Natural attenuation is the reduction in concentration and mass of the contaminant due to 302 

naturally occurring processes in the subsurface environment. The process is monitored for regulatory 303 

purposes to demonstrate continuing attenuation of the contaminant reaching the site-specific 304 

regulatory goals within reasonable time, hence, the use of the term monitored natural attenuation 305 

(MNA). MNA has been widely accepted as a suitable management option for chlorinated solvent 306 

contaminated groundwater. Mathematical model are widely used to evaluate the natural attenuation 307 

of plumes at chlorinated solvent sites. The multispecies transport analytical model developed in this 308 
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study provides an effective tool for evaluating performance of the monitoring natural attenuation of 309 

plumes at a chlorinated solvent site because a series of daughter products produced during 310 

biodegradation of chlorinated solvent such as PCE→TCE→DCE→VC→ETH. Thus simulation of 311 

the natural attenuation of plumes a chlorinated solvent constitutes an attractive field application 312 

example of our multispecies transport model.  313 

A study of 45 chlorinated solvent sites by McGuire et al. (2014) found that mathematical 314 

models were used at 60% of these sites and that the public domain model BIOCHLOR (Aziz et al., 315 

2000) provided by the Center for Subsurface Modeling Support (CSMoS) of USEPA was the most 316 

commonly used model. An illustrated example from BIOCHLOR manual (Aziz et al., 2000) is 317 

considered to demonstrate the application of the developed analytical model. This example 318 

application demonstrated that BIOCHLOR can reproduce plume movement from 1965 to 1998 at the 319 

contaminated site of Cape Canaveral Air Station, Florida. The simulation conditions and transport 320 

parameters for this example application are summarized in Table 10. Constant source concentrations 321 

rather than exponentially declining source concentration of five-species chlorinated solvents are 322 

specified in the mym  7.122 7.90   segment at the inlet boundary ( 0x ). This means that the 323 

exponents ( im ) of Bateman-type sources in Eqs. (16a) or (16b) need to be set to zero for the constant 324 

source concentrations and source intensity constants ( imb ) are set to zero when subscript i does not 325 

equal to subscript m. Table 11 lists the coefficients of Bateman-type boundary source used for this 326 

example application involving the five-species dissolved chlorinated solvent problem. Spatial 327 

concentration contours of five-species at t = 1 year obtained from the derived analytical solutions for 328 

natural attenuation of chlorinated solvent plumes are depicted in Fig. 10. It is observed that the 329 

mobility of plumes is quite sensitive to the species retardation factors, whereas the decay rate 330 

constants determine the plume concentration level. The plumes can migrate over a larger region for 331 

species having a low retardation factor such as VC. The low decay rate constants such as ETH have 332 
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higher concentration distribution than the VC. It should be noted that a larger extent of plume 333 

observed for ETH in Fig. 10 is mainly attributed the plume mass accumulation from the predecessor 334 

species VC that have a larger plume extent. The effect of high retardation of the ETH is hindered by 335 

the mass accumulation of the predecessor species VC. 336 

 337 

4. Conclusions 338 

We present an analytical model with a parsimonious mathematical format for two-dimensional 339 

multispecies advective-dispersive transport of decaying contaminants such as radionuclides, 340 

chlorinated solvents and nitrogen. The developed model is capable of accounting for the temporal and 341 

spatial development of an arbitrary number of sequential first-order decay reactions. The solution 342 

procedures involve applying a series of Laplace, finite Fourier cosine and generalized integral 343 

transforms to reduce a partial differential equation system to an algebraic system, solving for the 344 

algebraic system for each species, and then inversely transforming the concentration of each species 345 

in transformed domain into the original domain. Explicit special solutions for Bateman type source 346 

problems are derived via the generalized analytical solutions. The convergence of the series expansion 347 

of the generalized analytical solution is robust and accurate. These explicit solutions and the computer 348 

code are comparing with the results computed by the numerical solutions. The two solutions agree well 349 

for a wide spectrum of concentration variations for three test examples. The analytical model is applied 350 

to assess the plume development of radionuclide and dissolved chlorinated solvent decay chain. The 351 

results show that dispersion only moderately modifies the size of the plumes, without altering the 352 

relative order of the plume sizes of different contaminant. It is suggested that retardation coefficients, 353 

decay rate constants and the predecessor species plume distribution mainly govern the order of plume 354 

size in groundwater. Although there are a number of numerical reactive transport models that can 355 

account for multispecies advective-dispersive transport, our analytical model with a computer code 356 
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that can directly evaluate the two-dimensional temporal-spatial concentration distribution of arbitrary 357 

target species without involving the computation of other species. The analytical model developed in 358 

this study effectively and accurately predicts the two-dimensional radionuclide and dissolved 359 

chlorinated plume migration. It is a useful tool for assessing the ecological and environmental impact 360 

of the accidental radionuclide releases such as the Fukushima nuclear disaster where multiple 361 

radionuclides leaked through the reactor, subsequently contaminating the local groundwater and ocean 362 

seawater in the vicinity of the nuclear plant. It is also a screening model that simulates remediation by 363 

natural attenuation of dissolved solvents at chlorinated solvent release sites. It should be noted the 364 

derived analytical model still has its application limitations. The model cannot handle the site with 365 

non-uniform groundwater flow or with multiple distinct zones. Furthermore, the developed model 366 

cannot simulate the more complicated decay chain problems such as diverging, converging and 367 

branched decay chains. The analytical model for more complicated decay chain problems can be 368 

pursued in the near future.  369 

 370 

 371 

 372 

  373 
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Appendix A 374 

Derivation of analytical solutions 375 

In this appendix, we elaborate on the mathematical procedures for deriving the analytical solutions. 376 

