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Abstract

We compare several estimators, which are commonly used in hydrology, for the pa-
rameters of the distribution of flood series, like the Maximum-Likelihood estimator or
L-Moments, with the robust estimators Trimmed L-Moments and Minimum Distances.
Our objective is estimation of the 99 %- or 99.9 %-quantile of an underlying Gumbel or5

Generalized Extreme Value distribution (GEV), where we modify the generated random
variables such that extraordinary extreme events occur. The results for a two- or three-
parametric fitting are compared and the robustness of the estimators to the occurrence
of extraordinary extreme events is investigated by statistical measures.

When extraordinary extreme events are known to appear in the sample, the Trimmed10

L-Moments are a recommendable choice for a robust estimation. They even perform
rather well, if there are no such events.

1 Introduction

In hydrology the statistical distribution of annual maximum discharges is commonly
modelled by the three parametric Generalized Extreme Value (GEV) distribution or its15

special case, the two parametric Gumbel distribution (Hosking et al., 1985a; N.E.R.C.,
1975). This approach is based on the Fisher–Tippet-Theorem which says that the max-
imum of independent, identically distributed random variables (properly normalized)
converges in distribution to an extreme value distribution (Fisher and Tippett, 1928).

Parameter estimators for distribution functions used in the hydrological context, es-20

pecially the GEV, are often compared concerning their efficiency or biasedness in small
and large samples (Hosking et al., 1985b). It is also known, which of the popular es-
timators have smaller variances when estimating the probability of certain values or
quantiles (cf. Hosking, 1990; Madsen et al., 1997). Typically, these estimators are the
Maximum-Likelihood estimator, the Method of Moments or the L-Moments (cf. Prescott25

and Walden, 1980; Hosking et al., 1985b), with the comparison depending on the sam-
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ple size. It turns out that the L-Moment estimators are preferable to the Maximum
Likelihood estimation for small sample sizes in terms of efficiency. The aforementioned
works concentrate on the (un)biasdness and efficiency of these estimators under ideal
conditions. However, these estimators are all known to be non-robust. That is, in the
presence of atypical observations or misspecification of the underlying model these5

estimators tend to over- or underestimate.
In hydrological time series of maxima, for example annual floods, sometimes ex-

traordinary extreme events occur. These are in fact events with very low exceedance
probability, which deviate markedly from the other observations in the sample (Fischer
and Schumann, 2015). An example of such an event is the 2002 flood in the eastern10

part of Germany. In Fig. 1 the Gauge Nossen at the river Freiberger Mulde in the east
of Germany is shown.

This occurrence of extreme events and the related problems in estimation are
a known problem and the property of robustness gets more and more into focus (cf.
Garavaglia et al., 2010; Guerrero et al., 2013; Fischer and Schumann, 2015). Using15

non-robust estimators can lead to highly variable results in specification of distribution
functions which are applied to estimate design floods, for example the 99 %-quantile.
The occurrence of an extraordinary event increases the estimated quantile significantly,
although the underlying distribution does not change.

An alternative worth considering in this case are robust estimators, with robustness20

meaning robustness of the parameter estimation against extraordinary values or mis-
specification of the underlying model. That is, the presence of single extraordinary
events in a time series does not influence the estimation. A measure for this is for
example the influence curve or its empirical equivalent, the sensitivity curve (Hampel
et al., 1986).25

In this article we want to investigate the behaviour of estimators, which are com-
monly used in practice, in the situation, where extraordinary and rare extreme events
occur. We want to figure out, if the estimators are robust to small modifications of the
GEV distribution. At the same time we consider estimators, which are up to now not in
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common use, but supposed to be robust. These are the Trimmed L-Moments, which
use a trimming of the extreme values in the sample, and a Minimum Distance estima-
tor. As a comparison, fitting a two- and a three-parametric distribution is investigated.
In hydrology it is not determined, how many parameters should be used. The third pa-
rameter, characterizing the shape and therefore the skewness, gives more flexibility in5

estimation, especially when the data do not seem to be symmetric. However, its estima-
tion also leads to an additional uncertainty. The DWA (2012) (Deutsche Gesellschaft für
Wasserwirtschaft, Abwasser und Abfall e.V.; German Association for Water, Wastewa-
ter and Waste) recommends the usage of a two- or three-parametric distribution, de-
pending on the length of the data sample. For small sample sizes (n ≤ 50) application10

of a two-parametric distribution is recommended, taking into account the low efficiency
in the estimation.

Therefore, we decide to compare both possibilities, two- and three-parametric fits, to
guarantee a fair evaluation for small and large sample sizes.

In our study we choose the two parametric Gumbel distribution with distribution func-15

tion

F (x) = exp
(
−exp

(x−µ
σ

))
(1)

and as three parametric GEV distribution with distribution function

G(x) = exp

(
−
(

1+ ξ
(x−µ

σ

))− 1
ξ

)
, (2)

for 1+ ξ(x−µ)/σ > 0, where µ ∈R is the location parameter, σ > 0 is the scale pa-20

rameter and ξ ∈R is the shape parameter. The Gumbel distribution corresponds to the
special case ξ = 0.

