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  Please note. Authors’ responses are bold-faced. Authors’ responses follow immediately below 

the editor’s and reviewers’ comments. 

 

Editor Decision: Reconsider after major revisions (14 Nov 2015) by Prof. Mauro Giudici 

Comments to the Author: 

The reviewers expressed three positive assessments of the paper and two of them provided also a 

quite detailed list of modifications to be introduced in the paper before it can be accepted for 

publication. 

I recommend the authors to properly account for the reviewers' comments in the revised text, above 

all with reference to the following general remarks: 

1) improve the readability and the description of the mathematical development, possibly including 

some parts in an appendix; 

2) provide more details about the numerical aspects for the pratical application of the proposed 

solutions; 

3) fully describe the physical hypotheses on which the equations are based and discuss their relevance 

for practical applications and thier limitations. 

Response: 

  Thanks for the remarks from the editor. We have improved the readability and elaborated 

on the description of the mathematical development. Moreover, we provide more details about 

the numerical aspects for the practical application of the proposed solutions. We also clearly 

and fully explain the physical hypotheses embedded in the governing equation used in the 

manuscript and discuss the relevance of the developed model for practical applications and 

their limitations. We have carefully addressed the comments from reviewers #1, #2 and #3 on a 

point-by-point basis in the revised manuscript. 



 

2 

 

 

Anonymous Referee #1  

The authors derived an analytical solution of 2D transport coupled with first-order chain reactions 

and species-specific retardation factors. The derived solution is an advance over Sun et al. (1999) for 

considering species-specific retardation and over Srinivasan and Clement (2008) for higher-

dimensional transport. Three examples are solid and convincing. Except for the 10-species chain used 

Srinivasan and Clement (2008), 4n+2 series and PCE-TCE-DCE-VC decay networks may not be 

consecutive. Authors may acknowledge analytical solution development in the review for branching 

and converging decay networks and state the limitation of this solution in the conclusion. I had hard 

time getting (A34). If there is no page limit, it will helpful to add the substitution. 

 

Response: 

    Our manuscript develops a novel analytical model that considers different species-specific 

retardation factors for describing two-dimensional multispecies reactive transport coupled by 

a series of first-order chain reactions. Three example applications are considered to 

demonstrate the wide applicability of the derived parsimonious analytical model. We 

understand and fully agree the comments that some of the decay networks may not be 

consecutive. We appreciate the constructive suggestion that add acknowledge on analytical 

solution development for branching and converging decay networks and state the limitation of 

our solution. Thus, we have included the review of the analytical solution development for 

branching and converging decay network in the introduction and clearly indicate the limitation 

of our solution in the conclusion in the revised manuscript. Besides, we elaborate on the detailed 

mathematical manipulations and procedures to obtain the Eq. (34) in the revised manuscript 

for better readership.  
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Anonymous Referee #2  

This is a nice piece of work advancing the multispecies plume (2D) migration from an analytical 

standpoint. The literature review is almost complete and through, the mathematical model is based 

on a technique developed by the same author (Dr. Chen) in 2012, but with substantially new materials 

and a physically based boundary condition (third-type or Rubin type) and extension to 2D. The 

solutions have been compared with carefully designed and proved numerical solutions. The examples 

used in the paper are relevant to actual applications and the details of all the derivation and 

programming are nicely documented. The figures are also well presented. The paper is well written 

and easy to follow. 

The following revisions are necessary to improve the quality of the paper. 

1. I think the title has to be changed. First of all, the word “parsimonious” should be deleted (as it is 

not parsimonious to me at all). Also, the author may want to add “two-dimensional” in the title as 

the problem investigated is 2D in nature. 

Response: 

Thanks for the constructive comment. This study present a novel analytical model with a 

parsimonious mathematical expression for describing multispecies plume migration. The 

concentration of arbitrary species can be directly evaluated from the unique mathematical 

expression. The parsimonious mathematical structures of the analytical are easy to code into a 

computer program for implementing the solution computations for arbitrary target species. This 

is quite different from previous analytical models in literature that generally used a distinct 

mathematical expression for distinct species of a decay chain. Thus, we think the word 

“parsimonious” can reflect the mathematical expression of our compact solution. The title is 

thus changed to as suggested “A parsimonious analytical model for simulating two-dimensional 
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multispecies plume migration”. 

 

2. I also think the use of “verified” or “verification” is inappropriate. A numerical solution cannot 

be used to verify an analytical solution per se, as it itself may involve the potential (and sometimes 

hidden) numerical errors. I think a better word is “compared” or “comparison” instead. 

Response: 

    Thanks for the constructive comment. We fully agree that the analytical models are used 

to verify the numerical model. Thus, we have replaced “verified” or “verification” with 

“compared” or comparison.  

 

3. Despite the fact that the authors have done a careful review of the previous studies. 

Some important references are still missing. For instance, the paper of “Mieles, J., and 

Zhan, H., Analytical solutions of one-dimensional multispecies reactive transport in a 

permeable reactive barrier-aquifer system, Journal of Contaminant Hydrology, 134-135, 54-68, 2012. 

doi: 10.1016/j.jconhyd.2012.04.002” is closely related to this study and is a reference that should be 

included. The study of Mieles and Zhan (2002) dealt with the multispecies transport in a permeable 

reactive barrier (PRB)-aquifer system, with similar use of the third-type or mixed type boundary 

condition and other boundary conditions and the technique of Laplace transform. 

Response: 

    Thanks for the valuable comment. Indeed, these are very important references. We have 

included these references in the revised manuscript. 

 

4. In equations (13)-(15), there are a number of parameters introduced without explanation. Although 

the authors explained them in the Appendix, I still think it is necessary to explain a few key parameters 



 

5 

 

in the main text. For instance, the and terms, et al. Otherwise, it is difficult to follow the mathematics. 

Response: 

Thanks for the helpful suggestion. We have these parameters explained in the main text 

for better readership. 

 

5. In section 3.3, the author mentioned three verifications at the first sentence, but then only discussed 

two cases in the first and second paragraphs. The third case is only mentioned from the third paragraph. 

It should be revised. I suggest moving the first sentence of the third paragraph “The third verification 

example is : : :.” to the first paragraph of section 3.3. 

Response: 

Thanks for the constructive comment. The first sentence of the third paragraph of section 

3.3 is move to the first paragraph of section 3.3. 

 

6. For the FORTRAN program, what type of FORTRAN program? (FORTRAN 95?). Also, since the 

summations terms involved (M and N) are so large for some cases, how long is it going to take for 

the program to generate the result? (CPU time? PC or Workstation?) This type of information should 

be mentioned for the application of the method. 

Response: 

The computer code is written in FORTRAN 90 language with double precision. The 

computation is not time-consuming. The computational time for evaluation of the solutions at 

50 different observations only takes 3.782s, 11.325s, 23.95s and 67.23s computer clock time on 

an Intel Core i7-2600 3.40 MHz PC for species 1, 2, 3, and 4 in the comparison of  example 1. 

We have added the discussions on the computational time in the revised manuscript. 
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In summary, I recommend a moderate revision. 

(note: some special symbols are missing in this plain text version of the review) 

 

Anonymous Referee #3  

This manuscript summarizes a new analytical model that simulates the reactive transport of 

multiple interacting species in a 2D groundwater flow system. The authors describe the model (with 

derivations in the appendices), and then provide several examples showing model output, comparison 

with a numerical model, and a short sensitivity analysis to identify influential transport parameters. 

Overall, the manuscript is organized well and covers an important topic. However, before 

recommending publication the following points must be addressed: 

- One of the main concerns is the lack of connection with real-world systems. The authors compare 

their model with other models, but the actual behavior of the chemical species (particularly the 

sequential first-order decay reactions) in actual aquifer systems is not discussed, nor is it discussed in 

the Methods, Results, or Discussion sections. Without this connection, it is difficult for the reader to 

have confidence that modeling results (and the model itself) can be useful if applied to real-world 

systems. 

 

Response: 

   Analytical multispecies models are widely used to evaluate natural attenuation of plumes at 

chlorinated solvent sites. A study of 45 chlorinated solvent sites by McGuire et al. (2014) found 

that mathematical models were used at 60% of these sites and that the public domain model 

BIOCHLOR (Aziz et al., 2000) provided by the Center for Subsurface Modeling Support 

(CSMoS) of USEPA was the most commonly used model. The utility of the BIOCHLOR model 

to the real-world problems has been demonstrated by an example application that it can 
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reproduce plume movement from 1965 to 1998 at the contaminated site of Cape Canaveral Air 

Station, Florida. The illustrative example of the developed analytical solution in our study 

considered the example reported in the BIOCHLOR. BIOCHLOR model uses analytical 

solutions to a set of advection-dispersion equations coupled by sequential first-order decay 

reactions. The BIOCHLOR analytical solution is valid for the case of having identical 

retardation coefficients for all species. The same equations were considered in our study to 

develop new analytical solutions. Our new solutions can consider the case that each species has 

its own retardation coefficients. Thus, we assure that our analytical solutions have more 

practical applications than the BIOCHLOR model to the real-world system. 

 

References: 

McGuire, T. M., Newell, C. J., Looney, B. B., Vangeas, K. M., Sink, C. H., 2004: Historical 

analysis of monitored natural attenuation: A survey of 191 chlorinated solvent site and 45 

solvent plumes. Remiat. J. 15: 99-122. 