The Laplace transforms of Eqs. (7a), (7b), (9)-(12) yield 377 
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where s  is the Laplace transform parameter, and ),,( sYXGi  and )(sFi  are defined by the Laplace 385 

transformation relations as 386 
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The finite Fourier cosine transform is used here because it satisfies the transformed governing 390 
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equations in Eqs. (A1a) and (A2b) and their corresponding boundary conditions in Eqs. (A4) and (A5). 391 

Application of the finite Fourier cosine transform on Eqs. (A1)-(A3) leads to  392 
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parameter,  ),,( snXH i is defined by the following conjugate equations (Sneddon, 1972) 398 
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Using changes-of-variables, similar to those applied by Chen and Liu (2011), the advective terms 401 

in Eqs. (A8a) and A(8b) as well as nonhomogeneous terms in Eq. (A9) can be easily removed.  Thus, 402 

substitutions of the change-of-variable into Eqs. (A8a), (A8b), (A9) and (A10) result in diffusive-type 403 

equations associated with homogeneous boundary conditions  404 
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where ),,( snXU i is defined as the following change-of-variable relation409 
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As detailed in Ozisik (1989), the generalized integral transform pairs for Eqs. (A13a) and (A13b) 411 

and its associated boundary conditions (A14) and (A15) are defined as 412 
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The generalized integral transforms of Eqs. (13a) and (13b) give 
418 
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Solving for Eqs. (A20) and (A21) algebraically for each species, ),,( snZ li  , in sequence, leads 422 

to  423 
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Upon inspection of Eqs. (A22)-(A25), compact expressions valid for all species can be generalized as  429 
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    The solutions in the original domain are obtained by a series of integral transform inversions in 432 

combination with changes-of-variables.   433 

     The inverse generalized integral transform of Eq. (A26) gives  434 
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Using change-of-variable relation of Eq. (A16), one obtains 436 
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     The finite Fourier cosine inverse transform of Eq. (A28) results in  438 
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The analytical solutions in the original domain will be completed by taking the Laplace inverse 440 

transform of Eq. (A29). ),,( snP li   in Eq. (29) is in the form of the product of two functions .  The 441 

Laplace transform of 
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 can be easily obtained as  442 
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Thus, the Laplace inverse of ),,( snP li   can be achieved using the convolution theorem as  444 
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The Laplace inverse of ),,( snQ li   can be also approached using the similar method. By taking 446 

Laplace inverse transform on ),,( snQ li  , we have  447 
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Expressing 
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 as the summation of partial fractions and applying the inverse 451 

Laplace transform formula, one gets  452 
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 455 

Recall that the inverse Laplace transform of )(1 sF ki   is )(1 Tf ki  . Thus, the Laplace inverse 456 
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transform of 
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 in Eq. (1) can be achieved using the convolution integral 457 

equation as  458 
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Putting Eq. (A34) into Eq. (A2) we can obtain the following form: 460 
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Thus, the final solution can be expressed as Eq.(13) with the corresponding functions defined in Eqs.(14) 462 

and (15). 463 

    Note that Eq. (A33) is invalid for some of 
2ji  being identical. For such conditions, we can 464 

still reduce  
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 to a sum of partial fraction expansion. However, it will lead to 465 

different Laplace inverse formulae. For example, the following formulae is used for all 
2ji  being 466 

identical 467 
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The generalized formulae for the cases with some of 
2ji  being identical will not be provided 469 
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herein because there are a large number of combinations of 
2ji . We suggest that the readers can 470 

pursue the solutions by following the similar steps for such specific conditions case by case.  471 
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Table 1  588 

Transport parameters used for convergence test example 1 involving the four-species radionuclide 589 

decay chain problem used by van Genuchten (1985) 590 

Parameter Value 

Domain length, L  [m] 250 

Domain width, W  [m] 100 

Seepage velocity, v  [m year-1] 100 

Longitudinal Dispersion coefficient, LD  [m2 year-1] 1,000 

Transverse Dispersion coefficient, TD  [m2 year-1] 100 

Retardation coefficient, iR   

Pu
238  10,000 

U
234  14,000 

Th
230  50,000 

Ra
226  500 

Decay constant, ik  [year-1]  

Pu
238  0.0079 

U
234  0.0000028 

Th
230  0.0000087 

Ra
226  0.00043 

Source decay constant, m  [year-1]  

