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Abstract

We compare several estimators, which are commonly used in hydrology, for the pa-
rameters of the distribution of flood series, like the Maximum-Likelihood estimator or
L-Moments, with the robust estimators Trimmed L-Moments and Minimum Distances.
Our objective is estimation of the 99 %- or 99.9 %-quantile of an underlying Gumbel or
Generalized Extreme Value distribution (GEV), where we modify the generated random
variables such that extraordinary extreme events occur. The results for a two- or three-
parametric fitting are compared and the robustness of the estimators to the occurrence
of extraordinary extreme events is investigated by statistical measures.

When extraordinary extreme events are known to appear in the sample, the Trimmed
L-Moments are a recommendable choice for a robust estimation. They even perform
rather well, if there are no such events.

1 Introduction

In hydrology the statistical distribution of annual maximum discharges is commonly
modelled by the three parametric Generalized Extreme Value (GEV) distribution or its
special case, the two parametric Gumbel distribution (Hosking et al., 1985a; N.E.R.C.,
1975). This approach is based on the Fisher—Tippet-Theorem which says that the max-
imum of independent, identically distributed random variables (properly normalized)
converges in distribution to an extreme value distribution (Fisher and Tippett, 1928).
Parameter estimators for distribution functions used in the hydrological context, es-
pecially the GEV, are often compared concerning their efficiency or biasedness in small
and large samples (Hosking et al., 1985b). It is also known, which of the popular es-
timators have smaller variances when estimating the probability of certain values or
quantiles (cf. Hosking, 1990; Madsen et al., 1997). Typically, these estimators are the
Maximum-Likelihood estimator, the Method of Moments or the L-Moments (cf. Prescott
and Walden, 1980; Hosking et al., 1985b), with the comparison depending on the sam-
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ple size. It turns out that the L-Moment estimators are preferable to the Maximum
Likelihood estimation for small sample sizes in terms of efficiency. The aforementioned
works concentrate on the (un)biasdness and efficiency of these estimators under ideal
conditions. However, these estimators are all known to be non-robust. That is, in the
presence of atypical observations or misspecification of the underlying model these
estimators tend to over- or underestimate.

In hydrological time series of maxima, for example annual floods, sometimes ex-
traordinary extreme events occur. These are in fact events with very low exceedance
probability, which deviate markedly from the other observations in the sample (Fischer
and Schumann, 2015). An example of such an event is the 2002 flood in the eastern
part of Germany. In Fig. 1 the Gauge Nossen at the river Freiberger Mulde in the east
of Germany is shown.

This occurrence of extreme events and the related problems in estimation are
a known problem and the property of robustness gets more and more into focus (cf.
Garavaglia et al., 2010; Guerrero et al., 2013; Fischer and Schumann, 2015). Using
non-robust estimators can lead to highly variable results in specification of distribution
functions which are applied to estimate design floods, for example the 99 %-quantile.
The occurrence of an extraordinary event increases the estimated quantile significantly,
although the underlying distribution does not change.

An alternative worth considering in this case are robust estimators, with robustness
meaning robustness of the parameter estimation against extraordinary values or mis-
specification of the underlying model. That is, the presence of single extraordinary
events in a time series does not influence the estimation. A measure for this is for
example the influence curve or its empirical equivalent, the sensitivity curve (Hampel
et al., 1986).

In this article we want to investigate the behaviour of estimators, which are com-
monly used in practice, in the situation, where extraordinary and rare extreme events
occur. We want to figure out, if the estimators are robust to small modifications of the
GEYV distribution. At the same time we consider estimators, which are up to now not in
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common use, but supposed to be robust. These are the Trimmed L-Moments, which
use a trimming of the extreme values in the sample, and a Minimum Distance estima-
tor. As a comparison, fitting a two- and a three-parametric distribution is investigated.
In hydrology it is not determined, how many parameters should be used. The third pa-
rameter, characterizing the shape and therefore the skewness, gives more flexibility in
estimation, especially when the data do not seem to be symmetric. However, its estima-
tion also leads to an additional uncertainty. The DWA (2012) (Deutsche Gesellschaft fur
Wasserwirtschaft, Abwasser und Abfall e.V.; German Association for Water, Wastewa-
ter and Waste) recommends the usage of a two- or three-parametric distribution, de-
pending on the length of the data sample. For small sample sizes (n < 50) application
of a two-parametric distribution is recommended, taking into account the low efficiency
in the estimation.

Therefore, we decide to compare both possibilities, two- and three-parametric fits, to
guarantee a fair evaluation for small and large sample sizes.