In Sect. 2 we specify the setting for our simulations and give explicit description of
the used estimators. The results are evaluated in Sect. 3 and finally a conclusion and
an outlook is given.25
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2 Simulation

To test several estimators with regard to their robustness and efficiency we use sim-
ulated flood series. For the simulations we first analyse Gumbel-distributed data with
location parameter µ = 100 and scale parameter σ = 10, and in a second step GEV-
distributed data with the same location and scale parameter and shape ξ1 = 0.15

(GEV1). These are representative choices fitting such distributions to maximum dis-
charges (cf. Madsen et al., 1997). For comparison we also consider a larger shape
parameter ξ2 = 0.2 in the model, to which we refer as GEV2.

As a justification for the choice of these parameters we fitted the GEV distribution
via L-Moments (described later on) to 33 series of annual maximum discharges of10

gauges in different river basins in Thuringia and Saxony in Germany. The histogram
of estimated shape parameters of the GEV (rounded to one decimal figure) can be
found in Fig. 2. We can see some very large values for ξ, which indicate a significant
deviation from the Gumbel distribution.

In the simulations for each of the three distribution functions mentioned above two15

scenarios are considered. The independent, identically Gumbel respectively GEV dis-
tributed random variables are modified in one of the following ways:

1. No modification: independent identically distributed random variables.

2. We include extraordinary extreme values in these time series, which equal the
99.9 %-quantile of the underlying distribution. For this, randomly chosen 2 % of20

the data (rounded up) are replaced by the value of the 99.9 %-quantile.

First of all, we fit both the Gumbel and the GEV distribution, respectively, to compare fits
by two and three parametric distributions. This is done by calculating the 99 %- and the
99.9 %-quantiles of the fitted distributions and considering the bias and the root mean
squared error (RMSE) for the corresponding quantiles of the assumed true distribution.25

In both scenarios this true distribution is the one without modification, which has the
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following quantiles:

Q0.99;Gumb = 146.0, Q0.999;Gumb = 169.1 (3)

Q0.99;GEV1 = 158.4, Q0.999;GEV1 = 199.5 (4)

Q0.99;GEV2 = 175.5, Q0.999;GEV2 = 249.0 (5)

In the simulation we consider 1000 repetitions for each of different sample lengths5

equal to n = 30,50,100,200. Annual series with a length of more than 100 years are
very rare in hydrology and therefore an upper length of 200 seems to be sufficient.

We compare the following five different estimators.

1. Maximum-Likelihood estimator (ML): The Maximum Likelihood estimator is
among the most popular estimators. It is frequently used because of its high ef-10

ficiency, consistency and asymptotical unbiasedness. However, it is not robust
against outliers or model misspecification (Dupuis and Field, 1980). The calcu-
lation of the ML estimator turns out to be rather difficult and especially for three
parameter distributions like the GEV it needs to be done numerically.

2. L-Moment estimator: The probability weighted moments (PWM) were developed15

by Greenwood et al. (1979) to express parameters of easily invertible distributions
by moments. As an advancement of the standard and the probability weighted
moments Hosking (1990) suggested the so called Linear-Moments (L-Moments),
which are estimated by a linear combination of order statistics (that is L-statistics).
The resulting estimator offers the advantages of being similar to and for small20

samples sometimes even more efficient than the Maximum-Likelihood estimator
and also more robust than ordinary Moment estimators (Hosking, 1990). They
exist in situations, where the classical moments do not exist and represent in
contrast to the PWM the characteristic values of a sample such as mean or stan-
dard deviation straightforwardly. Therefore, they are used more frequently than25
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the PWM but deliver the same results. The r th L-Moment

λr =
1
r

r−1∑
k=0

(−1)k
(
r −1
k

)
EX(r−k:r) (6)

is estimated by

lr =
1(n
r

) ∑
1≤i1<...<ir≤n

r−1
r−1∑
k=0

(−1)k
(
r −1
k

)
x(ir−k :n), (7)

where x(i :n) is the ith value of the order statistics of the sample xi , i = 1, . . .,n5

respectively Xi , and r = 1, . . .,n. Often also an expression via the PWM is used.