Pu
238  0.0089 

U
234  0.00100280 

Th
230  0.00100870 

Ra
226  0.00143 

 591 

  592 
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Table 2  593 

Values for coefficients of Bateman-type boundary source for four-species transport problem used by 594 

van Genuchten (1985) 595 

Species, i imb  

m=1 m=2 m=3 m=4 

Pu
238 , i=1 25.1     

U
234 , i=2 25044.1  25044.1    

Th
230 , i=3 3

10443684.0


  
593431.0  593874.0   

Ra
226 , i=4 6

10516740.0


  
1

10120853.0


  
1

10122637.0


  
3

10178925.0


  

 596 

  597 
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Table 3 598 

Solution convergence of each species concentration at transect of inlet boundary ( 0x ) for four-599 

species radionuclide transport problem considering simulated domain of 250L  m, 100W  m, 600 

subject to Bateman-type sources located at mym  60 40   for t  = 1,000 year  (M = number of 601 

terms summed for inverse generalized integral transform; N = number of terms summed for inverse 602 

finite Fourier cosine transform). When we investigate the required M for inverse generalized integral 603 

transform, N=16,000 for the finite Fourier cosine transform inverse are used. When we investigate the 604 

required N for inverse finite Fourier cosine transform, M=1,600 for the generalized transform inverse 605 

are used. 606 

Pu
238  607 

x  [m] y  [m] M =100 M =200 M =400 M =800 M =1,600 

0 30 2.714E-07 2.712E-07 2.711E-07 2.710E-07 2.710E-07 

0 34 3.412E-06 3.412E-06 3.411E-06 3.411E-06 3.411E-06 

0 38 2.677E-05 2.677E-05 2.677E-05 2.677E-05 2.677E-05 

0 46 1.608E-04 1.609E-04 1.609E-04 1.609E-04 1.609E-04 

0 50 1.637E-04 1.637E-04 1.637E-04 1.637E-04 1.637E-04 

x  [m] y  [m] N =1,000 N =2,000 N =4,000 N =8,000 N =16,000 

0 30 2.723E-07 2.713E-07 2.711E-07 2.710E-07 2.710E-07 

0 34 3.413E-06 3.412E-06 3.411E-06 3.411E-06 3.411E-06 

0 38 2.677E-05 2.677E-05 2.677E-05 2.677E-05 2.677E-05 

0 46 1.609E-04 1.609E-04 1.609E-04 1.609E-04 1.609E-04 

0 50 1.637E-04 1.637E-04 1.637E-04 1.637E-04 1.637E-04 

U
234  608 

x  [m] y  [m] M =25 M =50 M =100 M =200 M =400 

0 32 1.092E-03 1.091E-03 1.090E-03 1.090E-03 1.090E-03 

0 34 4.829E-03 4.827E-03 4.826E-03 4.826E-03 4.825E-03 

0 38 5.745E-02 5.753E-02 5.753E-02 5.753E-02 5.753E-02 

0 46 3.999E-01 4.004E-01 4.005E-01 4.005E-01 4.005E-01 

0 50 4.044E-01 4.049E-01 4.049E-01 4.049E-01 4.049E-01 

x  [m] y  [m] N =500 N =1,000 N =2,000 N =4,000 N =8,000 

0 32 1.107E-03 1.094E-03 1.091E-03 1.090E-03 1.090E-03 

0 34 4.850E-03 4.831E-03 4.827E-03 4.826E-03 4.825E-03 

0 38 5.761E-02 5.755E-02 5.753E-02 5.753E-02 5.752E-02 
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0 46 4.0005E-01 4.005E-01 4.005E-01 4.005E-01 4.005E-01 