Aziz, C. E., Newell, C. J., Gonzales, J. R., Haas, P., Clement, T. P., Sun, Y., 2000: BIOCHLOR– 

Natural attenuation decision support system v1.0, User’s Manual, US EPA Report, EPA 600/R-

00/008, EPA Center for Subsurface Modeling Support (CSMOS), Ada, Oklahoma. 

 

- In relation to the previous comment, the authors need to discuss limitations of their model. For 

example, I assume that the flow field used in the analytical model is steady state, and that sources and 

sinks within the groundwater system are ignored. When do these conditions actually occur? Under 

what field conditions can the model actually be applied? Again, without relating the model to reality, 

much of this is ignored by the authors. 
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Response: 

  All models have their limitations because they used physically-based mathematical equations 

to describe the transport processes in the subsurface system. The appropriateness of model 

depends on if transport behavior follows the basic assumptions of the physically-based 

mathematical equation. The analytical model in our study considers a steady uniform flow field 

and a boundary source. Thus, our model can be applied to a field site that has a steady uniform 

flow field and the contaminant source can be treated as a boundary source. Analytical model 

considers the same flow and source condition such as the BIOCHLOR model are widely used 

to assess many real-world problems. Detailed contaminated site applications were illustrated in 

the BIOCHLOR User’s manual. We have elaborated a discussion on limitation of our analytical 

model in the revised manuscript for better readership. 

 

- The use of the model requires a number of complicated numerical methods (correct?). So, at what 

point does the analytical solution actually become a numerical solution? Also, the authors never report 

the run-time of the model simulations in comparison with those of the numerical model (LTFD). Due 

to the complicated nature of the analytical model, I would assume that the run-times are substantial. 

Without this reported, it is hard to assess whether the newly developed analytical model is an 

improvement over numerical models. This must be reported and discussed. 

 

Response: 

   The developed analytical model is straightforwardly evaluated by two series summations 

and does not require any complicated numerical method. The only numerical method involved 

in the code development is the determination of the eigenvalues which need to be obtained from 

the eigenvalues equation in Eq. (A19). The numerical method to solve the eigen-value equation 
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is quite easy and can be found in van Genuchten (1982). The computation is not time-consuming. 

The computational time for evaluation of the solutions at 50 different observations only takes 

0.140 second computer clock time on an Intel Core i7-2600 3.40 MHz PC for species 1. We have 

added the discussions on the computational time in the revised manuscript. 

 

Reference: 

van Genuchten, M. Th., Alves, W. J., 1982: Analytical Solutions of the One-Dimensional 

Convective-Dispersive Solute Transport Equation, US Department of Agriculture, Washington, 

DC, Technical Bulletin No. 1661, 151 pp. 

 

- The derivations are very hard to sort through as a reader, particularly if the reader is not well versed 

in the intricacies of the numerous transformations, etc... that are being performed. Please narrate the 

derivations in clear, concise language, with clear definitions and explanations. As written, most 

readers will skip over the derivations. - The first few sub-sections of the "Results and Discussion" 

section in fact seem like Methods. For example, 3.1 and 3.2 should be in the Methods section, since 

derivations are presented. 

 

Response: 

Thanks for the constructive comment. We elaborate on the detailed mathematical 

manipulations and procedures to obtain the final solutions in the revised manuscript for better 

readership. Moreover, Sections 3.1 and 3.2 are moved to Section 2 “Governing equations and 

analytical solutions”. 

 

- Overall, there are too many tables and figures. The large amount of model output shown in the tables 
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probably is not needed, and instead can be replaced by metrics in several tables. The large amount of 

results is very tedious for a reader to sort through, and in the end discourages the reader from 

analyzing the model data and results critically. 

 

Response: 

    Thanks for the helpful comments. Actually we have moved most of tables to the appendix. 

These figures and tables in the main text are important to illustrate the investigation of the 

convergence the derived solution, the accuracy of the computer code as well the transport 

processes affecting the transport behaviors.  
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Abstract 23 

A parsimonious analytical model for rapidly predicting the two-dimensional plume behavior of 24 

decaying contaminant such as radionuclide and dissolved chlorinated solvent is presented in this study. 25 

Generalized analytical solutions in compact format are derived for the two-dimensional advection-26 

dispersion equations coupled with sequential first-order decay reactions involving an arbitrary 27 

number of species in groundwater system. The solution techniques involve the sequential applications 28 

of the Laplace, finite Fourier cosine, and generalized integral transforms to reduce the coupled partial 29 

differential equation system to a set of linear algebraic equations. The system of algebraic equations 30 

is next solved for each species in the transformed domain, and the solutions in the original domain 31 

are then obtained through consecutive integral transform inversions. Explicit form solutions for a 32 

special case are derived using the generalized analytical solutions and are compared [response to 33 

comment of referee # 2] with the numerical solutions. The analytical results indicate that the 34 

parsimonious analytical solutions are robust and accurate. The solutions are useful for serving as 35 

simulation or screening tools for assessing plume behaviors of decaying contaminants including the 36 

radionuclides and dissolved chlorinated solvents in groundwater systems. 37 

 38 

Keywords: Parsimonious analytical model; reactive transport; first-order decay reaction; Bateman-39 

type source; radionuclide; dissolved chlorinated solvent. 40 

  41 
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1. Introduction 42 

    Experimental and theoretical studies have been undertaken to understand the fate and transport of 43 

dissolved hazardous substances in subsurface environments because that human health is threatened 44 

by a wide spectrum of contaminants in groundwater and soil. Analytical models are essential and 45 

efficient tools for understanding pollutants behavior in subsurface environments.  Several analytical 46 

solutions for single-species transport problems have been reported for simulating the transport of 47 

various contaminants (Batu, 1989; 1993; 1996; Chen et al., 2008a; 2008b; 2011; Gao et al., 2010; 2012; 48 

2013; Leij et al., 1991; 1993; Park and Zhan, 2001; Pérez Guerrero and Skaggs, 2010 ; Pérez Guerrero 49 

et al., 2013 ; van Genuchten and Alves, 1982; Yeh, 1981; Zhan et al., 2009; Ziskind et al., 2011). 50 

Transport processes of some contaminants such as radionuclides, dissolved chlorinated solvents and 51 

nitrogen generally involve a series of first-order or pseudo first-order sequential decay chain reactions. 52 

During migrations of decaying contaminants, mobile and toxic successor products may sequentially 53 

form and move downstream with elevated concentrations. Single-species analytical models do not 54 

permit transport behaviors of successor species of these decaying contaminants to be evaluated. 55 

Analytical models for multispecies transport equations coupled with first-order sequential decay 56 

reactions are useful tools for synchronous determination of the fate and transport of the predecessor 57 

and successor species of decaying contaminants. However, there are few analytical solutions for 58 

coupled multispecies transport equations compared to a large body of analytical solutions in the 59 

literature pertaining to the single-species advective-dispersive transport subject to a wide spectrum of 60 

initial and boundary conditions.     61 

Mathematical approaches have been proposed in the literature to derive a limited number of one-62 

dimensional analytical solutions or semi-analytical solutions for multispecies advective–dispersive 63 

transport equations sequentially coupled with first-order decay reactions. These include direct integral 64 

transforms with sequential substitutions (Cho, 1971; Lunn et al., 1996; van Genuchten, 1985, Mieles 65 
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and Zhan, 2012) [response to comment of referee #2], decomposition by change-of-variables with the 66 

help of existing single-species analytical solutions (Sun and Clement, 1999; Sun et al., 1999a; 1999b), 67 

Laplace transform combined with decomposition of matrix diagonization (Quezada et al., 2004; 68 

Srinivasan and Clememt, 2008a; 2008b), decomposition by change-of-variables coupled with 69 

generalized integral transform (Pérez Guerrero et al., 2009; 2010), sequential integral transforms in 70 

association with algebraic decomposition (Chen et al., 2012a; 2012b).   71 

Multi-dimensional solutions are needed for real world applications, making them more attractive 72 

than one-dimensional solutions. Bauer et al. (2001) presented the first set of semi-analytical solutions 73 

for one-, two-, and three-dimensional coupled multispecies transport problem with distinct retardation 74 

coefficients. Explicit analytical solutions were derived by Montas (2003) for multi-dimensional 75 

advective-dispersive transport coupled with first-order reactions for a three-species transport system 76 

with distinct retardation coefficients of species. Quezada et al. (2004) extended the Clement (2001) 77 

strategy to obtain Laplace-domain solutions for an arbitrary decay chain length. Most recently, Sudicky 78 

et al. (2013) presented a set of semi-analytical solutions to simulate the three-dimensional multi-79 

species transport subject to first-order chain-decay reactions involving up to seven species and four 80 

decay levels. Basically, their solutions were obtained species by species using recursion relations 81 

between target species and its predecessor species. For a straight decay chain, they derived solutions 82 

for up to four species and no generalized expressions with compact formats for any target species were 83 

obtained. Note that their solutions were derived for the first-type (Dirichlet) inlet conditions which 84 

generally bring about physically improper mass conservation and significant errors in predicting the 85 

concentration distributions especially for a transport system with a large longitudinal dispersion 86 

coefficient (Barry and Sposito, 1988; Parlange et al., 1992). Moreover, in addition to some special 87 

cases, the numerical Laplace transforms are required to obtain the original time domain solution. 88 