In our study we choose the two parametric Gumbel distribution with distribution func-
tion

F(x) = exp (—exp (%)) (1)

and as three parametric GEV distribution with distribution function

G(x) = exp <—(1 +§<%))_%>, (2)

for 1+ ¢é(x —u)/o >0, where u € R is the location parameter, o > 0 is the scale pa-
rameter and ¢ € R is the shape parameter. The Gumbel distribution corresponds to the
special case ¢ = 0.

In Sect. 2 we specify the setting for our simulations and give explicit description of
the used estimators. The results are evaluated in Sect. 3 and finally a conclusion and
an outlook is given.
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2 Simulation

To test several estimators with regard to their robustness and efficiency we use sim-
ulated flood series. For the simulations we first analyse Gumbel-distributed data with
location parameter 4 = 100 and scale parameter ¢ = 10, and in a second step GEV-
distributed data with the same location and scale parameter and shape ¢; =0.1
(GEV1). These are representative choices fitting such distributions to maximum dis-
charges (cf. Madsen et al., 1997). For comparison we also consider a larger shape
parameter ¢, = 0.2 in the model, to which we refer as GEV2.

As a justification for the choice of these parameters we fitted the GEV distribution
via L-Moments (described later on) to 33 series of annual maximum discharges of
gauges in different river basins in Thuringia and Saxony in Germany. The histogram
of estimated shape parameters of the GEV (rounded to one decimal figure) can be
found in Fig. 2. We can see some very large values for ¢, which indicate a significant
deviation from the Gumbel distribution.

In the simulations for each of the three distribution functions mentioned above two
scenarios are considered. The independent, identically Gumbel respectively GEV dis-
tributed random variables are modified in one of the following ways:

1. No modification: independent identically distributed random variables.

2. We include extraordinary extreme values in these time series, which equal the
99.9 %-quantile of the underlying distribution. For this, randomly chosen 2 % of
the data (rounded up) are replaced by the value of the 99.9 %-quantile.

First of all, we fit both the Gumbel and the GEV distribution, respectively, to compare fits
by two and three parametric distributions. This is done by calculating the 99 %- and the
99.9 %-quantiles of the fitted distributions and considering the bias and the root mean
squared error (RMSE) for the corresponding quantiles of the assumed true distribution.
In both scenarios this true distribution is the one without modification, which has the
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following quantiles:

OO.QQ;Gumb =146.0, OO.QQQ;Gumb =169.1 (3)
Qo.99:cev1 = 158.4, Qg 999.Gev1 = 199.5 (4)
Qo.90.Gev2 = 175.5, Qp g99.EV2 = 249.0 (5)

In the simulation we consider 1000 repetitions for each of different sample lengths

equal to n =30,50,100,200. Annual series with a length of more than 100 years are

very rare in hydrology and therefore an upper length of 200 seems to be sufficient.
We compare the following five different estimators.

1. Maximume-Likelihood estimator (ML): The Maximum Likelihood estimator is
among the most popular estimators. It is frequently used because of its high ef-
ficiency, consistency and asymptotical unbiasedness. However, it is not robust
against outliers or model misspecification (Dupuis and Field, 1980). The calcu-
lation of the ML estimator turns out to be rather difficult and especially for three
parameter distributions like the GEV it needs to be done numerically.

2. L-Moment estimator: The probability weighted moments (PWM) were developed
by Greenwood et al. (1979) to express parameters of easily invertible distributions
by moments. As an advancement of the standard and the probability weighted
moments Hosking (1990) suggested the so called Linear-Moments (L-Moments),
which are estimated by a linear combination of order statistics (that is L-statistics).
The resulting estimator offers the advantages of being similar to and for small
samples sometimes even more efficient than the Maximum-Likelihood estimator
and also more robust than ordinary Moment estimators (Hosking, 1990). They
exist in situations, where the classical moments do not exist and represent in
contrast to the PWM the characteristic values of a sample such as mean or stan-
dard deviation straightforwardly. Therefore, they are used more frequently than
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the PWM but deliver the same results. The rth L-Moment
1< r-1
=~ 2 (-1 ( B ) EX(r k) (6)
k=0

is estimated by
1 - r-1
= Y S ( B )Xu,-k:n)’ (7)
(r) 1<ii<...<i,<n k=0

where x;., is the ith value of the order statistics of the sample x;, /1 =1,...,n
respectively X;, and r = 1,...,n. Often also an expression via the PWM is used.