0 50 4.049E-01 4.049E-01 4.049E-01 4.049E-01 4.049E-01 

Th
230  609 

x  [m] y  [m] M =100 M =200 M =400 M =800 M =1,600 

0 34 1.498E-06 1.495E-06 1.493E-06 1.492E-06 1.492E-06 

0 38 4.269E-05 4.267E-05 4.267E-05 4.266E-05 4.266E-05 

0 42 6.847E-04 6.848E-04 6.848E-04 6.848E-04 6.848E-04 

0 46 7.259E-04 7.260E-04 7.260E-04 7.260E-04 7.260E-04 

0 50 7.273E-04 7.274E-04 7.274E-04 7.274E-04 7.274E-04 

x  [m] y  [m] N =1,000 N =2,000 N =4,000 N =8,000 N =16,000 

0 34 1.514E-06 1.497E-06 1.493E-06 1.492E-06 1.492E-06 

0 38 4.274E-05 4.268E-05 4.267E-05 4.266E-05 4.266E-05 

0 42 6.847E-04 6.848E-04 6.848E-04 6.848E-04 6.848E-04 

0 46 7.259E-04 7.260E-04 7.260E-04 7.260E-04 7.260E-04 

0 50 7.274E-04 7.274E-04 7.274E-04 7.274E-04 7.274E-04 

Ra
226  610 

x  [m] y  [m] M =50 M =100 M =200 M =400 M =800 

0 18 3.084E-08 3.082E-08 3.082E-08 3.081E-08 3.081E-08 

0 24 1.294E-07 1.293E-07 1.293E-07 1.293E-07 1.293E-07 

0 28 3.492E-07 3.492E-07 3.492E-07 3.492E-07 3.492E-07 

0 44 2.217E-05 2.222E-05 2.223E-05 2.223E-05 2.223E-05 

0 50 2.425E-05 2.430E-05 2.431E-05 2.431E-05 2.431E-05 

x  [m] y  [m] N =1,000 N =2,000 N =4,000 N =8,000 N =16,000 

0 18 3.086E-08 3.082E-08 3.082E-08 3.081E-08 3.081E-08 

0 24 1.294E-07 1.293E-07 1.293E-07 1.293E-07 1.293E-07 

0 28 3.493E-07 3.492E-07 3.492E-07 3.492E-07 3.492E-07 

0 44 2.223E-05 2.223E-05 2.223E-05 2.223E-05 2.223E-05 

0 50 2.431E-05 2.431E-05 2.431E-05 2.431E-05 2.431E-05 

 611 

 612 

 613 
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Table 4 614 

Solution convergence of each species concentration at transect of 25x  m for four-species 615 

radionuclide transport problem considering simulated domain of 250L  m, 100W  m, subject 616 

to Bateman-type sources located at mym  60 40   for t  = 1,000 year  (M = number of terms 617 

summed for inverse generalized integral transform; N = number of terms summed for inverse finite 618 

Fourier cosine transform). When we investigate the required M for inverse generalized integral 619 

transform, N=160 for the finite Fourier cosine transform inverse are used. When we investigate the 620 

required N for inverse finite Fourier cosine transform, M=1,600 for the generalized transform inverse 621 

are used. 622 

Pu
238  623 

x  [m] y  [m] M =100 M =200 M =400 M =800 M =1,600 

25 28 5.531E-08 5.576E-08 5.580E-08 5.580E-08 5.580E-08 

25 30 2.319E-07 2.312E-07 2.312E-07 2.311E-07 2.311E-07 

25 38 1.106E-05 1.106E-05 1.106E-05 1.106E-05 1.106E-05 

25 46 3.430E-05 3.430E-05 3.430E-05 3.430E-05 3.430E-05 

25 50 3.616E-05 3.616E-05 3.616E-05 3.616E-05 3.616E-05 

x  [m] y  [m] N =10 N =20 N =40 N =80 N =160 

25 28 -7.841E-07 9.961E-08 5.579E-08 5.580E-08 5.580E-08 

25 30 -4.063E-07 2.616E-07 2.312E-07 2.311E-07 2.311E-07 

25 38 1.195E-05 1.114E-05 1.106E-05 1.106E-05 1.106E-05 

25 46 3.404E-05 3.441E-05 3.430E-05 3.430E-05 3.430E-05 

25 50 3.817E-05 3.606E-05 3.616E-05 3.616E-05 3.616E-05 

U
234  624 

x  [m] y  [m] M =100 M =200 M =400 M =800 M =1,600 

25 30 9.734E-05 9.612E-05 9.594E-05 9.592E-05 9.592E-05 

25 34 1.727E-03 1.725E-03 1.724E-03 1.724E-03 1.724E-03 

25 38 1.167E-02 1.167E-02 1.167E-02 1.167E-02 1.167E-02 

25 46 4.023E-02 4.024E-02 4.024E-02 4.024E-02 4.024E-02 

25 50 4.177E-02 4.178E-02 4.178E-02 4.178E-02 4.178E-02 

x  [m] y  [m] N =10 N =20 N =40 N =80 N =160 

25 30 -9.427E-04 1.728E-04 9.610E-05 9.592E-05 9.592E-05 

25 34 3.154E-03 1.588E-03 1.725E-03 1.724E-03 1.724E-03 

25 38 1.324E-02 1.186E-02 1.167E-02 1.167E-02 1.167E-02 
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25 46 3.984E-02 4.049E-02 4.024E-02 4.024E-02 4.024E-02 