3. Trimmed L-Moment estimator with symmetric (1,1) and asymmetric (0,1) trimming
(TL(1,1)/TL(0,1))

The TL-Moments are a generalization of the L-Moments suggested by Elamir and
Seheult (2003). The general formula for the r th TL-Moment is10

λ(t1,t2)
r =

1
r

r−1∑
k=0

(−1)k
(
r −1
k

)
E
(
X(r+t1−k:r+t1+t2)

)
, (8)

where t1,t2 ∈N is the degree of trimming of the lower and upper parts of the order
statistic. By choosing t1 = t2 = 0 one gets the classical L-Moments. The trimming
makes the TL-Moments more robust against outliers than the L-Moments. An un-
biased estimator for the TL-Moments for the sample x1, . . .,xn is (Hosking, 2007)15

l (t1,t2)
r =

1

r
(

n
r+t1+t2

) n−t2∑
j=t1+1

r−1∑
k=0

(−1)k
(

j −1
r + t1 −1−k −1

)(
n− j
t2 +k

)
x(j :n). (9)

8559

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/8553/2015/hessd-12-8553-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/8553/2015/hessd-12-8553-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
12, 8553–8576, 2015

Robustness of
estimators for flood

statistics

S. Fischer et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

For comparison, the estimator of the first L-Moment obtained from four data points
x(1:4) ≤ x(2:4) ≤ x(3:4) ≤ x(4:4) is

l1 =
1
4

(
x(1:4) +x(2:4) +x(3:4) +x(4:4)

)
, (10)

whereas for the first TL(1,1)-Moment we have

l1(1,1) =
1
2

(x2:4 +x3:4) , (11)5

since due to the trimming the highest and the lowest values of the sample are
omitted. The question of the trimming degree is crucial and of course other trim-
ming is possible. In our experiments, simulations with a higher trimming (0,2) did
not show more robustness but lower efficiency and therefore they are not consid-
ered here. For the special case of the Gumbel- and GEV distribution one can find10

approximative expressions of the parameter estimations, see Elamir and Seheult
(2003) and Lilienthal (2013):

For the parameters of the GEV distribution the TL(0,1)-Moment estimators are

z =
10
9

 1

2+ l (0,1)
3 /l (0,1)

2

− 2log(2)− log(3)

3 log(3)−2log(4)
(12)

ξ̂TL(0,1) = 8.567394 · z−0.675969 · z2 (13)15

σ̂TL(0,1) =
2
3
l (0,1)
2

1

Γ
(
ξ̂TL(0,1)

)((1
3

)ξ̂TL(0,1)

−2
(

1
2

)ξ̂TL(0,1)

+1

)−1

(14)

µ̂TL(0,1) = l
(0,1)
1 −

σ̂TL(0,1)

ξ̂TL(0,1)

− σ̂TL(0,1)Γ
(
ξ̂TL(0,1)

)((1
2

)ξ̂TL(0,1)

−2

)
(15)
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and for the Gumbel distribution

σ̂TL(0,1) =
l (0,1)
2

0.431
(16)

µ̂TL(0,1) = l
(0,1)
1 +0.116σ̂TL(0,1). (17)

For the symmetric trimming the TL(1,1)-Moment estimators are

z =
9

20

 l (1,1)
3

l (1,1)
2

− log(3)−2log(4)+ log(5)

log(2)−2log(3)+ log(4)
(18)5

ξ̂TL(1,1) = 25.31711 · z−91.5507 · z2 +110.0626 · z3 −46.5518 · z4 (19)

σ̂TL(1,1) = l
(1,1)
2

1

Γ(ξ̂TL(1,1))

1

3
(1

2

)ξ̂TL(1,1) −6
(1

3

)ξ̂TL(1,1) +3
(1

4

)ξ̂TL(1,1)

(20)

µ̂TL(1,1) = l
(1,1)
1 −

σ̂TL(1,1)

ξ̂TL(1,1)

− σ̂TL(1,1)Γ(ξ̂TL(1,1))

(
−3
(

1
2

)ξ̂TL(1,1)

−2
(

1
3

)ξ̂TL(1,1)
)

(21)

for the GEV distribution and

σ̂TL(1,1) =
l (1,1)
2

0.353
(22)10

µ̂TL(0,1) = l
(0,1)
1 −0.459σ̂TL(0,1) (23)

for the Gumbel distribution.

4. Minimum Distance estimator: The Minimum Distance estimator for the parameter
vector θ using the Cramer-von-Mises distance is given by

θ̂ = argmin
θ

∞∫
−∞

(Fn(x)−Gθ(x))2dx, (24)15
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see Dietrich and Hüsler (1996). Here, Fn is the empirical distribution function of
the sample and Gθ the distribution function with parameter (vector) θ to be fitted.
In our case we need to minimize (for the GEV distribution)

∞∫
−∞

(
Fn(x)−exp

(
−
(

1+ ξ
(x−µ

σ

))− 1
ξ

))2

dx (25)

or (for the Gumbel distribution)5

∞∫
−∞

(
Fn(x)−exp

(
−exp

(x−µ
σ

)))2
dx, (26)

which is done numerically.

Remark: the third classical non-robust estimator, the standard sample moments,
is excluded here, since the moment estimators do not exist for a shape parameter
ξ > 1/3, and therefore do not seem to be suitable in this hydrological context,10

since there can be samples with a larger shape parameter as underlined by Fig. 2.