Besides the straight decay chain, the analytical model by Clement (2001) and Sudicky (2013) can 89 
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account more complicated decay chain problems such as diverging, converging and branched decay 90 

chains [response to comment of referee #2]. 91 

Based on the aforementioned reviews, this study presents a parsimonious explicit analytical model 92 

for two-dimensional multispecies transport coupled by a series of first-order decay reactions involving 93 

an arbitrary number of species in groundwater system. The derived analytical solutions have four 94 

salient features. First, the third-type (Robin) inlet boundary conditions which satisfy mass conservation 95 

are considered. Second, the solution is explicit, thus solution can be easily evaluated without invoking 96 

the numerical Laplace inversion. Third, the generalized solutions with parsimonious mathematical 97 

structures are obtained and valid for any species of a decay chain. The parsimonious mathematical 98 

structures of the generalized solutions are easy to code into a computer program for implementing the 99 

solution computations for arbitrary target species. Fourth, the derived solutions can account for any 100 

decay chain length. The explicit analytical solutions have applications for evaluation of concentration 101 

distribution of arbitrary target species of the real-world decaying contaminants. The developed 102 

parsimonious model is robustly verified with three example problems and applied to simulate the 103 

multispecies plume migration of dissolved radionuclides and chlorinated solvent. 104 

 105 

2. Governing equations and analytical solutions 106 

2.1 Derivation of analytical solutions 107 

This study consider the problem of decaying contaminant plume migration. The source zone is 108 

located in the upstream of groundwater flow. The source zone can represent leaching of radionuclide 109 

from the deposit facility or release of chlorinated solvent from the residual NAPL phase into the 110 

aqueous phase. After these decaying contaminants enter the aqueous phase, they migrate by one-111 

dimensional advection with flowing groundwater and by simultaneously longitudinal and transverse 112 

dispersion processes. While migration in the groundwater system, the contaminants undergo linear 113 
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isothermal equilibrium sorption and a series of sequential first-order decaying reactions. Sudicky et al. 114 

(2013) provided the detailed modeling scenario. The scenario considered in this study can be ideally 115 

described as shown in Fig. 1. A steady and uniform velocity in the x  direction is considered in Fig. 1. 116 

The governing equations describing two-dimensional reactive transport of the decaying contaminants 117 

and their successor species undergoing linear isothermal equilibrium sorption and a series of sequential 118 

first-order decaying reactions can be mathematically written as [response to comments of editor and 119 

referee #2] 120 
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where ),,( tyxCi  is the aqueous concentration of species i [ML-3]; x  and y  are the spatial 123 

coordinates in the groundwater flow and perpendicular directions [L], respectively; t  is time [T]; 124 

LD  and TD  represent the longitudinal and transverse dispersion coefficients [L2T-1], respectively; 125 

v  is the average steady and uniform pore-water velocity [LT-1]; ik  is the first-order decay rate 126 

constant of species i [T-1]; iR  is the retardation coefficient of species i [-]. Note that these equations 127 

consider that the decay reactions occur simultaneously in both the aqueous and sorbed phases. If the 128 

decay reactions occur only in the aqueous phase, the retardation coefficients in the decay terms in the 129 

right-hand sides of Eqs. (1a) and (1b) become unity. For such case, ik  and 1ik  in the left-hand sides 130 

could be modified as 
i

i

R

k
 and 

1

1





i

i

R

k
 to facilitate the application of the derived analytical solutions 131 
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obtained by Eqs. (1a) and (1b). 132 

The initial and boundary conditions for solving Eqs. (1a) and (1b) are: 133 

WyLxtyxCi  0 ,0     0)0,,(       ....1 Ni                                  (2) 134 
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where )(H is the Heaviside function, L and W are the length and width of the transport system 139 

under consideration. Eq. (2) implies that the transport system is free of solute mass at the initial time. 140 

Eq. (3) means that a third-type boundary condition satisfying mass conservation at the inlet boundary 141 

is considered. Eq. (4) considers the concentration gradient to be zero at the exit boundary based on 142 

the mass conservation principle. Such a boundary condition has been widely used for simulating 143 

solute transport in a finite-length system. Eqs. (5) and (6) assumes no solute flux across the lower and 144 

upper boundaries. It is noted that in Eq. (3), we assume arbitrary time-dependent sources of species i 145 

uniformly distributed at the segment ( 21 yyy  ) of the inlet boundary ( 0x ), the so-called 146 

Heaviside function source concentration profile. Relative to the first type boundary conditions used 147 

by Sudicky et al. (2013), the third-type boundary conditions which satisfy mass conservation at the 148 

inlet boundary (Barry and Sposito, 1988; Parlange et al., 1992) are used herein. Sudicky et al. (2013) 149 

considered the source concentration profiles as Gaussian or Heaviside step functions. If Gaussain 150 

distributions are desired, we can easily replace the Heaviside function in the right-hand side of Eq. 151 

(3) with a Gaussian distribution. 152 
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Eqs. (1)-(6) can be expressed in dimensionless form as  153 
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0
),1,(






Y

TYXCi   10 ,0  XT    ....1 Ni                                    (12) 160 

where
L

x
X  , 

W

y
Y  , 

W

y
Y 1

1  , 
W

y
Y 2

2  , 
L

vt
T  , 

L
L

D

vL
Pe  , 

T
T

D

vL
Pe  , 

W

L
 . 161 

Our solution strategy used is extended from the approach proposed by Chen at al. (2012a; 2012b). 162 

The core of this approach is that the coupled partial differential equations are converted into an 163 

algebraic equation system via a series of integral transforms and the solutions in the transformed 164 

domain for each species are directly and algebraically obtained by sequential substitutions.   165 

  Following Chen et al. (2012a; 2012b), the generalized analytical solutions in compact formats can 166 

be obtained as follows (with detailed derivation provided in Appendix A) 167 
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where    









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...3,2,1           
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0                        

 )( 12
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n
n

YnYn

nYY

n



 , l  is the eigenvalue, determined from the 169 

equation 0
4

cot
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l
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2
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
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T

i
T
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
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),,(                                            (14) 172 

and 173 
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
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


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
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 1
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dfee
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





              (15) 174 

where  
iL

l

i

L

iTi

i
li

RPeR

Pe

RPe

n

R

2222

4


  ,  

iL

l

i

L
li

RPeR

Pe
2

4


  , 

i

i
i

R

1


 [response to 175 

referee #2]. 176 

  Concise expressions for arbitrary target species such as described in Eqs. (13) to (15) facilitate the 177 

development of a computer code for implementing the computations of the analytical solutions.  178 

The generalized solutions of Eq. (13) accompanied by two corresponding auxiliary functions 179 
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),,( Tnp li   and ),,( Tnq li  in Eqs. (14)-(15) can be applied to derive analytical solutions for some 180 

special-case inlet boundary sources.  Here the time-dependent decaying source which represents the 181 

specific release mechanism defined by the Bateman equations (van Genuchten, 1985) is considered.   182 

A Bateman-type source is described by  183 

 





i

m

t
imi

mebtf

1

)(


                                                           (16a) 184 

or in dimensionless form, 185 









im

m

T
ini

mebTf

1

)(
                                                            (16b) 186 

The coefficients imb  and mmm    account for the first-order decay reaction rate ( m ) of each 187 

species in the waste source and the release rate ( m ) of each species from the waste source,  188 

v

Lm
m


  . 189 

By substituting Eq. (16b) into Eqs. (13)-(15), we obtain  190 
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(17) 192 

where 193 
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          (19) 196 

 197 

2.2 Convergence behavior of the Bateman-type source solution 198 

   Based on the special-case analytical solutions in Eq. (17) supported by two auxiliary functions, 199 

defined in Eqs. (18) and (19), a computer code was developed in FORTRAN 90 [response to referee 200 

# 2]  language with double precision. The details of the FORTRAN computer code is described in 201 

Supplement. The derived analytical solutions in Eqs. (17)-(19) consist of summations of double infinite 202 

series expansions for the finite Fourier cosine and generalized integral transform inversions, 203 

respectively. It is straightforward to sum up these two infinite series expansions term by term. To avoid 204 

time-consuming summations of these infinite series expansions, the convergence tests should be 205 

routinely executed to determine the optimal number of the required terms for evaluating analytical 206 

solutions to the desired accuracies. Two-dimensional four-member radionuclide decay chain 207 

RaThUPu
226230234238

  is considered herein as convergence test example 1 to demonstrate 208 

the convergence behavior of the series expansions. This convergence test example 1 is modified from 209 

a one-dimensional radionuclide decay chain problem originated by Higashi and Pigford (1980) and 210 

later applied by van Genuchten (1985) to illustrate the applicability of their derived solution.  The 211 

important model parameters related to this test example are listed in Tables 1 and 2. The inlet source 212 

is chosen to be symmetrical with respect to the x -axis and conveniently arranged in the 213 

mym  60 40   segment at the inlet boundary.    214 

In order to investigate the required term number of series expansions to achieve accurate 215 

numerical evaluation for the finite Fourier cosine transform inverse, a sufficiently large number of 216 
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series expansions for the generalized transform inverse are used to exclude the influence of the number 217 

of terms in series expansions for the generalized integral transform inverse on convergence of finite 218 

Fourier cosine transform inverse.  A similar concept is used when investigating the required number 219 

of terms in the series expansions for the generalized integral transform inverse. An alternative approach 220 

is conducted by simultaneously varying the term numbers of series expansions for the generalized 221 

integral transform inverse and the finite Fourier cosine transform inverse.   222 