25 50 4.487E-02 4.153E-02 4.178E-02 4.178E-02 4.178E-02 

625 
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Th
230  626 

x  [m] y  [m] M =100 M =200 M =400 M =800 M =1,600 

25 30 1.822E-08 1.379E-08 1.312E-08 1.305E-08 1.305E-08 

25 34 3.288E-07 3.207E-07 3.195E-07 3.193E-07 3.193E-07 

25 38 2.766E-06 2.740E-06 2.735E-06 2.735E-06 2.735E-06 

25 46 1.013E-05 1.015E-05 1.015E-05 1.015E-05 1.015E-05 

25 50 1.043E-05 1.045E-05 1.045E-05 1.045E-05 1.045E-05 

x  [m] y  [m] N =10 N =20 N =40 N =80 N =160 

25 30 -2.948E-07 4.484E-08 1.320E-08 1.305E-08 1.305E-08 

25 34 7.000E-07 2.632E-07 3.196E-07 3.193E-07 3.193E-07 

25 38 3.246E-06 2.816E-06 2.735E-06 2.735E-06 2.735E-06 

25 46 1.005E-05 1.025E-05 1.015E-05 1.015E-05 1.015E-05 

25 50 1.134E-05 1.035E-05 1.045E-05 1.045E-05 1.045E-05 

Ra
226  627 

x  [m] y  [m] M =25 M =50 M =100 M =200 M =400 

25 10 2.681E-08 2.757E-08 2.767E-08 2.765E-08 2.765E-08 

25 14 6.580E-08 6.665E-08 6.676E-08 6.674E-08 6.674E-08 

25 18 1.606E-07 1.615E-07 1.617E-07 1.617E-07 1.617E-07 

25 42 1.686E-05 1.658E-05 1.656E-05 1.656E-05 1.656E-05 

25 50 2.315E-05 2.278E-05 2.277E-05 2.277E-05 2.277E-05 

x  [m] y  [m] N =10 N =20 N =40 N =80 N =160 

25 10 -5.355E-08 3.027E-08 2.766E-08 2.765E-08 2.765E-08 

25 14 7.068E-08 6.392E-08 6.675E-08 6.674E-08 6.674E-08 

25 18 2.642E-07 1.640E-07 1.617E-07 1.617E-07 1.617E-07 

25 42 1.624E-05 1.655E-05 1.656E-05 1.656E-05 1.656E-05 

25 50 2.311E-05 2.275E-05 2.277E-05 2.277E-05 2.277E-05 

 628 

  629 
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Table 5 630 

Solution convergence of each species concentration at transect of exit boundary ( 250x  m) for four-631 

species radionuclide transport problem considering simulated domain of 250L  m, 100W  m 632 

subject to Bateman-type sources located at mym  60 40   for t  = 1000 year  (M = number of 633 

terms summed for inverse generalized integral transform and  N = number of terms summed for 634 

inverse finite Fourier cosine transform). When we investigate the required M for inverse generalized 635 

integral transform, N=16 for the finite Fourier cosine transform inverse are used. When we investigate 636 

the required N for inverse finite Fourier cosine transform, M=6,400 for the generalized transform 637 

inverse are used. 638 

 639 

Ra
226  640 

x  [m] y  [m] M =400 M =800 M =1,600 M =3,200 M =6,400 

250 2 2.289E-08 1.842E-08 1.814E-08 1.812E-08 1.812E-08 

250 14 5.617E-08 5.060E-08 5.025E-08 5.022E-08 5.022E-08 

250 26 1.528E-07 1.420E-07 1.413E-07 1.413E-07 1.413E-07 

250 38 3.757E-07 2.743E-07 2.678E-07 2.674E-07 2.674E-07 

250 50 1.645E-07 3.208E-07 3.306E-07 3.312E-07 3.312E-07 

x  [m] y  [m] N =1 N =2 N =4 N =8 N =16 

250 2 1.529E-07 -1.848E-09 1.892E-08 1.812E-08 1.812E-08 

250 14 1.529E-07 5.348E-08 4.946E-08 5.022E-08 5.022E-08 

250 26 1.529E-07 1.627E-07 1.414E-07 1.413E-07 1.413E-07 

250 38 1.529E-07 2.666E-07 2.680E-07 2.674E-07 2.674E-07 

250 50 1.529E-07 3.089E-07 3.303E-07 3.312E-07 3.312E-07 

 641 

  642 
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Table 6 643 

Solution convergence of each species concentration at transect of inlet boundary ( 0x  m) for four-644 

species radionuclide transport problem considering simulated domain of 500,2L  m, 100W  m 645 

subject to Bateman-type sources located at mym  55 45   for t  = 1,000 year  (M = number of 646 

terms summed for inverse generalized integral transform; N = number of terms summed for inverse 647 

finite Fourier cosine transform). When we investigate the required M for inverse generalized integral 648 

transform, N=12,800 for the finite Fourier cosine transform inverse are used. When we investigate the 649 

required N for inverse finite Fourier cosine transform, M=6,400 for the generalized transform inverse 650 