. Trimmed L-Moment estimator with symmetric (1,1) and asymmetric (0,1) trimming

(TL(1,1)/TL(0,1))

The TL-Moments are a generalization of the L-Moments suggested by Elamir and
Seheult (2003). The general formula for the rth TL-Moment is

t1 t2) Z( 1 ( ) E (X(r+t1 k: r+t1+t2)> (8)

where t4,t, € IN is the degree of trimming of the lower and upper parts of the order
statistic. By choosing t; = t, = 0 one gets the classical L-Moments. The trimming
makes the TL-Moments more robust against outliers than the L-Moments. An un-
biased estimator for the TL-Moments for the sample x4,.. ., x,, is (Hosking, 2007)

’ ,( ) r+n—1—k—1 ty+k) U?
r+ty+ty J=t1+1k=0
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For comparison, the estimator of the first L-Moment obtained from four data points
X(1:4) < X(2:4) < X(3.4) < X(2:0) IS

1

h=7 (X(1:4) + X@a) + X34 + X(4:9)) » (10)

whereas for the first TL(1,1)-Moment we have
1
/1(1,1)=§(X2:4+X3:4)1 (11)

since due to the trimming the highest and the lowest values of the sample are
omitted. The question of the trimming degree is crucial and of course other trim-
ming is possible. In our experiments, simulations with a higher trimming (0,2) did
not show more robustness but lower efficiency and therefore they are not consid-
ered here. For the special case of the Gumbel- and GEV distribution one can find
approximative expressions of the parameter estimations, see Elamir and Seheult
(2003) and Lilienthal (2013):

For the parameters of the GEV distribution the TL(0,1)-Moment estimators are

S 10 1 _ 2log(2) - log(3) (12)
5 \ 24,0707 | ~ 3log(3) - 2log(4)

briio.) = 85673947 - 0.675969 - 72 (13)

R 2 0‘1 1 1 ETL(OJ) 1 ETL(OJ) -

T S
r <§TL(0,1))

n 0,1 5TL(0,1) R » 1 énon

Ati0,1) = /1( ) - =G ol (éTL(on)) > -2 (15)
$TLO.1)
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and for the Gumbel distribution
2

S1i0. = 5 431
. (0,1) .
A1) =1 " +0.11607(0 1)

For the symmetric trimming the TL(1,1)-Moment estimators are

1,1
,_ 9 VY log(3) - 2log(4) + log(5)
=20 | ;0 ] " log(2) - 2log(3) + log(4)
2
érit1) =25.31711-2-91.5507 - 22 + 110.0626 - z° - 46.5518 - *
& o 1 1
TL(1,1) = T2 ~ —
Menang(g)men —s(g) e +3<%>§““ !
- 11 Oy . ér
By = - = S (éria ) 5
rii

for the GEV distribution and
(1,1)
/2

Ori11) = 0353
. 0.1 .
A1) = /1( - 0.45967 0,1

for the Gumbel distribution.

vector @ using the Cramer-von-Mises distance is given by

6 =arg min / (F,(x) = Go(x))?dx
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(16)

(17)

(18)

(19)
(20)

(21)

(22)
(23)

. Minimum Distance estimator: The Minimum Distance estimator for the parameter

(24)
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see Dietrich and Husler (1996). Here, F, is the empirical distribution function of
the sample and G, the distribution function with parameter (vector) 0 to be fitted.
In our case we need to minimize (for the GEV distribution)

7<Fn(x)—exp <-(1 +§(X;#>>_%>>2dx (25)

—00

or (for the Gumbel distribution)

oo

/ (F,,(x) —exp <- exp (%)))2&(, (26)

—00

which is done numerically.

Remark: the third classical non-robust estimator, the standard sample moments,
is excluded here, since the moment estimators do not exist for a shape parameter
¢>1/3, and therefore do not seem to be suitable in this hydrological context,
since there can be samples with a larger shape parameter as underlined by Fig. 2.

For the simulations we used the statistical software R (R-Project, 2013) with the
related packages distrMod (Kohl and Ruckdeschel, 2010), fExtremes (Wuertz
et al., 2013), Imomco (Asquith, 2013), RobExtremes (Ruckdeschel et al., 2012)
and VGAM (Yee, 2010). The results can be found in Tables 1-6.

Evaluation for data without disturbances

In Tables 1, 3 and 5 we can find the results for bias and root mean squared error
(RMSE) for the fitting to independent, identically distributed random variables, following
a Gumbel, GEV1- or GEV2-distribution.

For i.i.d. Gumbel data (Table 1) we see that a Gumbel-Fitting with Maximum Likeli-
hood leads to the lowest RMSE for all sample sizes n and both quantiles considered
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here. Concerning the RMSE, TL(0,1) estimation is second best, followed by TL(1,1)
and L-Moments, which do not differ much. The Minimum Distance estimator performs
worst, only in the case of n=100 it is better than classical L-Moments. The bias of
all Gumbel-based fittings is very small, even for small sample sizes. Fitting a GEV-
distribution to Gumbel-distributed data with non-robust estimators (ML and L-Moments)
roughly doubles the RMSE. Robust estimation (TL(0,1), TL(1,1), and MD) worsens the
results even more as both the RMSE and the bias become larger for all n and both
quantiles. Robust estimators aim at reducing biases which are due to using only ap-
proximately valid models, but it seems that in this case estimation error increases when
fitting an unnecessary third parameter by one of these robust estimators.