Tables 3, 4 and 5 give results of the convergence tests up to 3 decimal digits of the solution 223 

computations along the three transects (inlet boundary at x =0 m, x =25 m, and exit boundary at x224 

=250m). In these tables M  and N  are defined as the numbers of terms summed for the generalized 225 

integral transform inverse and finite Fourier cosine transform inverse, respectively. It is observed that 226 

M  and N  are related closely to the true values of the solutions. For smaller true values, the solutions 227 

must be computed with greater M  and N . However, convergences can be drastically speeded up if 228 

lower calculation precision (e.g. 2 decimal digits accuracy) is acceptable. For example, 229 

)200,100(),( NM  is sufficient for 2 decimal digits accuracy, while for 3 decimal digits accuracy we 230 

need )8000,1600(),( NM . Two decimal digits accuracy is acceptable for most practical problems. 231 

It is also found that M  increases and N  decreases with increasing x .  232 

To further examine the series convergence behavior, example 2 considers a transport system of 233 

large aspect ratio (
m

m

W

L

100

500,2
 ) and a narrower source segment, m 55 45  ym , on the inlet 234 

boundary. Tables 6 and 7 present results of the convergence tests of the solution computations along 235 

two transects (inlet boundary and x =250 m). Tables 6 and 7 also show similar results for the 236 

dependences of M  and N on x . Note that larger M  and N  are required for each species in this 237 

test example, suggesting that the evaluation of the solution for a large aspect ratio requires more series 238 

expansion terms to achieve the same accuracy as compared to example 1. Detailed results of the 239 
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convergence test examples 1 and 2 are provided in Supplement.  240 

Using the required numbers determined from the convergence test, the computational time for 241 

evaluation of the solutions at 50 different observations only takes 3.782s, 11.325s, 23.95s and 67.23s 242 

computer clock time on an Intel Core i7-2600 3.40 MHz PC for species 1, 2, 3, and 4 in the comparison 243 

of example 1 [response to comments of referees # 2 and #3]. 244 

 245 

3. Results and discussion 246 

3.1 Comparison of the analytical solutions with the numerical solutions [response to comment of 247 

referee # 2] 248 

Three comparison [response to comment of referee # 2] examples are considered to examine the 249 

correctness and robustness of the analytical solutions and the accuracy of the computer code. The first 250 

comparison [response to comment of referee # 2] example is the four-member radionuclide transport 251 

problem used in the convergence test example 1. The second comparison example considers the four-252 

member radionuclide transport problem used in the convergence test example 2. The third comparison 253 

example is used to test the accuracy of the computer code for simulating the reactive contaminant 254 

transport of a long decay chain [response to comment of referee # 2]. The three comparison examples 255 

are executed by comparing the simulated results of the derived analytical solutions with the numerical 256 

solutions obtained using the Laplace transformed finite difference (LTFD) technique first developed 257 

by Moridis and Reddell (1991). A computer code for the LTFD solution are written in FORTTRAN 258 

language with double precision. The details of the FORTRAN computer code is described in 259 

Supplement. 260 

Figures 2, 3 and 4 depicts the spatial concentration distribution along one longitudinal direction 261 

( 50y  m) and two transverse directions ( 0x  m and 25x  m) for convergence test example 1 262 

at t = 1,000 year obtained from analytical solutions and numerical solutions. Figures 5, 6 and 7 present 263 
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the spatial concentration distribution along one longitudinal direction ( 50y  m) and two transverse 264 

directions ( 0x  m and 25x  m) for the convergence test example 2 at t = 1,000 year obtained 265 

from analytical solutions and numerical solutions. Excellent agreements between the two solutions for 266 

both examples are observed for a wide spectrum of concentration, thus warranting the accuracy and 267 

robustness of the developed analytical model. 268 

The third [response to comments of referee # 2] example involves a 10 species decay chain 269 

previously presented by Srinivasan and Clement (2008a) to evaluate the performance of their one-270 

dimensional analytical solutions. The relevant model parameters are summarized in Tables 8 and 9. 271 

Our computer code is also compared [response to comment of referee # 2] against the LTFD solutions 272 

for this example. Figure 8 depicts the spatial concentration distribution at t = 20 days obtained 273 

analytically and numerically. Again there is excellent agreement between the analytical and numerical 274 

solutions, demonstrating the performance of our computer code for simulating transport problems with 275 

a long decay chain. The three comparison results clearly establish the correctness of the analytical 276 

model and the accuracy and capability of the computer code. 277 

 278 

3.2 Assessing physical and chemical parameters on the radionuclide plume migration 279 

    Physical processes and chemical reactions affect the extent of contaminant plumes, as well as 280 

concentration levels. To illustrate how the physical processes and chemical reactions affect 281 

multispecies plume development, we consider the four-member radionuclide decay chain used in the 282 

previous convergence test and solution verification.  The model parameters are the same, except that 283 

the longitudinal ( LD ) and transverse ( TD ) dispersion coefficients are varied. Three sets of 284 

longitudinal and transverse dispersion coefficients LD =1,000, TD =100; LD =1,000, TD  =200; 285 

LD =2000, TD =200 (all in m2/year) are tested, all for a simulation time of 1,000 years.   286 

Figure 9 illustrates the spatial concentration of four species at t = 1,000 year for the three sets of 287 
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dispersion coefficients.  The mobility of plumes of 234U and 230Th is retarded because of their stronger 288 

sorption ability. Hence the least retarded  226Ra plume extensively migrated to 200 m × 60 m area 289 

in the simulation domain, whereas the 234U and 230Th plumes are confined within 60 m × 50 m area 290 

in the simulation domain. The moderate mobility of 238Pu reflects the fact that it is a medial sorbed 291 

member of this radionuclide decay chain. The high concentration level of 234U accounts for the high 292 

first-order decay rate constant of its parent species 238Pu and its own low first-order decay rate constant. 293 

The plume extents and concentration levels may be sensitive to longitudinal and transverse dispersion. 294 

Increase of the longitudinal and/or transverse dispersion coefficients enhances the spreading of the 295 

plume extensively along the longitudinal and/or transverse directions, thereby lowering the plume 296 

concentration level. Because the concentration levels of the four radionuclides are influenced by both 297 

source release rates and decay chain reactions, 230Th has the least extended plume area, while 226Ra 298 

has the greatest plume area for all three set of dispersion coefficients. These dispersion coefficients 299 

only affect the size of plumes of the four radionuclide, but the order of their relative plume size remains 300 

the same (i.e. 226Ra > 238Pu > 234U > 230Th for the simulated condition). Indeed, in the reactive 301 

contaminant transport, the chemical parameters of sorption and decay rate are more important than the 302 

physical parameters of dispersion coefficients that govern the order of the plume extents and the 303 

concentration levels. 304 

 305 

3.3 Simulating the natural attenuation of chlorinated solvent plume migration 306 

Natural attenuation is the reduction in concentration and mass of the contaminant due to 307 

naturally occurring processes in the subsurface environment. The process is monitored for regulatory 308 

purposes to demonstrate continuing attenuation of the contaminant reaching the site-specific 309 

regulatory goals within reasonable time, hence, the use of the term monitored natural attenuation 310 
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(MNA). MNA has been widely accepted as a suitable management option for chlorinated solvent 311 

contaminated groundwater. Mathematical model are widely used to evaluate the natural attenuation 312 

of plumes at chlorinated solvent sites. The multispecies transport analytical model developed in this 313 

study provides an effective tool for evaluating performance of the monitoring natural attenuation of 314 

plumes at a chlorinated solvent site because a series of daughter products produced during 315 

biodegradation of chlorinated solvent such as PCE→TCE→DCE→VC→ETH. Thus simulation of 316 

the natural attenuation of plumes a chlorinated solvent constitutes an attractive field application 317 

example of our multispecies transport model.  318 

A study of 45 chlorinated solvent sites by McGuire et al. (2014) found that mathematical 319 

models were used at 60% of these sites and that the public domain model BIOCHLOR (Aziz et al., 320 

2000) provided by the Center for Subsurface Modeling Support (CSMoS) of USEPA was the most 321 

commonly used model. The utility of the BIOCHLOR model to the real-world problems has been 322 

demonstrated by an example application that it can reproduce plume movement from 1965 to 1998 323 

at the contaminated site of Cape Canaveral Air Station, Florida [response to comment of referee # 324 