For the simulations we used the statistical software R (R-Project, 2013) with the
related packages distrMod (Kohl and Ruckdeschel, 2010), fExtremes (Wuertz
et al., 2013), lmomco (Asquith, 2013), RobExtremes (Ruckdeschel et al., 2012)
and VGAM (Yee, 2010). The results can be found in Tables 1–6.15

2.1 Evaluation for data without disturbances

In Tables 1, 3 and 5 we can find the results for bias and root mean squared error
(RMSE) for the fitting to independent, identically distributed random variables, following
a Gumbel, GEV1- or GEV2-distribution.

For i.i.d. Gumbel data (Table 1) we see that a Gumbel-Fitting with Maximum Likeli-20

hood leads to the lowest RMSE for all sample sizes n and both quantiles considered
8562
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here. Concerning the RMSE, TL(0,1) estimation is second best, followed by TL(1,1)
and L-Moments, which do not differ much. The Minimum Distance estimator performs
worst, only in the case of n = 100 it is better than classical L-Moments. The bias of
all Gumbel-based fittings is very small, even for small sample sizes. Fitting a GEV-
distribution to Gumbel-distributed data with non-robust estimators (ML and L-Moments)5

roughly doubles the RMSE. Robust estimation (TL(0,1), TL(1,1), and MD) worsens the
results even more as both the RMSE and the bias become larger for all n and both
quantiles. Robust estimators aim at reducing biases which are due to using only ap-
proximately valid models, but it seems that in this case estimation error increases when
fitting an unnecessary third parameter by one of these robust estimators.10

In case of i.i.d. GEV1-distributed data with a shape parameter of ξ = 0.1 (Table 3),
fitting a Gumbel distribution causes a substantial negative bias, which dominates the
RMSE. Again, the L-Moments give the best results, but the differences are not large,
neither to the robust TL(1,1)-Moments. It is striking that the RMSE is nevertheless
much smaller for a Gumbel-Fitting than for a GEV-Fitting if the sample size is small,15

and about equal for large sample sizes. This is due to the much smaller variability of the
two-parametric fits. A non-robust GEV-Fitting causes a large positive bias only for the
99.9 %-quantile, but nevertheless the RMSE is large for both quantiles and all sample
sizes due to the large variability. The results for the ML and the L-Moments are very
similar for large sample sizes (n = 200), though the L-Moments deliver results with less20

deviation from the assumption in small samples. A robust fitting of a GEV-distribution
leads, in comparison to the same estimators with a Gumbel-fitting, to a positive bias
and and higher variability and therefore to larger RMSEs for all sample sizes and both
quantiles.

When the shape parameter is further increased to ξ = 0.2 (GEV2) (Table 5) the pre-25

vious remarks remain qualitatively valid. Fitting a Gumbel distribution to such data both
bias and RMSE is nearly twice (2.5 times for the 99.9 %-quantile) the one as before.
Very striking are the results of the L-Moment estimates for small sample sizes. They
produce a large positive bias resulting in a large RMSE, which do not fit to the results
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for the other sample sizes. In case of at most 50 observations, fitting a Gumbel dis-
tribution with TL(1,1)-Moments seems best, closely followed by ML, MD and TL(0,1).
In case of at least 100 observations, GEV fitting becomes worthwhile with L-Moments
and ML performing best, followed by TL(1,1)- and TL(0,1)-Moments.

2.2 Evaluation in the presence of extraordinary extreme events5

In Tables 2, 4 and 6 data from scenario 2 containing extraordinary extreme events are
considered.

For Gumbel-distributed data and a Gumbel-Fitting we see that the smallest values for
the RMSE are given for the TL(0,1)-Moments followed by the MD-estimator, which even
has a smaller bias. For both estimators the RMSE is not much higher than in the case10

of data without disturbances. The non-robust estimators are substantially more biased,
with the L-Moments behaving worst. The RMSE of the ML-estimator is comparable to
that of the TL(1,1)-Moments, though ML has larger bias. If a GEV-Fitting is used, the
bias increases rapidly and therefore also the RMSE is large.

Somewhat surprisingly, the results are similar to this when the data follow a GEV-15

distribution with ξ = 0.1. The occurrence of extraordinary extreme events apparently
reduces the negative bias and the RMSE of the estimations based on a Gumbel fit
in this situation. Fitting a Gumbel distribution by L-Moments works best for all sample
sizes, followed by ML, TL(1,1)- and TL(0,1)-Moments. For the 99.9 %-quantile the dif-
ference becomes even larger. So the robust estimators have a higher RMSE and are20

no longer better than the non-robust ones, where the ML-estimator behaves best over-
all. Note that the results for a GEV-Fitting are much worse. If the value of the shape
parameter is increased, the RMSE and bias results increase by the factor 2.
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3 Conclusions and outlook

This work investigates the applicability and advantages or disadvantages of some ro-
bust estimators in the context of hydrological flood estimation.