In case of i.i.d. GEV1-distributed data with a shape parameter of ¢ = 0.1 (Table 3),
fitting a Gumbel distribution causes a substantial negative bias, which dominates the
RMSE. Again, the L-Moments give the best results, but the differences are not large,
neither to the robust TL(1,1)-Moments. It is striking that the RMSE is nevertheless
much smaller for a Gumbel-Fitting than for a GEV-Fitting if the sample size is small,
and about equal for large sample sizes. This is due to the much smaller variability of the
two-parametric fits. A non-robust GEV-Fitting causes a large positive bias only for the
99.9 %-quantile, but nevertheless the RMSE is large for both quantiles and all sample
sizes due to the large variability. The results for the ML and the L-Moments are very
similar for large sample sizes (n = 200), though the L-Moments deliver results with less
deviation from the assumption in small samples. A robust fitting of a GEV-distribution
leads, in comparison to the same estimators with a Gumbel-fitting, to a positive bias
and and higher variability and therefore to larger RMSEs for all sample sizes and both
quantiles.

When the shape parameter is further increased to ¢ = 0.2 (GEV2) (Table 5) the pre-
vious remarks remain qualitatively valid. Fitting a Gumbel distribution to such data both
bias and RMSE is nearly twice (2.5 times for the 99.9 %-quantile) the one as before.
Very striking are the results of the L-Moment estimates for small sample sizes. They
produce a large positive bias resulting in a large RMSE, which do not fit to the results
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for the other sample sizes. In case of at most 50 observations, fitting a Gumbel dis-
tribution with TL(1,1)-Moments seems best, closely followed by ML, MD and TL(0,1).
In case of at least 100 observations, GEV fitting becomes worthwhile with L-Moments
and ML performing best, followed by TL(1,1)- and TL(0,1)-Moments.

2.2 Evaluation in the presence of extraordinary extreme events

In Tables 2, 4 and 6 data from scenario 2 containing extraordinary extreme events are
considered.

For Gumbel-distributed data and a Gumbel-Fitting we see that the smallest values for
the RMSE are given for the TL(0,1)-Moments followed by the MD-estimator, which even
has a smaller bias. For both estimators the RMSE is not much higher than in the case
of data without disturbances. The non-robust estimators are substantially more biased,
with the L-Moments behaving worst. The RMSE of the ML-estimator is comparable to
that of the TL(1,1)-Moments, though ML has larger bias. If a GEV-Fitting is used, the
bias increases rapidly and therefore also the RMSE is large.

Somewhat surprisingly, the results are similar to this when the data follow a GEV-
distribution with ¢ = 0.1. The occurrence of extraordinary extreme events apparently
reduces the negative bias and the RMSE of the estimations based on a Gumbel fit
in this situation. Fitting a Gumbel distribution by L-Moments works best for all sample
sizes, followed by ML, TL(1,1)- and TL(0,1)-Moments. For the 99.9 %-quantile the dif-
ference becomes even larger. So the robust estimators have a higher RMSE and are
no longer better than the non-robust ones, where the ML-estimator behaves best over-
all. Note that the results for a GEV-Fitting are much worse. If the value of the shape
parameter is increased, the RMSE and bias results increase by the factor 2.
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3 Conclusions and outlook

This work investigates the applicability and advantages or disadvantages of some ro-
bust estimators in the context of hydrological flood estimation.

Concerning the non-robust estimators the results of Hosking et al. (1985b) are con-
firmed. For small sample sizes the L-Moments in the GEV-Fitting have smaller RMSE
than the ML-estimator. Nevertheless, it becomes obvious that the size of the shape pa-
rameter plays a crucial role. The larger the shape parameter the more differ the RMSEs
of these two estimators. Fewer observations are needed to make the ML superior to
L-moments when just two parameters need to be estimated as in the case of a Gumbel
distribution.

When extraordinary or rare extreme events occur in our data, the robust Minimum
Distance estimator or the Trimmed L-Moments offer a smaller bias and RMSE for the
higher quantile, but they have the disadvantage of having larger RMSE compared to the
classical estimators ML and L-Moments, when no such extraordinary extreme events
occur. This is the common lack of efficiency of many robust estimators, particularly in
small samples. Among the robust estimators considered here, the TL(1,1)-Moments
are preferable, since they have the smallest RMSE when extraordinary extreme events
occur and not too large RMSE when there are no such events — especially for esti-
mation of the higher quantile. Of course also other trimming is possible and could be
investigated further.