3]. 325 

An illustrated example from BIOCHLOR (Aziz et al., 2000) is considered to demonstrate the 326 

application of the developed analytical model. The simulation conditions and transport parameters 327 

for this example application are summarized in Table 10. Constant source concentrations rather than 328 

exponentially declining source concentration of five-species chlorinated solvents are specified in the 329 

mym  7.122 7.90   segment at the inlet boundary ( 0x ). This means that the exponents ( im ) 330 

of Bateman-type sources in Eqs. (16a) or (16b) need to be set to zero for the constant source 331 

concentrations and source intensity constants ( imb ) are set to zero when subscript i does not equal to 332 

subscript m. Table 11 lists the coefficients of Bateman-type boundary source used for this example 333 

application involving the five-species dissolved chlorinated solvent problem. Spatial concentration 334 
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contours of five-species at t = 1 year obtained from the derived analytical solutions for natural 335 

attenuation of chlorinated solvent plumes are depicted in Fig. 10. It is observed that the mobility of 336 

plumes is quite sensitive to the species retardation factors, whereas the decay rate constants determine 337 

the plume concentration level. The plumes can migrate over a larger region for species having a low 338 

retardation factor such as VC. The low decay rate constants such as ETH have higher concentration 339 

distribution than the VC. It should be noted that a larger extent of plume observed for ETH in Fig. 10 340 

is mainly attributed the plume mass accumulation from the predecessor species VC that have a larger 341 

plume extent. The effect of high retardation of the ETH is hindered by the mass accumulation of the 342 

predecessor species VC. 343 

 344 

4. Conclusions 345 

We present an analytical model with a parsimonious mathematical format for two-dimensional 346 

multispecies advective-dispersive transport of decaying contaminants such as radionuclides, 347 

chlorinated solvents and nitrogen. The developed model is capable of accounting for the temporal and 348 

spatial development of an arbitrary number of sequential first-order decay reactions. The solution 349 

procedures involve applying a series of Laplace, finite Fourier cosine and generalized integral 350 

transforms to reduce a partial differential equation system to an algebraic system, solving for the 351 

algebraic system for each species, and then inversely transforming the concentration of each species 352 

in transformed domain into the original domain. Explicit special solutions for Bateman type source 353 

problems are derived via the generalized analytical solutions. The convergence of the series expansion 354 

of the generalized analytical solution is robust and accurate. These explicit solutions and the computer 355 

code are comparing with the results computed by the numerical solutions. The two solutions agree well 356 

for a wide spectrum of concentration variations for three test examples. The analytical model is applied 357 

to assess the plume development of radionuclide and dissolved chlorinated solvent decay chain. The 358 
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results show that dispersion only moderately modifies the size of the plumes, without altering the 359 

relative order of the plume sizes of different contaminant. It is suggested that retardation coefficients, 360 

decay rate constants and the predecessor species plume distribution mainly govern the order of plume 361 

size in groundwater. Although there are a number of numerical reactive transport models that can 362 

account for multispecies advective-dispersive transport, our analytical model with a computer code 363 

that can directly evaluate the two-dimensional temporal-spatial concentration distribution of arbitrary 364 

target species without involving the computation of other species. The analytical model developed in 365 

this study effectively and accurately predicts the two-dimensional radionuclide and dissolved 366 

chlorinated plume migration. It is a useful tool for assessing the ecological and environmental impact 367 

of the accidental radionuclide releases such as the Fukushima nuclear disaster where multiple 368 

radionuclides leaked through the reactor, subsequently contaminating the local groundwater and ocean 369 

seawater in the vicinity of the nuclear plant. It is also a screening model that simulates remediation by 370 

natural attenuation of dissolved solvents at chlorinated solvent release sites.  371 

It should be noted the derived analytical model still have its application limitations for that the 372 

groundwater flow in the study site is non-uniform or the study or the site have multiple distinct zones. 373 

Furthermore, the developed model cannot simulate the more complicated decay chain problems such 374 

as diverging, converging and branched decay chains. The analytical model for more complicated decay 375 

chain problems can be pursued in the near future [response to comment of referee # 1]. 376 

 377 

 378 

 379 

  380 
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Appendix A 381 

Derivation of analytical solutions 382 

In this appendix, we elaborate on the mathematical procedures for deriving the analytical solutions. 383 

The Laplace transforms of Eqs. (7a), (7b), (9)-(12) yield 384 
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where s  is the Laplace transform parameter, and ),,( sYXGi  and )(sFi  are defined by the Laplace 392 

transformation relations as 393 
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The finite Fourier cosine transform is used here because it satisfies the transformed governing 397 
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equations in Eqs. (A1a) and (A2b) and their corresponding boundary conditions in Eqs. (A4) and (A5). 398 

Application of the finite Fourier cosine transform on Eqs. (A1)-(A3) leads to  399 
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Using changes-of-variables, similar to those applied by Chen and Liu (2011), the advective terms 408 

in Eqs. (A8a) and A(8b) as well as nonhomogeneous terms in Eq. (A9) can be easily removed.  Thus, 409 

substitutions of the change-of-variable into Eqs. (A8a), (A8b), (A9) and (A10) result in diffusive-type 410 

equations associated with homogeneous boundary conditions  411 
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where ),,( snXU i is defined as the following change-of-variable relation416 
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As detailed in Ozisik (1989), the generalized integral transform pairs for Eqs. (A13a) and (A13b) 418 

and its associated boundary conditions (A14) and (A15) are defined as 419 
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The generalized integral transforms of Eqs. (13a) and (13b) give 
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Solving for Eqs. (A20) and (A21) algebraically for each species, ),,( snZ li  , in sequence, leads 429 
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Upon inspection of Eqs. (A22)-(A25), compact expressions valid for all species can be generalized as  436 

    NinsnQsnPsnZ llilili ...2,1     )(),,(),,(),,(                              (A26) 437 



 

23 

 

where )(),,( sF
s

s
snP i

i

ii
li









  and 

 
























2

0
11

0

10
1

)(),,(

2

2

2

1

1
ik

k
ki

ji

kj

j

ji

kj

j
ki

li sF

s

snQ





 . 438 

    The solutions in the original domain are obtained by a series of integral transform inversions in 439 

combination with changes-of-variables.   440 

     The inverse generalized integral transform of Eq. (A26) gives  441 
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Using change-of-variable relation of Eq. (A16), one obtains 443 
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     The finite Fourier cosine inverse transform of Eq. (A28) results in  445 
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The analytical solutions in the original domain will be completed by taking the Laplace inverse 447 

transform of Eq. (A29). ),,( snP li   in Eq. (29) is in the form of the product of two functions .  The 448 
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Thus, the Laplace inverse of ),,( snP li   can be achieved using the convolution theorem as  451 
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The Laplace inverse of ),,( snQ li   can be also approached using the similar method. By taking 453 

Laplace inverse transform on ),,( snQ li  , we have  454 

 

 
























 




















2

0

11

0

10
1

11
)(),,(),,(

2

2

2

1

1
ik

k

ki

ji

kj

j

ji

kj

j
ki

lili sF

s

LsnQLTnq





  455 

 












































2

0

11

0

1

10
1 )(

1

2

2

2

1

1

ik

k

ki

ji

kj

j

ji

kj

j
ki sF

s

L



                              (A32) 456 

 457 

Expressing 

 
2

2

2

1

0

1

ji

kj

j
s 




 

 as the summation of partial fractions and applying the inverse 458 

Laplace transform formula, one gets  459 
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 462 

Recall that the inverse Laplace transform of )(1 sF ki   is )(1 Tf ki  . Thus, the Laplace inverse 463 
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Putting Eq. (A34) into Eq. (A2) we can obtain the following form: 467 
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Thus, the final solution can be expressed as Eq.(13) with the corresponding functions defined in Eqs.(14) 469 

and (15). 470 

    Note that Eq. (A33) is invalid for some of 
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different Laplace inverse formulae. For example, the following formulae is used for all 
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The generalized formulae for the cases with some of 
2ji  being identical will not be provided 476 
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herein because there are a large number of combinations of 
2ji . We suggest that the readers can 477 

pursue the solutions by following the similar steps for such specific conditions case by case . [response 478 

to comment of referee # 1] 479 
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Table 1  595 

Transport parameters used for convergence test example 1 involving the four-species radionuclide 596 

decay chain problem used by van Genuchten (1985) 597 

Parameter Value 

Domain length, L  [m] 250 

Domain width, W  [m] 100 

Seepage velocity, v  [m year-1] 100 

Longitudinal Dispersion coefficient, LD  [m2 year-1] 1,000 

Transverse Dispersion coefficient, TD  [m2 year-1] 100 

Retardation coefficient, iR   

Pu
238  10,000 

U
234  14,000 

Th
230  50,000 

Ra
226  500 

Decay constant, ik  [year-1]  

Pu
238  0.0079 

U
234  0.0000028 

Th
230  0.0000087 

Ra
226  0.00043 

Source decay constant, m  [year-1]  

Pu
238  0.0089 

U
234  0.00100280 

Th
230  0.00100870 

Ra
226  0.00143 

 598 

  599 
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Table 2  600 

Values for coefficients of Bateman-type boundary source for four-species transport problem used by 601 

van Genuchten (1985) 602 

Species, i imb  

m=1 m=2 m=3 m=4 

Pu
238 , i=1 25.1     

U
234 , i=2 25044.1  25044.1    

Th
230 , i=3 3

10443684.0


  
593431.0  593874.0   

Ra
226 , i=4 6

10516740.0


  
1

10120853.0


  
1

10122637.0


  
3

10178925.0


  