Concerning the non-robust estimators the results of Hosking et al. (1985b) are con-
firmed. For small sample sizes the L-Moments in the GEV-Fitting have smaller RMSE5

than the ML-estimator. Nevertheless, it becomes obvious that the size of the shape pa-
rameter plays a crucial role. The larger the shape parameter the more differ the RMSEs
of these two estimators. Fewer observations are needed to make the ML superior to
L-moments when just two parameters need to be estimated as in the case of a Gumbel
distribution.10

When extraordinary or rare extreme events occur in our data, the robust Minimum
Distance estimator or the Trimmed L-Moments offer a smaller bias and RMSE for the
higher quantile, but they have the disadvantage of having larger RMSE compared to the
classical estimators ML and L-Moments, when no such extraordinary extreme events
occur. This is the common lack of efficiency of many robust estimators, particularly in15

small samples. Among the robust estimators considered here, the TL(1,1)-Moments
are preferable, since they have the smallest RMSE when extraordinary extreme events
occur and not too large RMSE when there are no such events – especially for esti-
mation of the higher quantile. Of course also other trimming is possible and could be
investigated further.20

Based on the results the Trimmed L-Moments with symmetric trimming seem to be
a recommendable choice when extraordinary events occur in the sample. The do not
have a tendency of overestimating the quantile, even if the return period of the event is
much larger than the sample length. Additionally they seem to be rather efficient, which
is inherited from the ordinary L-Moments. The Minimum Distance estimator considered25

here is apparently not efficient enough for the small sample sizes given in hydrology. If
there are no obvious extraordinary events in the sample, L-Moments are recommended
having the largest efficiency for the small sample sizes occurring in hydrology.
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Further hydrological phenomena can occur. Therefore, we also investigated another
scenario, representing an uncertainty in the measurement of the data. We wanted to
model the situation, when a rating curve does not consider the overflowing of river
beds (too small discharge values are assumed) or backwater in river increases the
water level (too high discharges are assumed). This was done by cutting off the 20 %5

highest data of the simulated distribution and replacing them by data representing an
error between 0 and 30 %. For this scenario all estimators failed and were not able to
cope with the misspecification of the model. Therefore, detailed results are omitted.

In the recommendations made above the question arises, how to detect extraordi-
nary events. It is not always clear, which event is extraordinary and which is just very10

high. A possibility to make this choice could be the sensitivity curve. For non-robust
estimators one could use this tool to examine the influence of a single event to the es-
timation and therefore decide, whether to use a robust estimator or not. This is beyond
the scope of this work and a question of further research.

Additionally, the results give the impression that the choice of the number of param-15

eters is crucial and should depend on the sample size and on the value of the shape
parameter. The recommendations of the DWA (2012) are confirmed for the scenar-
ios considered here but we have by far not covered all relevant cases where a two-
parametric distribution function might be preferred. Since this is an important question
in the estimation of flood quantiles it deserves further investigation.20
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Table 1. Estimation of the 99 %- and the 99.9 %-quantile for independent, identically Gumbel
(100, 10)-distributed random variables with sample size 30, 50, 100 and 200.

Gumbel-Fitting GEV-Fitting
n = 30 99 %-quantile 99.9 %-quantile 99 %-quantile 99.9 %-quantile
Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ML −1.14 7.39 −1.78 10.7 0.797 18.4 9.62 77.3
L-Moments −0.398 8.08 −0.609 11.7 0.136 14.0 4.58 35.5
TL(1,1)-Moments −0.114 8.27 −0.139 12.1 4.14 22.3 21.2 74.8
TL(0,1)-Moments 0.418 7.77 0.626 11.2 9.86 36.9 37.7 124
MD −0.816 8.67 −1.28 12.7 6.47 32.7 36.4 168

Gumbel-Fitting GEV-Fititng
n = 50 99 %-quantile 99.9 %-quantile 99 %-quantile 99.9 %-quantile
Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ML −0.295 5.61 −0.52 8.07 −0.9 11.1 1.00 26.8
L-Moments 0.078 6.45 0.108 9.37 0.593 10.6 3.27 25.0
TL(1,1)-Moments −0.176 6.47 0.283 9.54 3.08 16.4 13.3 48.2
TL(0,1)-Moments 0.155 5.99 0.243 8.66 3.46 21.4 13.4 57.1
MD −0.362 6.60 −0.58 9.67 3.54 20.8 17.7 75.5

Gumbel-Fitting GEV-Fitting
n = 100 99 %-quantile 99.9 %-quantile 99 %-quantile 99.9 %-quantile
Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ML −0.24 4.01 −0.39 5.76 0.355 8.11 2.39 19.2
L-Moments 0.101 4.71 0.103 6.86 0.23 7.78 1.83 18.3
TL(1,1)-Moments 0.256 4.71 0.38 6.97 0.755 10.2 4.19 26.8
TL(0,1)-Moments 0.117 4.32 0.159 6.22 1.206 14.1 5.14 33.8
MD −0.01 4.48 −0.03 6.55 1.37 12.7 6.59 34.6