are used. 651 

 652 

Pu
238  653 

x  [m] y  [m] M =400 M =800 M =1,600 M =3,200 M =6,400 

0 36 5.395E-07 5.391E-07 5.389E-07 5.387E-07 5.387E-07 

0 38 1.908E-06 1.908E-06 1.908E-06 1.907E-06 1.907E-06 

0 42 1.640E-05 1.642E-05 1.642E-05 1.642E-05 1.642E-05 

0 46 1.203E-04 1.199E-04 1.198E-04 1.198E-04 1.198E-04 

0 50 1.522E-04 1.524E-04 1.525E-04 1.525E-04 1.525E-04 

x  [m] y  [m] N =2,000 N =4,000 N =8,000 N =16,000 N =32,000 

0 36 5.392E-07 5.389E-07 5.388E-07 5.387E-07 5.387E-07 

0 38 1.908E-06 1.908E-06 1.907E-06 1.907E-06 1.907E-06 

0 42 1.642E-05 1.642E-05 1.642E-05 1.642E-05 1.642E-05 

0 46 1.198E-04 1.198E-04 1.198E-04 1.198E-04 1.199E-04 

0 50 1.525E-04 1.525E-04 1.525E-04 1.525E-04 1.525E-04 

U
234  654 

x  [m] y  [m] M =800 M =1,600 M =3,200 M =6,400 M =12,800 

0 36 4.817E-04 4.815E-04 4.815E-04 4.814E-04 4.814E-04 

0 38 2.348E-03 2.348E-03 2.348E-03 2.348E-03 2.348E-03 

0 44 1.011E-01 1.012E-01 1.012E-01 1.012E-01 1.012E-01 

0 48 3.704E-01 3.705E-01 3.705E-01 3.705E-01 3.705E-01 

0 50 3.862E-01 3.864E-01 3.864E-01 3.864E-01 3.864E-01 

x  [m] y  [m] N =4,000 N =8,000 N =16,000 N =32,000 N =64,000 

0 36 4.818E-04 4.816E-04 4.815E-04 4.814E-04 4.814E-04 

0 38 2.348E-03 2.348E-03 2.348E-03 2.348E-03 2.348E-03 
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0 44 1.013E-01 1.013E-01 1.012E-01 1.012E-01 1.012E-01 

0 48 3.705E-01 3.705E-01 3.705E-01 3.705E-01 3.705E-01 

0 50 3.864E-01 3.864E-01 3.864E-01 3.864E-01 3.864E-01 

Th
230  655 

x  [m] y  [m] M =400 M =800 M =1,600 M =3,200 M =6,400 

0 40 3.429E-06 3.427E-06 3.424E-06 3.423E-06 3.423E-06 

0 42 1.773E-05 1.783E-05 1.782E-05 1.782E-05 1.782E-05 

0 44 1.028E-04 1.089E-04 1.093E-04 1.093E-04 1.093E-04 

0 48 7.095E-04 7.089E-04 7.090E-04 7.090E-04 7.090E-04 

0 50 7.210E-04 7.205E-04 7.206E-04 7.206E-04 7.206E-04 

x  [m] y  [m] N =2,000 N =4,000 N =8,000 N =16,000 N =32,000 

0 40 3.430E-06 3.425E-06 3.424E-06 3.423E-06 3.423E-06 

0 42 1.783E-05 1.782E-05 1.782E-05 1.782E-05 1.782E-05 

0 44 1.093E-04 1.093E-04 1.093E-04 1.093E-04 1.093E-04 

0 48 7.090E-04 7.090E-04 7.090E-04 7.090E-04 7.090E-04 

0 50 7.206E-04 7.206E-04 7.206E-04 7.206E-04 7.206E-04 

Ra
226  656 

x  [m] y  [m] M =400 M =800 M =1,600 M =3,200 M =6,400 

0 24 3.557E-08 3.556E-08 3.556E-08 3.555E-08 3.555E-08 

0 28 9.276E-08 9.274E-08 9.273E-08 9.273E-08 9.273E-08 

0 40 2.159E-06 2.159E-06 2.159E-06 2.159E-06 2.159E-06 

0 44 7.739E-06 7.809E-06 7.813E-06 7.813E-06 7.813E-06 

0 50 2.072E-05 2.082E-05 2.083E-05 2.084E-05 2.084E-05 

x  [m] y  [m] N =1,000 N =2,000 N =4,000 N =8,000 N =16,000 

0 24 3.559E-08 3.557E-08 3.556E-08 3.555E-08 3.555E-08 

0 28 9.278E-08 9.275E-08 9.274E-08 9.273E-08 9.273E-08 

0 40 2.159E-06 2.159E-06 2.159E-06 2.159E-06 2.159E-06 

0 44 7.815E-06 7.814E-06 7.813E-06 7.813E-06 7.813E-06 

0 50 2.084E-05 2.084E-05 2.084E-05 2.084E-05 2.084E-05 

 657 

658 
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Table 7 659 

Solution convergence of each species concentration at transect of 250x  m for four-species 660 

radionuclide transport problem considering simulated domain of 500,2L  m, 100W  m subject 661 

to Bateman-type sources located at mym  55 45   for t  = 1,000 year  (M = number of terms 662 

summed for inverse generalized integral transform;  N = number of terms summed for inverse finite 663 

Fourier cosine transform). When we investigate the required M for inverse generalized integral 664 

transform, N=160 for the finite Fourier cosine transform inverse are used. When we investigate the 665 

required N for inverse finite Fourier cosine transform, M=12,800 for the generalized transform inverse 666 