 603 

  604 
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Table 3 605 

Solution convergence of each species concentration at transect of inlet boundary ( 0x ) for four-606 

species radionuclide transport problem considering simulated domain of 250L  m, 100W  m, 607 

subject to Bateman-type sources located at mym  60 40   for t  = 1,000 year  (M = number of 608 

terms summed for inverse generalized integral transform; N = number of terms summed for inverse 609 

finite Fourier cosine transform). When we investigate the required M for inverse generalized integral 610 

transform, N=16,000 for the finite Fourier cosine transform inverse are used. When we investigate the 611 

required N for inverse finite Fourier cosine transform, M=1,600 for the generalized transform inverse 612 

are used. 613 

Pu
238  614 

x  [m] y  [m] M =100 M =200 M =400 M =800 M =1,600 

0 30 2.714E-07 2.712E-07 2.711E-07 2.710E-07 2.710E-07 

0 34 3.412E-06 3.412E-06 3.411E-06 3.411E-06 3.411E-06 

0 38 2.677E-05 2.677E-05 2.677E-05 2.677E-05 2.677E-05 

0 46 1.608E-04 1.609E-04 1.609E-04 1.609E-04 1.609E-04 

0 50 1.637E-04 1.637E-04 1.637E-04 1.637E-04 1.637E-04 

x  [m] y  [m] N =1,000 N =2,000 N =4,000 N =8,000 N =16,000 

0 30 2.723E-07 2.713E-07 2.711E-07 2.710E-07 2.710E-07 

0 34 3.413E-06 3.412E-06 3.411E-06 3.411E-06 3.411E-06 

0 38 2.677E-05 2.677E-05 2.677E-05 2.677E-05 2.677E-05 

0 46 1.609E-04 1.609E-04 1.609E-04 1.609E-04 1.609E-04 

0 50 1.637E-04 1.637E-04 1.637E-04 1.637E-04 1.637E-04 

U
234  615 

x  [m] y  [m] M =25 M =50 M =100 M =200 M =400 

0 32 1.092E-03 1.091E-03 1.090E-03 1.090E-03 1.090E-03 

0 34 4.829E-03 4.827E-03 4.826E-03 4.826E-03 4.825E-03 

0 38 5.745E-02 5.753E-02 5.753E-02 5.753E-02 5.753E-02 

0 46 3.999E-01 4.004E-01 4.005E-01 4.005E-01 4.005E-01 

0 50 4.044E-01 4.049E-01 4.049E-01 4.049E-01 4.049E-01 

x  [m] y  [m] N =500 N =1,000 N =2,000 N =4,000 N =8,000 

0 32 1.107E-03 1.094E-03 1.091E-03 1.090E-03 1.090E-03 

0 34 4.850E-03 4.831E-03 4.827E-03 4.826E-03 4.825E-03 

0 38 5.761E-02 5.755E-02 5.753E-02 5.753E-02 5.752E-02 
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0 46 4.0005E-01 4.005E-01 4.005E-01 4.005E-01 4.005E-01 

0 50 4.049E-01 4.049E-01 4.049E-01 4.049E-01 4.049E-01 

Th
230  616 

x  [m] y  [m] M =100 M =200 M =400 M =800 M =1,600 

0 34 1.498E-06 1.495E-06 1.493E-06 1.492E-06 1.492E-06 

0 38 4.269E-05 4.267E-05 4.267E-05 4.266E-05 4.266E-05 

0 42 6.847E-04 6.848E-04 6.848E-04 6.848E-04 6.848E-04 

0 46 7.259E-04 7.260E-04 7.260E-04 7.260E-04 7.260E-04 

0 50 7.273E-04 7.274E-04 7.274E-04 7.274E-04 7.274E-04 

x  [m] y  [m] N =1,000 N =2,000 N =4,000 N =8,000 N =16,000 

0 34 1.514E-06 1.497E-06 1.493E-06 1.492E-06 1.492E-06 

0 38 4.274E-05 4.268E-05 4.267E-05 4.266E-05 4.266E-05 

0 42 6.847E-04 6.848E-04 6.848E-04 6.848E-04 6.848E-04 

0 46 7.259E-04 7.260E-04 7.260E-04 7.260E-04 7.260E-04 

0 50 7.274E-04 7.274E-04 7.274E-04 7.274E-04 7.274E-04 

Ra
226  617 

x  [m] y  [m] M =50 M =100 M =200 M =400 M =800 

0 18 3.084E-08 3.082E-08 3.082E-08 3.081E-08 3.081E-08 

0 24 1.294E-07 1.293E-07 1.293E-07 1.293E-07 1.293E-07 

0 28 3.492E-07 3.492E-07 3.492E-07 3.492E-07 3.492E-07 

0 44 2.217E-05 2.222E-05 2.223E-05 2.223E-05 2.223E-05 

0 50 2.425E-05 2.430E-05 2.431E-05 2.431E-05 2.431E-05 

x  [m] y  [m] N =1,000 N =2,000 N =4,000 N =8,000 N =16,000 

0 18 3.086E-08 3.082E-08 3.082E-08 3.081E-08 3.081E-08 

0 24 1.294E-07 1.293E-07 1.293E-07 1.293E-07 1.293E-07 

0 28 3.493E-07 3.492E-07 3.492E-07 3.492E-07 3.492E-07 

0 44 2.223E-05 2.223E-05 2.223E-05 2.223E-05 2.223E-05 

0 50 2.431E-05 2.431E-05 2.431E-05 2.431E-05 2.431E-05 

 618 

 619 

 620 
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Table 4 621 

Solution convergence of each species concentration at transect of 25x  m for four-species 622 

radionuclide transport problem considering simulated domain of 250L  m, 100W  m, subject 623 

to Bateman-type sources located at mym  60 40   for t  = 1,000 year  (M = number of terms 624 

summed for inverse generalized integral transform; N = number of terms summed for inverse finite 625 

Fourier cosine transform). When we investigate the required M for inverse generalized integral 626 

transform, N=160 for the finite Fourier cosine transform inverse are used. When we investigate the 627 

required N for inverse finite Fourier cosine transform, M=1,600 for the generalized transform inverse 628 

are used. 629 

Pu
238  630 

x  [m] y  [m] M =100 M =200 M =400 M =800 M =1,600 

25 28 5.531E-08 5.576E-08 5.580E-08 5.580E-08 5.580E-08 

25 30 2.319E-07 2.312E-07 2.312E-07 2.311E-07 2.311E-07 

25 38 1.106E-05 1.106E-05 1.106E-05 1.106E-05 1.106E-05 

25 46 3.430E-05 3.430E-05 3.430E-05 3.430E-05 3.430E-05 

25 50 3.616E-05 3.616E-05 3.616E-05 3.616E-05 3.616E-05 

x  [m] y  [m] N =10 N =20 N =40 N =80 N =160 

25 28 -7.841E-07 9.961E-08 5.579E-08 5.580E-08 5.580E-08 

25 30 -4.063E-07 2.616E-07 2.312E-07 2.311E-07 2.311E-07 

25 38 1.195E-05 1.114E-05 1.106E-05 1.106E-05 1.106E-05 

25 46 3.404E-05 3.441E-05 3.430E-05 3.430E-05 3.430E-05 

25 50 3.817E-05 3.606E-05 3.616E-05 3.616E-05 3.616E-05 

U
234  631 

x  [m] y  [m] M =100 M =200 M =400 M =800 M =1,600 

25 30 9.734E-05 9.612E-05 9.594E-05 9.592E-05 9.592E-05 

25 34 1.727E-03 1.725E-03 1.724E-03 1.724E-03 1.724E-03 

25 38 1.167E-02 1.167E-02 1.167E-02 1.167E-02 1.167E-02 

25 46 4.023E-02 4.024E-02 4.024E-02 4.024E-02 4.024E-02 

25 50 4.177E-02 4.178E-02 4.178E-02 4.178E-02 4.178E-02 

x  [m] y  [m] N =10 N =20 N =40 N =80 N =160 

25 30 -9.427E-04 1.728E-04 9.610E-05 9.592E-05 9.592E-05 

25 34 3.154E-03 1.588E-03 1.725E-03 1.724E-03 1.724E-03 

25 38 1.324E-02 1.186E-02 1.167E-02 1.167E-02 1.167E-02 
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25 46 3.984E-02 4.049E-02 4.024E-02 4.024E-02 4.024E-02 

25 50 4.487E-02 4.153E-02 4.178E-02 4.178E-02 4.178E-02 

632 
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Th
230  633 

x  [m] y  [m] M =100 M =200 M =400 M =800 M =1,600 

25 30 1.822E-08 1.379E-08 1.312E-08 1.305E-08 1.305E-08 

25 34 3.288E-07 3.207E-07 3.195E-07 3.193E-07 3.193E-07 

25 38 2.766E-06 2.740E-06 2.735E-06 2.735E-06 2.735E-06 

25 46 1.013E-05 1.015E-05 1.015E-05 1.015E-05 1.015E-05 

25 50 1.043E-05 1.045E-05 1.045E-05 1.045E-05 1.045E-05 

x  [m] y  [m] N =10 N =20 N =40 N =80 N =160 

25 30 -2.948E-07 4.484E-08 1.320E-08 1.305E-08 1.305E-08 

25 34 7.000E-07 2.632E-07 3.196E-07 3.193E-07 3.193E-07 

25 38 3.246E-06 2.816E-06 2.735E-06 2.735E-06 2.735E-06 

25 46 1.005E-05 1.025E-05 1.015E-05 1.015E-05 1.015E-05 

25 50 1.134E-05 1.035E-05 1.045E-05 1.045E-05 1.045E-05 

Ra
226  634 

x  [m] y  [m] M =25 M =50 M =100 M =200 M =400 

25 10 2.681E-08 2.757E-08 2.767E-08 2.765E-08 2.765E-08 

25 14 6.580E-08 6.665E-08 6.676E-08 6.674E-08 6.674E-08 

25 18 1.606E-07 1.615E-07 1.617E-07 1.617E-07 1.617E-07 

25 42 1.686E-05 1.658E-05 1.656E-05 1.656E-05 1.656E-05 

25 50 2.315E-05 2.278E-05 2.277E-05 2.277E-05 2.277E-05 

x  [m] y  [m] N =10 N =20 N =40 N =80 N =160 

25 10 -5.355E-08 3.027E-08 2.766E-08 2.765E-08 2.765E-08 

25 14 7.068E-08 6.392E-08 6.675E-08 6.674E-08 6.674E-08 

25 18 2.642E-07 1.640E-07 1.617E-07 1.617E-07 1.617E-07 

25 42 1.624E-05 1.655E-05 1.656E-05 1.656E-05 1.656E-05 

25 50 2.311E-05 2.275E-05 2.277E-05 2.277E-05 2.277E-05 

 635 

  636 
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Table 5 637 

Solution convergence of each species concentration at transect of exit boundary ( 250x  m) for four-638 