Based on the results the Trimmed L-Moments with symmetric trimming seem to be
a recommendable choice when extraordinary events occur in the sample. The do not
have a tendency of overestimating the quantile, even if the return period of the event is
much larger than the sample length. Additionally they seem to be rather efficient, which
is inherited from the ordinary L-Moments. The Minimum Distance estimator considered
here is apparently not efficient enough for the small sample sizes given in hydrology. If
there are no obvious extraordinary events in the sample, L-Moments are recommended
having the largest efficiency for the small sample sizes occurring in hydrology.
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Further hydrological phenomena can occur. Therefore, we also investigated another
scenario, representing an uncertainty in the measurement of the data. We wanted to
model the situation, when a rating curve does not consider the overflowing of river
beds (too small discharge values are assumed) or backwater in river increases the
water level (too high discharges are assumed). This was done by cutting off the 20 %
highest data of the simulated distribution and replacing them by data representing an
error between 0 and 30 %. For this scenario all estimators failed and were not able to
cope with the misspecification of the model. Therefore, detailed results are omitted.

In the recommendations made above the question arises, how to detect extraordi-
nary events. It is not always clear, which event is extraordinary and which is just very
high. A possibility to make this choice could be the sensitivity curve. For non-robust
estimators one could use this tool to examine the influence of a single event to the es-
timation and therefore decide, whether to use a robust estimator or not. This is beyond
the scope of this work and a question of further research.

Additionally, the results give the impression that the choice of the number of param-
eters is crucial and should depend on the sample size and on the value of the shape
parameter. The recommendations of the DWA (2012) are confirmed for the scenar-
ios considered here but we have by far not covered all relevant cases where a two-
parametric distribution function might be preferred. Since this is an important question
in the estimation of flood quantiles it deserves further investigation.
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Table 1. Estimation of the 99 %- and the 99.9 %-quantile for independent, identically Gumbel

(100, 10)-distributed random variables with sample size 30, 50, 100 and 200.

Gumbel-Fitting GEV-Fitting
n=30 99 %-quantile 99.9 %-quantile | 99 %-quantile  99.9 %-quantile
Estimator Bias RMSE Bias RMSE | Bias RMSE Bias RMSE
ML -1.14 7.39 -1.78 10.7 | 0.797 184 9.62 77.3
L-Moments -0.398 8.08 -0.609 11.7 | 0.136 14.0 4.58 35.5
TL(1,1)-Moments | -0.114 827 -0.139 121 4.14 22.3 21.2 74.8
TL(0,1)-Moments | 0.418 7.77 0.626 11.2 9.86 36.9 37.7 124
MD -0.816  8.67 -1.28 12.7 6.47 32.7 36.4 168
Gumbel-Fitting GEV-Fititng
n=>50 99 %-quantile 99.9 %-quantile 99 %-quantile  99.9 %-quantile
Estimator Bias RMSE Bias RMSE | Bias RMSE Bias RMSE
ML -0.295 5.61 -0.52 8.07 -0.9 1.1 1.00 26.8
L-Moments 0.078 6.45 0.108 9.37 | 0593 10.6 3.27 25.0
TL(1,1)-Moments | -0.176  6.47 0.283 9.54 3.08 16.4 13.3 48.2
TL(0,1)-Moments | 0.155 5.99 0.243 8.66 3.46 21.4 13.4 57.1
MD -0.362 6.60 -0.58 9.67 3.54 20.8 17.7 75.5
Gumbel-Fitting GEV-Fitting
n=100 99 %-quantile 99.9 %-quantile 99 %-quantile  99.9 %-quantile
Estimator Bias RMSE Bias RMSE | Bias RMSE Bias RMSE
ML -0.24 4.01 -0.39 576 | 0.355 8.1 2.39 19.2
L-Moments 0.101 4.71 0.103 6.86 0.23 7.78 1.83 18.3
TL(1,1)-Moments | 0.256 4.71 0.38 6.97 | 0.755 10.2 4.19 26.8
TL(0,1)-Moments | 0.117 4.32 0.159 6.22 | 1.206 14.1 5.14 33.8
MD -0.01 4.48 -0.03 6.55 1.37 12.7 6.59 34.6
Gumbel-Fitting GEV-Fitting
n =200 99 %-quantile 99.9 %-quantile 99 %-quantile  99.9 %-quantile
Estimator Bias RMSE Bias RMSE | Bias RMSE Bias RMSE
ML -0.192 295 -0.31 424 | -0.07 524 0373 117
L-Moments -0.061 3.24 -0.09 472 | -0.08 516 0476 11.8
TL(1,1)-Moments | 0.029 3.32 0.022 486 | 0.747 742 2.95 18.3
TL(0,1)-Moments | 0.042 3.03 0.044 4.38 1.49 9.73 4.51 21.8
MD -0.085 3.29 -0.06 4.81 0.565 8.57 2.3 21.5
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Table 2. Estimation of the 99 %- and the 99.9 %-quantile for independent, identically Gumbel
(100, 10)-distributed random variables with sample size 30, 50, 100 and 200 and simulated
extreme events.