Gumbel-Fitting GEV-Fitting
n = 200 99 %-quantile 99.9 %-quantile 99 %-quantile 99.9 %-quantile
Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ML −0.192 2.95 −0.31 4.24 −0.07 5.24 0.373 11.7
L-Moments −0.061 3.24 −0.09 4.72 −0.08 5.16 0.476 11.8
TL(1,1)-Moments 0.029 3.32 0.022 4.86 0.747 7.42 2.95 18.3
TL(0,1)-Moments 0.042 3.03 0.044 4.38 1.49 9.73 4.51 21.8
MD −0.035 3.29 −0.06 4.81 0.565 8.57 2.3 21.5
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Table 2. Estimation of the 99 %- and the 99.9 %-quantile for independent, identically Gumbel
(100, 10)-distributed random variables with sample size 30, 50, 100 and 200 and simulated
extreme events.

Gumbel-Fitting GEV-Fitting
n = 30 99 %-quantile 99.9 %-quantile 99 %-quantile 99.9 %-quantile
Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ML 6.29 9.79 8.90 14.0 27.7 34.8 81.7 123
L-Moments 11.8 14.2 17.2 20.7 26.7 29.3 74.1 84.6
TL(1,1)-Moments 4.67 10.7 6.84 15.7 18.9 34.9 66.4 135
TL(0,1)-Moments 3.04 8.83 4.32 12.7 15.4 31.1 47.8 99.1
MD 2.80 9.75 3.96 14.3 25.1 53.2 103 315

Gumbel-Fitting GEV-Fitting
n = 50 99 %-quantile 99.9 %-quantile 99 %-quantile 99.9 %-quantile
Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ML 3.81 6.89 5.37 9.84 16.2 19.9 42.7 57.0
L-Moments 6.81 8.90 10.1 13.0 15.7 18.6 41.1 50.5
TL(1,1)-Moments 3.06 7.73 4.46 11.3 10.2 22.2 31.7 70.0
TL(0,1)-Moments 2.35 6.85 3.34 9.84 8.60 20.5 25.0 58.4
MD 1.70 7.32 2.39 10.7 12.3 29.9 43.9 117

Gumbel-Fitting GEV-Fitting
n = 100 99 %-quantile 99.9 %-quantile 99 %-quantile 99.9 %-quantile
Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ML 3.87 5.60 5.50 8.01 14.2 16.0 35.0 40.7
L-Moments 6.85 8.01 10.1 11.8 15.2 16.7 38.1 42.9
TL(1,1)-Moments 3.25 6.09 4.78 8.95 12.0 17.8 32.5 50.8
TL(0,1)-Moments 2.30 4.92 3.26 7.10 8.50 15.3 21.7 40.4
MD 2.14 5.33 3.05 7.75 9.54 18.3 26.6 52.5

Gumbel-Fitting GEV-Fitting
n = 200 99 %-quantile 99.9 %-quantile 99 %-quantile 99.9 %-quantile
Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ML 4.04 4.96 5.78 7.09 13.9 14.8 33.0 35.7
L-Moments 6.92 7.60 10.2 11.1 14.9 15.6 36.7 39.1
TL(1,1)-Moments 3.37 4.81 4.95 7.10 11.5 14.5 29.0 38.3
TL(0,1)-Moments 2.23 3.87 3.14 5.55 8.73 12.5 20.8 31.3
MD 2.12 4.01 3.04 5.82 7.63 12.8 18.7 32.9
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Table 3. Estimation of the 99 %- and the 99.9 %-quantile for independent, identically GEV (0.1,
100, 10)-distributed random variables with sample size 30, 50, 100 and 200.

Gumbel-Fitting GEV-Fitting
n = 30 99 %-quantile 99.9 %- quantile 99 %- quantile 99.9 %- quantile
Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ML −10.6 13.8 −28.1 29.2 2.68 27.3 21.9 103
L-Moments −7.08 13.3 −22.7 28.1 0.292 21.3 8.34 65.9
TL(1,1)-Moments −8.74 13.3 −25.0 29.0 5.63 33.3 37.2 138
TL(0,1)-Moments −11.0 14.0 −28.6 31.1 7.11 34.5 36.9 133
MD −11.2 14.9 −28.7 32.1 11.6 58.3 86.5 550

Gumbel-Fitting GEV-Fitting
n = 50 99 %- quantile 99.9 %- quantile 99 %- quantile 99.9 %- quantile
Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ML −10.7 12.6 −28.1 29.7 0.939 18.2 8.94 56.0
L-Moments −6.64 11.0 −22.0 25.5 −0.05 17.5 4.75 51.6
TL(1,1)-Moments −9.37 12.3 −26.0 28.4 3.92 23.3 20.9 83.6
TL(0,1)-Moments −10.9 12.9 −28.5 30.1 2.97 23.1 16.1 79.2
MD −11.0 12.1 −28.4 29.3 6.93 34.1 39.8 167