species radionuclide transport problem considering simulated domain of 250L  m, 100W  m 639 

subject to Bateman-type sources located at mym  60 40   for t  = 1000 year  (M = number of 640 

terms summed for inverse generalized integral transform and  N = number of terms summed for 641 

inverse finite Fourier cosine transform). When we investigate the required M for inverse generalized 642 

integral transform, N=16 for the finite Fourier cosine transform inverse are used. When we investigate 643 

the required N for inverse finite Fourier cosine transform, M=6,400 for the generalized transform 644 

inverse are used. 645 

 646 

Ra
226  647 

x  [m] y  [m] M =400 M =800 M =1,600 M =3,200 M =6,400 

250 2 2.289E-08 1.842E-08 1.814E-08 1.812E-08 1.812E-08 

250 14 5.617E-08 5.060E-08 5.025E-08 5.022E-08 5.022E-08 

250 26 1.528E-07 1.420E-07 1.413E-07 1.413E-07 1.413E-07 

250 38 3.757E-07 2.743E-07 2.678E-07 2.674E-07 2.674E-07 

250 50 1.645E-07 3.208E-07 3.306E-07 3.312E-07 3.312E-07 

x  [m] y  [m] N =1 N =2 N =4 N =8 N =16 

250 2 1.529E-07 -1.848E-09 1.892E-08 1.812E-08 1.812E-08 

250 14 1.529E-07 5.348E-08 4.946E-08 5.022E-08 5.022E-08 

250 26 1.529E-07 1.627E-07 1.414E-07 1.413E-07 1.413E-07 

250 38 1.529E-07 2.666E-07 2.680E-07 2.674E-07 2.674E-07 

250 50 1.529E-07 3.089E-07 3.303E-07 3.312E-07 3.312E-07 

 648 

  649 
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Table 6 650 

Solution convergence of each species concentration at transect of inlet boundary ( 0x  m) for four-651 

species radionuclide transport problem considering simulated domain of 500,2L  m, 100W  m 652 

subject to Bateman-type sources located at mym  55 45   for t  = 1,000 year  (M = number of 653 

terms summed for inverse generalized integral transform; N = number of terms summed for inverse 654 

finite Fourier cosine transform). When we investigate the required M for inverse generalized integral 655 

transform, N=12,800 for the finite Fourier cosine transform inverse are used. When we investigate the 656 

required N for inverse finite Fourier cosine transform, M=6,400 for the generalized transform inverse 657 

are used. 658 

 659 

Pu
238  660 

x  [m] y  [m] M =400 M =800 M =1,600 M =3,200 M =6,400 

0 36 5.395E-07 5.391E-07 5.389E-07 5.387E-07 5.387E-07 

0 38 1.908E-06 1.908E-06 1.908E-06 1.907E-06 1.907E-06 

0 42 1.640E-05 1.642E-05 1.642E-05 1.642E-05 1.642E-05 

0 46 1.203E-04 1.199E-04 1.198E-04 1.198E-04 1.198E-04 

0 50 1.522E-04 1.524E-04 1.525E-04 1.525E-04 1.525E-04 

x  [m] y  [m] N =2,000 N =4,000 N =8,000 N =16,000 N =32,000 

0 36 5.392E-07 5.389E-07 5.388E-07 5.387E-07 5.387E-07 

0 38 1.908E-06 1.908E-06 1.907E-06 1.907E-06 1.907E-06 

0 42 1.642E-05 1.642E-05 1.642E-05 1.642E-05 1.642E-05 

0 46 1.198E-04 1.198E-04 1.198E-04 1.198E-04 1.199E-04 

0 50 1.525E-04 1.525E-04 1.525E-04 1.525E-04 1.525E-04 

U
234  661 

x  [m] y  [m] M =800 M =1,600 M =3,200 M =6,400 M =12,800 

0 36 4.817E-04 4.815E-04 4.815E-04 4.814E-04 4.814E-04 

0 38 2.348E-03 2.348E-03 2.348E-03 2.348E-03 2.348E-03 

0 44 1.011E-01 1.012E-01 1.012E-01 1.012E-01 1.012E-01 

0 48 3.704E-01 3.705E-01 3.705E-01 3.705E-01 3.705E-01 

0 50 3.862E-01 3.864E-01 3.864E-01 3.864E-01 3.864E-01 

x  [m] y  [m] N =4,000 N =8,000 N =16,000 N =32,000 N =64,000 

0 36 4.818E-04 4.816E-04 4.815E-04 4.814E-04 4.814E-04 

0 38 2.348E-03 2.348E-03 2.348E-03 2.348E-03 2.348E-03 
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0 44 1.013E-01 1.013E-01 1.012E-01 1.012E-01 1.012E-01 

0 48 3.705E-01 3.705E-01 3.705E-01 3.705E-01 3.705E-01 

0 50 3.864E-01 3.864E-01 3.864E-01 3.864E-01 3.864E-01 

Th
230  662 

x  [m] y  [m] M =400 M =800 M =1,600 M =3,200 M =6,400 

0 40 3.429E-06 3.427E-06 3.424E-06 3.423E-06 3.423E-06 

0 42 1.773E-05 1.783E-05 1.782E-05 1.782E-05 1.782E-05 

0 44 1.028E-04 1.089E-04 1.093E-04 1.093E-04 1.093E-04 

0 48 7.095E-04 7.089E-04 7.090E-04 7.090E-04 7.090E-04 

0 50 7.210E-04 7.205E-04 7.206E-04 7.206E-04 7.206E-04 

x  [m] y  [m] N =2,000 N =4,000 N =8,000 N =16,000 N =32,000 

0 40 3.430E-06 3.425E-06 3.424E-06 3.423E-06 3.423E-06 

0 42 1.783E-05 1.782E-05 1.782E-05 1.782E-05 1.782E-05 

0 44 1.093E-04 1.093E-04 1.093E-04 1.093E-04 1.093E-04 

0 48 7.090E-04 7.090E-04 7.090E-04 7.090E-04 7.090E-04 

0 50 7.206E-04 7.206E-04 7.206E-04 7.206E-04 7.206E-04 

Ra
226  663 

x  [m] y  [m] M =400 M =800 M =1,600 M =3,200 M =6,400 

0 24 3.557E-08 3.556E-08 3.556E-08 3.555E-08 3.555E-08 

0 28 9.276E-08 9.274E-08 9.273E-08 9.273E-08 9.273E-08 

0 40 2.159E-06 2.159E-06 2.159E-06 2.159E-06 2.159E-06 

0 44 7.739E-06 7.809E-06 7.813E-06 7.813E-06 7.813E-06 

0 50 2.072E-05 2.082E-05 2.083E-05 2.084E-05 2.084E-05 

x  [m] y  [m] N =1,000 N =2,000 N =4,000 N =8,000 N =16,000 

0 24 3.559E-08 3.557E-08 3.556E-08 3.555E-08 3.555E-08 

0 28 9.278E-08 9.275E-08 9.274E-08 9.273E-08 9.273E-08 

0 40 2.159E-06 2.159E-06 2.159E-06 2.159E-06 2.159E-06 

0 44 7.815E-06 7.814E-06 7.813E-06 7.813E-06 7.813E-06 

0 50 2.084E-05 2.084E-05 2.084E-05 2.084E-05 2.084E-05 

 664 

665 
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Table 7 666 

Solution convergence of each species concentration at transect of 250x  m for four-species 667 

radionuclide transport problem considering simulated domain of 500,2L  m, 100W  m subject 668 

to Bateman-type sources located at mym  55 45   for t  = 1,000 year  (M = number of terms 669 

summed for inverse generalized integral transform;  N = number of terms summed for inverse finite 670 

Fourier cosine transform). When we investigate the required M for inverse generalized integral 671 

transform, N=160 for the finite Fourier cosine transform inverse are used. When we investigate the 672 

required N for inverse finite Fourier cosine transform, M=12,800 for the generalized transform inverse 673 

are used. 674 

Pu
238  675 

x  [m] y  [m] M =200 M =400 M =800 M =1,600 M =3,200 

25 32 2.578E-08 2.569E-08 2.564E-08 2.563E-08 2.563E-08 

25 34 1.153E-07 1.162E-07 1.161E-07 1.161E-07 1.161E-07 

25 40 3.485E-06 3.661E-06 3.661E-06 3.661E-06 3.661E-06 

25 46 2.262E-05 2.176E-05 2.163E-05 2.163E-05 2.163E-05 

25 50 2.752E-05 2.920E-05 2.929E-05 2.929E-05 2.929E-05 

x  [m] y  [m] N =10 N =20 N =40 N =80 N =160 

25 32 -7.217E-07 4.318E-08 2.558E-08 2.563E-08 2.563E-08 

25 34 -1.422E-06 1.470E-07 1.162E-07 1.161E-07 1.161E-07 

25 40 4.741E-06 3.665E-06 3.661E-06 3.661E-06 3.661E-06 

25 46 2.175E-05 2.155E-05 2.163E-05 2.163E-05 2.163E-05 

25 50 2.713E-05 2.938E-05 2.929E-05 2.929E-05 2.929E-05 

U
234  676 

x  [m] y  [m] M =200 M =400 M =800 M =1,600 M =3,200 

25 34 3.937E-05 4.038E-05 4.022E-05 4.019E-05 4.019E-05 

25 36 2.029E-04 2.162E-04 2.160E-04 2.159E-04 2.159E-04 

25 42 5.649E-03 7.897E-03 7.936E-03 7.936E-03 7.936E-03 

25 46 2.695E-02 2.593E-02 2.565E-02 2.564E-02 2.564E-02 

25 50 2.913E-02 3.552E-02 3.585E-02 3.586E-02 3.586E-02 

x  [m] y  [m] N =10 N =20 N =40 N =80 N =160 

25 34 -2.184E-03 1.134E-04 4.038E-05 4.019E-05 4.019E-05 

25 36 -2.113E-03 1.975E-04 2.158E-04 2.159E-04 2.159E-04 
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25 42 1.118E-02 8.092E-03 7.936E-03 7.936E-03 7.936E-03 