Jaded uoissnosiq

Gumbel-Fitting GEV-Fitting Rob f
n=230 99 %-quantile  99.9 %-quantile | 99 %-quantile  99.9 %-quantile obustness o
Estimator Bias RMSE Bias RMSE | Bias RMSE Bias RMSE . estimators for flood
ML 629 979 890 140 |27.7 348 817 123 statistics
L-Moments 11.8 14.2 17.2 20.7 26.7 29.3 741 84.6 |w)
TL(1,1)-Moments | 467 107 684 157 | 189 349 66.4 135 g .
TL(0,1)-Moments | 3.04 883 432 127 |154 311 478 991 e S. Fischer et al.
MD 280 9.75 3.96 14.3 25.1 53.2 103 315 8
Gumbel-Fitting GEV-Fitting <
n=50 99 %-quantile  99.9 %-quantile | 99 %-quantile  99.9 %-quantile B _
Estimator Bias RMSE Bias RMSE | Bias RMSE Bias RMSE %
ML 381 6.89 537 984 [162 199 427 570 w - -
L-Moments 6.81 8.90 10.1 13.0 15.7 186 411 50.5
TL(1,1)-Moments | 3.06 7.73 4.46 11.3 102 222 317 70.0 — - -
TL(O,1)-Moments | 2.35 6.85 3.34 9.84 860 205 25.0 58.4
MD 170 732 239 10.7 123 299 439 117 @)
7 - -
Gumbel-Fitting GEV-Fitting 2
n=100 99 %-quantile  99.9 %-quantile | 99 %-quantile  99.9 %-quantile 8
Estimator Bias RMSE Bias RMSE | Bias RMSE Bias RMSE 5 - -
ML 3.87 5.60 5.50 8.01 142 16.0 35.0 40.7 %
L-Moments 685 801 101 118 |152 167 381 429 o - -
TL(1,1)-Moments | 3.25 6.09 478 895 | 120 178 325 508 =
TL(0,1)-Moments | 2.30 4.92 326 7.10 |850 153 217 404 = - -
MD 214 533 3.05 7.75 9.54 183 26.6 52.5 .
n =200 99 %-quantile  99.9 %-quantile | 99 %-quantile  99.9 %-quantile O
Estimator Bias RMSE Bias RMSE | Bias RMSE Bias RMSE 8
L-Moments 692 760 102 111 |149 156 367 391 @
TL(1,1)-Moments | 3.37  4.81 4.95 7.10 115 145 29.0 38.3 8 _
TL(O,1)-Moments | 2.23 3.87 3.14 5.55 873 125 208 31.3 v}
Q
MD 212 401 304 582 |763 128 187 329 g @ ®
- . BY
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Table 3. Estimation of the 99 %- and the 99.9 %-quantile for independent, identically GEV (0.1,

100, 10)-distributed random variables with sample size 30, 50, 100 and 200.

Gumbel-Fitting

GEV-Fitting

n=30 99 %-quantile  99.9 %- quantile | 99 %- quantile  99.9 %- quantile
Estimator Bias RMSE Bias RMSE | Bias RMSE Bias RMSE
ML -10.6 13.8 -28.1 29.2 2.68 273 219 103
L-Moments -7.08 13.3 -22.7 28.1 0.292 21.3 8.34 65.9

TL(1,1)-Moments
TL(0,1)-Moments

-874 133 -25.0 29.0
-11.0 140 -286 31.1

5.63 333 372 138
7.11 345 36.9 133

MD -112 149 -28.7 321 11.6 58.3 86.5 550
Gumbel-Fitting GEV-Fitting

n=>50 99 %- quantile  99.9 %- quantile | 99 %- quantile  99.9 %- quantile

Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ML -10.7 126 -28.1 29.7 0.939 182 894 56.0

L-Moments -664 110 -220 255 -0.05 175 475 51.6

TL(1,1)-Moments
TL(0,1)-Moments

-937 123 -26.0 284
-109 129 -285 30.1

3.92 23.3 209 83.6
2.97 23.1 16.1 79.2

MD -11.0 121 -284 293 6.93 341 398 167
Gumbel-Fitting GEV-Fitting

n=100 99 %- quantile  99.9 %- quantile | 99 %- quantile  99.9 %- quantile

Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ML -998 105 -27.1 27.5 0.718 121 467 33.9