are used. 667 

Pu
238  668 

x  [m] y  [m] M =200 M =400 M =800 M =1,600 M =3,200 

25 32 2.578E-08 2.569E-08 2.564E-08 2.563E-08 2.563E-08 

25 34 1.153E-07 1.162E-07 1.161E-07 1.161E-07 1.161E-07 

25 40 3.485E-06 3.661E-06 3.661E-06 3.661E-06 3.661E-06 

25 46 2.262E-05 2.176E-05 2.163E-05 2.163E-05 2.163E-05 

25 50 2.752E-05 2.920E-05 2.929E-05 2.929E-05 2.929E-05 

x  [m] y  [m] N =10 N =20 N =40 N =80 N =160 

25 32 -7.217E-07 4.318E-08 2.558E-08 2.563E-08 2.563E-08 

25 34 -1.422E-06 1.470E-07 1.162E-07 1.161E-07 1.161E-07 

25 40 4.741E-06 3.665E-06 3.661E-06 3.661E-06 3.661E-06 

25 46 2.175E-05 2.155E-05 2.163E-05 2.163E-05 2.163E-05 

25 50 2.713E-05 2.938E-05 2.929E-05 2.929E-05 2.929E-05 

U
234  669 

x  [m] y  [m] M =200 M =400 M =800 M =1,600 M =3,200 

25 34 3.937E-05 4.038E-05 4.022E-05 4.019E-05 4.019E-05 

25 36 2.029E-04 2.162E-04 2.160E-04 2.159E-04 2.159E-04 

25 42 5.649E-03 7.897E-03 7.936E-03 7.936E-03 7.936E-03 

25 46 2.695E-02 2.593E-02 2.565E-02 2.564E-02 2.564E-02 

25 50 2.913E-02 3.552E-02 3.585E-02 3.586E-02 3.586E-02 

x  [m] y  [m] N =10 N =20 N =40 N =80 N =160 

25 34 -2.184E-03 1.134E-04 4.038E-05 4.019E-05 4.019E-05 

25 36 -2.113E-03 1.975E-04 2.158E-04 2.159E-04 2.159E-04 
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25 42 1.118E-02 8.092E-03 7.936E-03 7.936E-03 7.936E-03 

25 46 2.580E-02 2.544E-02 2.564E-02 2.564E-02 2.564E-02 

25 50 3.262E-02 3.608E-02 3.586E-02 3.586E-02 3.586E-02 

 670 

Th
230  671 

x  [m] y  [m] M =800 M =1,600 M =3,200 M =6,400 M =12,800 

25 36 3.192E-08 3.181E-08 3.180E-08 3.179E-08 3.179E-08 

25 38 1.578E-07 1.576E-07 1.576E-07 1.576E-07 1.576E-07 

25 44 3.838E-06 3.914E-06 3.914E-06 3.914E-06 3.914E-06 

25 48 8.531E-06 8.539E-06 8.539E-06 8.539E-06 8.539E-06 

25 50 9.253E-06 9.261E-06 9.261E-06 9.262E-06 9.262E-06 

x  [m] y  [m] N =10 N =20 N =40 N =80 N =160 

25 36 -6.448E-07 2.862E-08 3.167E-08 3.179E-08 3.179E-08 

25 38 -1.271E-07 1.141E-07 1.577E-07 1.576E-07 1.576E-07 

25 44 4.705E-06 3.925E-06 3.914E-06 3.914E-06 3.914E-06 

25 48 7.869E-06 8.534E-06 8.540E-06 8.539E-06 8.539E-06 

25 50 8.345E-06 9.353E-06 9.261E-06 9.262E-06 9.262E-06 

Ra
226  672 

x  [m] y  [m] M =100 M =200 M =400 M =800 M =1600 

25 12 1.268E-08 1.273E-08 1.272E-08 1.272E-08 1.272E-08 

25 18 4.817E-08 4.822E-08 4.821E-08 4.821E-08 4.821E-08 

25 26 2.830E-07 2.824E-07 2.824E-07 2.824E-07 2.824E-07 

25 42 8.794E-06 7.484E-06 7.578E-06 7.579E-06 7.579E-06 

25 50 1.761E-05 1.449E-05 1.494E-05 1.497E-05 1.497E-05 

x  [m] y  [m] N =10 N =20 N =40 N =80 N =160 

25 12 8.791E-08 1.264E-08 1.272E-08 1.272E-08 1.272E-08 

25 18 -1.512E-07 4.713E-08 4.821E-08 4.821E-08 4.821E-08 

25 26 5.221E-07 2.830E-07 2.824E-07 2.824E-07 2.824E-07 

25 42 7.960E-06 7.587E-06 7.578E-06 7.579E-06 7.579E-06 

25 50 1.458E-05 1.498E-05 1.494E-05 1.497E-05 1.497E-05 

 673 
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Table 8 675 

Transport parameters used for verification example 2 involving the ten-species transport problem 676 

used by Srinivasan and Clement (2008b)  677 

Parameter Value 

Domain length, L  [m] 250 

Domain width, W  [m] 100 

Seepage velocity, v  [m year-1] 5 

Longitudinal Dispersion coefficient, LD  [m2 year-1] 50 

Transverse Dispersion coefficient, TD  [m2 year-1] 50 

Retardation coefficient, iR   

i=1, 2,…,10 

 

1.9, 1, 1.4, 1, 5, 8, 1.4, 3.1, 1, 1 

Decay constant, ik  [year-1] 

i=1, 2,…,10 

 