Gumbel-Fitting GEV-Fitting
n = 100 99 %- quantile 99.9 %- quantile 99 %- quantile 99.9 %- quantile
Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ML −9.98 10.5 −27.1 27.5 0.718 12.1 4.67 33.9
L-Moments −6.95 8.14 −22.5 23.3 −0.17 11.8 2.13 32.8
TL(1,1)-Moments −9.19 9.93 −25.7 26.3 2.01 15.6 10.2 47.2
TL(0,1)-Moments −10.9 11.9 −28.4 29.2 2.17 15.1 9.41 44.2
MD −11.0 12.1 −28.4 29.3 1.84 17.9 11.1 56.7

Gumbel-Fitting GEV-Fitting
n = 200 99 %- quantile 99.9 %- quantile 99 %- quantile 99.9 %- quantile
Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ML −9.98 10.5 −27.1 27.5 0.167 8.23 1.77 21.9
L-Moments −6.95 8.14 −22.5 23.3 0.301 8.36 1.90 22.4
TL(1,1)-Moments −9.19 9.93 −25.7 26.3 1.06 10.3 4.83 29.9
TL(0,1)-Moments 10.2 11.6 −28.8 29.1 1.19 10.6 4.89 30.2
MD −10.7 11.3 −28.0 28.5 2.07 12.3 8.33 36.3
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Table 4. Estimation of the 99 %- and the 99.9 %-quantile for independent, identically GEV (0.1,
100, 10)-distributed random variables with sample size 30, 50, 100 and 200 and simulated
extreme events.

Gumbel-Fitting GEV-Fitting
n = 30 99 %-quantile 99.9 %- quantile 99 %- quantile 99.9 %- quantile
Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ML −0.363 8.75 −13.3 18.2 46.5 60.4 172 283
L-Moments 11.0 14.9 4.02 15.1 43.8 47.4 150 168
TL(1,1)-Moments −3.08 12.0 −16.7 23.8 31.7 56.5 135 284
TL(0,1)-Moments −7.09 11.5 −22.9 26.3 27.0 51.6 105 221
MD −6.92 13.1 −22.6 27.8 38.4 95.3 216 917

Gumbel-Fitting GEV-Fitting
n = 50 99 %- quantile 99.9 %- quantile 99 %- quantile 99.9 %- quantile
Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ML −4.12 8.19 −18.7 21.3 25.1 31.7 79.4 110
L-Moments 3.85 9.03 −6.57 13.6 27.1 30.4 85.6 98.5
TL(1,1)-Moments −5.33 10.1 −20.0 23.6 17.3 32.6 61.9 123
TL(0,1)-Moments −8.75 11.3 −25.3 27.3 15.3 33.0 53.2 117
MD −8.68 11.7 −25.1 27.5 18.7 41.8 75.9 186

Gumbel-Fitting GEV-Fitting
n = 100 99 %- quantile 99.9 %- quantile 99 %- quantile 99.9 %- quantile
Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ML −3.98 6.28 −18.4 19.7 23.3 26.3 68.8 80.4
L-Moments 3.69 6.95 −6.80 10.9 26.2 28.4 81.3 90.1
TL(1,1)-Moments −4.79 7.53 −19.2 21.0 18.2 26.8 59.1 92.2
TL(0,1)-Moments −8.73 9.97 −25.3 26.2 14.7 23.6 44.3 74.0
MD −8.46 10.2 −24.7 26.0 13.8 27.3 47.0 96.3

Gumbel-Fitting GEV-Fitting
n = 200 99 %- quantile 99.9 %- quantile 99 %- quantile 99.9 %- quantile
Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ML −3.71 5.10 −18.0 18.7 21.6 23.1 60.9 66.2
L-Moments 3.84 5.63 −6.59 8.92 25.1 26.2 75.6 79.6
TL(1,1)-Moments −5.08 6.49 −19.6 20.5 18.8 23.2 58.0 74.1
TL(0,1)-Moments −8.18 8.93 −24.5 25.0 14.5 19.7 41.4 58.2
MD −8.37 9.29 −24.6 25.3 11.8 19.2 35.3 60.3
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Table 5. Estimation of the 99 %- and the 99.9 %-quantile for independent, identically GEV (0.2,
100, 10)-distributed random variables with sample size 30, 50, 100 and 200.

Gumbel-Fitting GEV-Fitting
n = 30 99 %-quantile 99.9 %- quantile 99 %- quantile 99.9 %- quantile
Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ML −23.6 26.4 −71.8 73.8 10.5 68.1 101 1233
L-Moments 73.0 78.0 314 343 0.435 33.7 18.8 145
TL(1,1)-Moments −21.7 25.2 −68.5 70.9 5.94 45.7 53.5 226
TL(0,1)-Moments −26.9 28.7 −76.5 77.8 7.56 44.7 51.6 205
MD −25.7 27.9 −74.7 76.4 23.7 82.8 172 607