L-Moments -6.95 814 -225 233 -0.17 118 213 32.8

TL(1,1)-Moments
TL(0,1)-Moments

-9.19 993 -257 263
-109 119 -284 292

2.01 156 10.2 47.2
217 151 9.41 44.2

MD -11.0 1241 -284 293 1.84 179 111 56.7
Gumbel-Fitting GEV-Fitting

n =200 99 %- quantile  99.9 %- quantile | 99 %- quantile  99.9 %- quantile

Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ML -998 105 -27.1 27.5 0.167 823 1.77 21.9

L-Moments -6.95 814 -225 233 0.301 8.36 1.90 22.4

TL(1,1)-Moments
TL(0,1)-Moments
MD

-9.19 993 -257 263
10.2 116 -288 291
-10.7 113 -28.0 285

1.06 10.3 4.83 29.9
1.19 106 4.89 30.2
2.07 123 8.33 36.3
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Table 4. Estimation of the 99 %- and the 99.9 %-quantile for independent, identically GEV (0.1,
100, 10)-distributed random variables with sample size 30, 50, 100 and 200 and simulated

extreme events.

Gumbel-Fitting GEV-Fitting
n =230 99 %-quantile 99.9 %- quantile | 99 %- quantile  99.9 %- quantile
Estimator Bias RMSE Bias RMSE | Bias RMSE Bias RMSE
ML -0.363 8.75 -13.3 18.2 46.5 60.4 172 283
L-Moments 11.0 14.9 4.02 151 438 474 150 168

TL(1,1)-Moments
TL(0,1)-Moments

-3.08 120 -167 238
-7.09 115 -229 263

31.7 565 135 284
270 516 105 221

MD -6.92 131 -226 278 384 953 216 917
Gumbel-Fitting GEV-Fitting

n=50 99 %- quantile  99.9 %- quantile | 99 %- quantile 99.9 %- quantile

Estimator Bias RMSE Bias RMSE | Bias RMSE Bias RMSE

ML -4.12 819 -187 213 25.1 31.7 794 110

L-Moments 3.85 9.03 -6.57 13.6 271 304 856 98.5

TL(1,1)-Moments
TL(0,1)-Moments

-5.33 101 -20.0 236
-8.75 113 -2563 273

173 326 619 123
153 33.0 532 117

MD -8.68 117 -251 275 187 418 759 186
Gumbel-Fitting GEV-Fitting

n=100 99 %- quantile  99.9 %- quantile | 99 %- quantile 99.9 %- quantile

Estimator Bias RMSE Bias RMSE | Bias RMSE Bias RMSE

ML -3.98 6.28 -18.4 19.7 | 233 263 688 80.4

L-Moments 3.69 6.95 -6.80 10.9 262 284 813 90.1

TL(1,1)-Moments
TL(0,1)-Moments

-4.79 753 -19.2 21.0
-8.73 997 -253 26.2

182 26.8 59.1 92.2
147 236 443 74.0

MD -8.46 102 -247 26.0 138 273 470 96.3
Gumbel-Fitting GEV-Fitting

n =200 99 %- quantile  99.9 %- quantile | 99 %- quantile 99.9 %- quantile

Estimator Bias RMSE Bias RMSE | Bias RMSE Bias RMSE

ML -3.71 510 -18.0 18.7 216 23.1 60.9 66.2

L-Moments 3.84 563 -6.59 8.92 25.1 262 756 79.6

TL(1,1)-Moments
TL(0,1)-Moments
MD

-5.08 649 -196 205
-8.18 893 -245 250
-8.37 929 -246 253

188 232 58.0 741
145 197 414 58.2
118 192 353 60.3
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Table 5. Estimation of the 99 %- and the 99.9 %-quantile for independent, identically GEV (0.2,

100, 10)-distributed random variables with sample size 30, 50, 100 and 200.