25 46 2.580E-02 2.544E-02 2.564E-02 2.564E-02 2.564E-02 

25 50 3.262E-02 3.608E-02 3.586E-02 3.586E-02 3.586E-02 

 677 

Th
230  678 

x  [m] y  [m] M =800 M =1,600 M =3,200 M =6,400 M =12,800 

25 36 3.192E-08 3.181E-08 3.180E-08 3.179E-08 3.179E-08 

25 38 1.578E-07 1.576E-07 1.576E-07 1.576E-07 1.576E-07 

25 44 3.838E-06 3.914E-06 3.914E-06 3.914E-06 3.914E-06 

25 48 8.531E-06 8.539E-06 8.539E-06 8.539E-06 8.539E-06 

25 50 9.253E-06 9.261E-06 9.261E-06 9.262E-06 9.262E-06 

x  [m] y  [m] N =10 N =20 N =40 N =80 N =160 

25 36 -6.448E-07 2.862E-08 3.167E-08 3.179E-08 3.179E-08 

25 38 -1.271E-07 1.141E-07 1.577E-07 1.576E-07 1.576E-07 

25 44 4.705E-06 3.925E-06 3.914E-06 3.914E-06 3.914E-06 

25 48 7.869E-06 8.534E-06 8.540E-06 8.539E-06 8.539E-06 

25 50 8.345E-06 9.353E-06 9.261E-06 9.262E-06 9.262E-06 

Ra
226  679 

x  [m] y  [m] M =100 M =200 M =400 M =800 M =1600 

25 12 1.268E-08 1.273E-08 1.272E-08 1.272E-08 1.272E-08 

25 18 4.817E-08 4.822E-08 4.821E-08 4.821E-08 4.821E-08 

25 26 2.830E-07 2.824E-07 2.824E-07 2.824E-07 2.824E-07 

25 42 8.794E-06 7.484E-06 7.578E-06 7.579E-06 7.579E-06 

25 50 1.761E-05 1.449E-05 1.494E-05 1.497E-05 1.497E-05 

x  [m] y  [m] N =10 N =20 N =40 N =80 N =160 

25 12 8.791E-08 1.264E-08 1.272E-08 1.272E-08 1.272E-08 

25 18 -1.512E-07 4.713E-08 4.821E-08 4.821E-08 4.821E-08 

25 26 5.221E-07 2.830E-07 2.824E-07 2.824E-07 2.824E-07 

25 42 7.960E-06 7.587E-06 7.578E-06 7.579E-06 7.579E-06 

25 50 1.458E-05 1.498E-05 1.494E-05 1.497E-05 1.497E-05 

 680 
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  681 
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Table 8 682 

Transport parameters used for verification example 2 involving the ten-species transport problem 683 

used by Srinivasan and Clement (2008b)  684 

Parameter Value 

Domain length, L  [m] 250 

Domain width, W  [m] 100 

Seepage velocity, v  [m year-1] 5 

Longitudinal Dispersion coefficient, LD  [m2 year-1] 50 

Transverse Dispersion coefficient, TD  [m2 year-1] 50 

Retardation coefficient, iR   

i=1, 2,…,10 

 

1.9, 1, 1.4, 1, 5, 8, 1.4, 3.1, 1, 1 

Decay constant, ik  [year-1] 

i=1, 2,…,10 

 

3, 2, 1.5, 1.25, 2.75, 1, 0.75, 0.5, 0.25, 0.1 

Source decay constant, m   [year-1] 

m=1, 2,…,10 

0.1, 0.75, 0.5, 0.25, 0, 0, 0.3, 1, 0, 0.65 

 685 

 686 

 687 

  688 
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Table 9  689 

Coefficients of Bateman-type boundary source for ten-species transport problem used by Srinivasan 690 

and Clement (2008b) 691 

Species, i imb  

 m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10 

Species 1   10          

Species 2   0 5         

Species 3   0 0 2.5        

Species 4   0 0 0 0       

Species 5 0 0 0 0 10      

Species 6 0 0 0 0 0 5     

Species 7 0 0 0 0 0 0 2.5    

Species 8 0 0 0 0 0 0 0 0   

Species 9 0 0 0 0 0 0 0 0 0  

Species 10 0 0 0 0 0 0 0 0 0 0 

 692 

 693 

 694 

 695 
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 696 

Table 10  697 

Transport parameters used for example application involving the five-species dissolved chlorinated 698 

solvent problem used by BIOCHLOR. 699 

Parameter Value 

Domain length, L  [m] 330.7 

Domain width, W  [m] 213.4 

Seepage velocity, v  [m year-1] 34.0 

Longitudinal dispersion coefficient, LD  [m2 year-1] 449 

Transverse dispersion coefficient, TD  [m2 year-1] 44.9 

Retardation coefficient, iR  [-]  

PCE  7.13 

TCE  2.87 

DCE  2.8 

VC  1.43 

ETH 5.35 

Decay constant, ik  [year-1]  

PCE  2 

TCE  1 

DCE  0.7 

VC  0.4 

ETH 0 

Source decay rate constant, m  [year-1]  

PCE 0 

TCE 0 

DCE 0 

VC 0 

ETH 0 
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Table 11  700 

Coefficients of Bateman-type boundary source used for example application involving the five-701 

species dissolved chlorinated solvent problem used by BIOCHLOR. 702 

 

Species, i 

imb   

m=1 m=2 m=3 m=4 m=5 

PCE , i=1 0.056     

TCE , i=2  15.8    

DCE , i=3   98.5   

VC , i=4    3.08  

ETH , i=5     0.03 

 703 

 704 

 705 

 706 

 707 

 708 
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 709 

 710 

Figures Captions 711 

Fig. 1. Schematic representation of two-dimensional transport of decaying contaminants in a uniform 712 

flow field with flux boundary source located at of the inlet boundary. 713 

Fig. 2. Comparison of spatial concentration profiles of four species along the longitudinal direction 714 

(=50 m) at t = 1,000 years obtained from derived analytical solutions and numerical 715 

solutions for convergence test example 1 of four-member radionuclide decay chain 716 

238Pu→234U→230Th→226Ra . 717 

Fig. 3. Comparison of spatial concentration profiles of four species along the transverse direction (=0 718 

m) at t = 1,000 years obtained from derived analytical solutions and numerical solutions 719 

for convergence test example 1 of four-member radionuclide decay chain 720 

238Pu→234U→230Th→226Ra .  721 

Fig. 4. Comparison of spatial concentration profiles of four species along the transverse direction 722 

(=25 m) at t = 1,000 years obtained from derived analytical solutions and numerical 723 

solutions for convergence test example 1 of four-member radionuclide decay chain 724 

238Pu→234U→230Th→226Ra .  725 

Fig. 5. Comparison of spatial concentration profiles of four species along the longitudinal direction 726 

(=50 m) at t = 1,000 years obtained from derived analytical solutions and numerical 727 

solutions for convergence test example 2 of four-member radionuclide decay chain 728 

238Pu→234U→230Th→226Ra . 729 

Fig. 6. Comparison of spatial concentration profiles of four species along the transverse direction (=0 730 
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m) at t = 1,000 years obtained from derived analytical solutions and numerical solutions 731 

for convergence test example 2 of four-member radionuclide decay chain 732 

238Pu→234U→230Th→226Ra .  733 

Fig. 7. Comparison of spatial concentration profiles of four species along the transverse direction 734 

(=25 m) at t = 1,000 years obtained from derived analytical solutions and numerical 735 

solutions for convergence test example 2 of four-member radionuclide decay chain 736 

238Pu→234U→230Th→226Ra .  737 

Fig. 8. Comparison of spatial concentration profiles of ten-species along x-direction at t = 20 days 738 

obtained from derived analytical solutions and numerical solutions for the test example 3 739 

of ten species decay chain used by Srinivasan and Clement (2008b). 740 

Fig. 9. Effects of physical processes and chemical reactions on the concentration contours of four-741 

species at t = 1,000 years obtained from derived analytical solutions for four-member decay 742 

chain  238Pu→234U→230Th→226Ra . 743 

Fig. 10. Spatial concentration contours of five-species at t = 1 year obtained from derived analytical 744 

solutions for natural attenuation of chlorinated solvent plumes   PCE→TCE→DCE→VC 745 

→ETH. 746 
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