Gumbel-Fitting GEV-Fitting
n = 50 99 %- quantile 99.9 %- quantile 99 %- quantile 99.9 %- quantile
Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ML −23.7 25.3 −72.0 73.1 2.50 28.3 22.0 111
L-Moments 43.5 49.0 173 178 0.009 24.5 9.69 93.5
TL(1,1)-Moments −21.8 23.9 −68.7 70.0 5.03 32.7 33.9 132
TL(0,1)-Moments −26.6 27.7 −76.0 76.8 5.69 34.7 34.74 141
MD −26.2 27.5 −75.3 76.2 11.0 48.2 69.3 248

Gumbel-Fitting GEV-Fitting
n = 100 99 %- quantile 99.9 %- quantile 99 %- quantile 99.9 %- quantile
Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ML −23.3 24.1 −71.3 71.8 1.98 19.2 11.2 63.8
L-Moments −17.2 18.9 −62.0 63.1 −0.65 17.9 2.84 60.5
TL(1,1)-Moments −22.2 23.1 −69.1 69.8 2.74 21.8 16.5 78.5
TL(0,1)-Moments −26.6 27.2 −76.1 76.5 2.23 22.9 14.5 79.8
MD −25.6 26.3 −74.3 74.8 5.27 28.8 29.2 115

Gumbel-Fitting GEV-Fitting
n = 200 99 %- quantile 99.9 %- quantile 99 %- quantile 99.9 %- quantile
Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ML −23.2 23.6 −71.1 71.5 0.874 12.8 5.67 41.9
L-Moments −17.1 18.1 −61.9 62.6 0.11 13.3 2.98 44.1
TL(1,1)-Moments −22.3 22.7 −69.3 69.7 1.92 16.1 11.1 57.6
TL(0,1)-Moments −26.6 26.9 −76.0 76.2 1.69 15.2 8.49 50.8
MD −25.8 26.2 −74.7 74.9 2.05 18.5 11.4 65.8
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Table 6. Estimation of the 99 %- and the 99.9 %-quantile for independent, identically GEV (0.2,
100, 10)-distributed random variables with sample size 30, 50, 100 and 200 and simulated
extreme events.

Gumbel-Fitting GEV-Fitting
n = 30 99 %-quantile 99.9 %- quantile 99 %- quantile 99.9 %- quantile
Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ML −7.16 13.6 −47.9 50.7 84.6 122 436 1254
L-Moments 11.4 17.6 −19.8 27.9 73.0 78.0 314 343
TL(1,1)-Moments −14.8 20.1 −58.2 61.6 51.9 95.3 292 646
TL(0,1)-Moments −21.6 24.3 −68.9 70.7 43.4 79.5 201 419
MD −22.0 25.1 −69.1 71.4 63.3 146 439 1504

Gumbel-Fitting GEV-Fitting
n = 50 99 %- quantile 99.9 %- quantile 99 %- quantile 99.9 %- quantile
Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ML −13.6 16.3 −57.2 58.6 40.6 53.8 160 239
L-Moments 0.530 11.5 −35.9 39.5 43.5 49.0 173 201
TL(1,1)-Moments −17.5 20.2 −62.3 64.0 28.5 53.6 131 257
TL(0,1)-Moments −23.8 25.1 −72.0 72.9 22.6 47.4 95.1 206
MD −23.4 24.9 −71.1 72.3 28.9 65.1 145 347

Gumbel-Fitting GEV-Fitting
n = 100 99 %- quantile 99.9 %- quantile 99 %- quantile 99.9 %- quantile
Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ML −13.7 15.2 −57.3 58.1 36.1 42.1 131 160
L-Moments 0.290 7.97 −36.2 38.0 42.6 45.6 162 176
TL(1,1)-Moments −16.9 18.3 −61.3 62.1 32.6 45.6 132.2 197
TL(0,1)-Moments −22.9 23.6 −70.7 71.2 24.4 37.7 91.3 149
MD −23.8 24.6 −71.8 72.4 20.8 39.3 84.2 165

Gumbel-Fitting GEV-Fitting
n = 200 99 %- quantile 99.9 %- quantile 99 %- quantile 99.9 %- quantile
Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ML −13.6 14.3 −57.2 57.5 34.4 37.5 119 133
L-Moments −0.489 5.93 −37.3 38.3 41.9 43.4 157 164
TL(1,1)-Moments −16.2 17.0 −60.3 60.7 31.8 38.1 120 151
TL(0,1)-Moments −23.0 23.3 −70.8 71.1 23.4 30.3 81.0 109
MD −23.6 24.1 −71.5 71.8 16.9 28.1 61.0 105
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Figure 1. Annual Maxima at the gauge Nossen/Freiberger Mulde.

8575

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/8553/2015/hessd-12-8553-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/8553/2015/hessd-12-8553-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
12, 8553–8576, 2015

Robustness of
estimators for flood

statistics

S. Fischer et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

−0.1 0 0.1 0.2 0.3 0.4

Histrogram of the shape parameter

shape parameter

fr
eq

ue
nc

y
0

2
4

6
8

10

Figure 2. Histogram of the estimated shape parameter for annual maxima of three river basins.
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