3, 2, 1.5, 1.25, 2.75, 1, 0.75, 0.5, 0.25, 0.1 

Source decay constant, m   [year-1] 

m=1, 2,…,10 

0.1, 0.75, 0.5, 0.25, 0, 0, 0.3, 1, 0, 0.65 

 678 

 679 

 680 

  681 
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Table 9  682 

Coefficients of Bateman-type boundary source for ten-species transport problem used by Srinivasan 683 

and Clement (2008b) 684 

Species, i imb  

 m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10 

Species 1   10          

Species 2   0 5         

Species 3   0 0 2.5        

Species 4   0 0 0 0       

Species 5 0 0 0 0 10      

Species 6 0 0 0 0 0 5     

Species 7 0 0 0 0 0 0 2.5    

Species 8 0 0 0 0 0 0 0 0   

Species 9 0 0 0 0 0 0 0 0 0  

Species 10 0 0 0 0 0 0 0 0 0 0 

 685 

 686 

 687 

 688 
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 689 

Table 10  690 

Transport parameters used for example application involving the five-species dissolved chlorinated 691 

solvent problem used by BIOCHLOR. 692 

Parameter Value 

Domain length, L  [m] 330.7 

Domain width, W  [m] 213.4 

Seepage velocity, v  [m year-1] 34.0 

Longitudinal dispersion coefficient, LD  [m2 year-1] 449 

Transverse dispersion coefficient, TD  [m2 year-1] 44.9 

Retardation coefficient, iR  [-]  

PCE  7.13 

TCE  2.87 

DCE  2.8 

VC  1.43 

ETH 5.35 

Decay constant, ik  [year-1]  

PCE  2 

TCE  1 

DCE  0.7 

VC  0.4 

ETH 0 

Source decay rate constant, m  [year-1]  

PCE 0 

TCE 0 

DCE 0 

VC 0 

ETH 0 
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Table 11  693 

Coefficients of Bateman-type boundary source used for example application involving the five-694 

species dissolved chlorinated solvent problem used by BIOCHLOR. 695 

 

Species, i 

imb   

m=1 m=2 m=3 m=4 m=5 

PCE , i=1 0.056     

TCE , i=2  15.8    

DCE , i=3   98.5   

VC , i=4    3.08  

ETH , i=5     0.03 

 696 

 697 

 698 

 699 

 700 

 701 
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 702 

 703 

Figures Captions 704 

Fig. 1. Schematic representation of two-dimensional transport of decaying contaminants in a uniform 705 

flow field with flux boundary source located at of the inlet boundary. 706 

Fig. 2. Comparison of spatial concentration profiles of four species along the longitudinal direction 707 

(=50 m) at t = 1,000 years obtained from derived analytical solutions and numerical 708 

solutions for convergence test example 1 of four-member radionuclide decay chain 709 

238Pu→234U→230Th→226Ra . 710 

Fig. 3. Comparison of spatial concentration profiles of four species along the transverse direction (=0 711 

m) at t = 1,000 years obtained from derived analytical solutions and numerical solutions 712 

for convergence test example 1 of four-member radionuclide decay chain 713 

238Pu→234U→230Th→226Ra .  714 

Fig. 4. Comparison of spatial concentration profiles of four species along the transverse direction 715 

(=25 m) at t = 1,000 years obtained from derived analytical solutions and numerical 716 

solutions for convergence test example 1 of four-member radionuclide decay chain 717 

238Pu→234U→230Th→226Ra .  718 

Fig. 5. Comparison of spatial concentration profiles of four species along the longitudinal direction 719 

(=50 m) at t = 1,000 years obtained from derived analytical solutions and numerical 720 

solutions for convergence test example 2 of four-member radionuclide decay chain 721 

238Pu→234U→230Th→226Ra . 722 

Fig. 6. Comparison of spatial concentration profiles of four species along the transverse direction (=0 723 
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m) at t = 1,000 years obtained from derived analytical solutions and numerical solutions 724 

for convergence test example 2 of four-member radionuclide decay chain 725 

238Pu→234U→230Th→226Ra .  726 

Fig. 7. Comparison of spatial concentration profiles of four species along the transverse direction 727 

(=25 m) at t = 1,000 years obtained from derived analytical solutions and numerical 728 

solutions for convergence test example 2 of four-member radionuclide decay chain 729 

238Pu→234U→230Th→226Ra .  730 

Fig. 8. Comparison of spatial concentration profiles of ten-species along x-direction at t = 20 days 731 

obtained from derived analytical solutions and numerical solutions for the test example 3 732 

of ten species decay chain used by Srinivasan and Clement (2008b). 733 

Fig. 9. Effects of physical processes and chemical reactions on the concentration contours of four-734 

species at t = 1,000 years obtained from derived analytical solutions for four-member decay 735 

chain  238Pu→234U→230Th→226Ra . 736 

Fig. 10. Spatial concentration contours of five-species at t = 1 year obtained from derived analytical 737 

solutions for natural attenuation of chlorinated solvent plumes   PCE→TCE→DCE→VC 738 

→ETH. 739 

 740 

 741 

 742 

 743 
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Fig. 2. 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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