Gumbel-Fitting

GEV-Fitting

n=30 99 %-quantile  99.9 %- quantile | 99 %- quantile  99.9 %- quantile
Estimator Bias RMSE Bias RMSE | Bias RMSE Bias RMSE
ML -236 264 -71.8 73.8 10.5 68.1 101 1233
L-Moments 73.0 78.0 314 343 0.435 337 18.8 145

TL(1,1)-Moments
TL(0,1)-Moments

-21.7 252 -685 709
-269 287 -765 778

5.94 45.7 53.5 226
7.56 44.7 51.6 205

MD -25.7 279 -747 764 23.7 82.8 172 607
Gumbel-Fitting GEV-Fitting

n=>50 99 %- quantile  99.9 %- quantile | 99 %- quantile  99.9 %- quantile

Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ML -237 253 -720 731 2.50 28.3 22.0 111

L-Moments 43.5 49.0 173 178 0.009 245 9.69 93.5

TL(1,1)-Moments
TL(0,1)-Moments

-21.8 239 -68.7 70.0
-266 277 -76.0 76.8

5.03 32.7 33.9 132
5.69 347 34.74 141

MD -262 275 -753 76.2 11.0 48.2 69.3 248
Gumbel-Fitting GEV-Fitting

n=100 99 %- quantile  99.9 %- quantile | 99 %- quantile  99.9 %- quantile

Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ML -23.3 241 -713 718 1.98 19.2 11.2 63.8

L-Moments -172 189 -62.0 63.1 -0.65 17.9 2.84 60.5

TL(1,1)-Moments
TL(0,1)-Moments

-222 231 -69.1 69.8
-266 272 -7641 76.5

2.74 21.8 16.5 78.5
2.23 22.9 14.5 79.8

MD -256 263 -743 7438 5.27 28.8 29.2 115
Gumbel-Fitting GEV-Fitting

n =200 99 %- quantile  99.9 %- quantile | 99 %- quantile  99.9 %- quantile

Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ML -232 236 -71.1 71.5 0.874 128 5.67 41.9

L-Moments -171 18.1 -619 626 0.11 13.3 2.98 441

TL(1,1)-Moments
TL(0,1)-Moments
MD

-223 227 -69.3 69.7
-266 269 -76.0 76.2
-258 262 -747 749

1.92 16.1 111 57.6
1.69 15.2 8.49 50.8
2.05 18.5 11.4 65.8
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Table 6. Estimation of the 99 %- and the 99.9 %-quantile for independent, identically GEV (0.2,
100, 10)-distributed random variables with sample size 30, 50, 100 and 200 and simulated

extreme events.

Gumbel-Fitting GEV-Fitting
n =230 99 %-quantile 99.9 %- quantile | 99 %- quantile  99.9 %- quantile
Estimator Bias RMSE Bias RMSE | Bias RMSE Bias RMSE
ML -7.16 136 -479 507 84.6 122 436 1254
L-Moments 11.4 176 -19.8 279 73.0 78.0 314 343

TL(1,1)-Moments
TL(0,1)-Moments

-14.8 201 -582 61.6
-21.6 243 -689 707

519 953 292 646
434 795 201 419

MD -22.0 251  -69.1 71.4 63.3 146 439 1504
Gumbel-Fitting GEV-Fitting

n=50 99 %- quantile  99.9 %- quantile | 99 %- quantile 99.9 %- quantile

Estimator Bias RMSE Bias RMSE | Bias RMSE Bias RMSE

ML -13.6 16.3 -572 586 | 406 538 160 239

L-Moments 0.530 115 -359 395 43.5 49.0 173 201

TL(1,1)-Moments
TL(0,1)-Moments

-17.5 202 -623 64.0
-23.8 251 720 729

285 53.6 131 257
226 474 95.1 206

MD -23.4 249 -7141 72.3 289 65.1 145 347
Gumbel-Fitting GEV-Fitting

n=100 99 %- quantile  99.9 %- quantile | 99 %- quantile 99.9 %- quantile

Estimator Bias RMSE Bias RMSE | Bias RMSE Bias RMSE

ML -13.7 152 -57.3 58.1 36.1 421 131 160

L-Moments 0.290 797 -36.2 38.0 |426 456 162 176

TL(1,1)-Moments
TL(0,1)-Moments

-16.9 183 -61.3 62.1
-22.9 236 -707 71.2

326 456 1322 197
244 377 91.3 149

MD -23.8 246 -71.8 724 20.8 393 84.2 165
Gumbel-Fitting GEV-Fitting

n =200 99 %- quantile  99.9 %- quantile | 99 %- quantile 99.9 %- quantile

Estimator Bias RMSE Bias RMSE | Bias RMSE Bias RMSE

ML -13.6 143 -572 575 344 375 119 133

L-Moments -0489 593 -373 383 |419 434 157 164

TL(1,1)-Moments
TL(0,1)-Moments
MD

-16.2 170 -60.3 60.7
-23.0 233 -708 711
-23.6 241  -715 718

31.8 38.1 120 151
234 303 81.0 109
169  28.1 61.0 105
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Figure 1. Annual Maxima at the gauge Nossen/Freiberger Mulde.
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Figure 2. Histogram of the estimated shape parameter for annual maxima of three river basins.
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