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Abstract 12 

Soil moisture retrieved from satellite microwave remote sensing normally has spatial 13 
resolution in the order of tens of kilometers, which are too coarse for many regional 14 
hydrological applications such as agriculture monitoring and drought prediction. 15 
Therefore, various downscaling methods have been proposed to enhance the spatial 16 
resolution of satellite soil moisture products. The aim of this study is to investigate the 17 
validity and robustness of the simple Vegetation Temperature Condition Index (VTCI) 18 
downscaling scheme over a dense soil moisture observational network (REMEDHUS) 19 
in Spain. Firstly, the optimized VTCI was determined through sensitivity analyses of 20 
VTCI to surface temperature, vegetation index, cloud, topography and land cover 21 
heterogeneity, using data from MODIS and MSG SEVIRI. Then the downscaling 22 
scheme was applied to improve the spatial resolution of the European Space Agency's 23 
Water Cycle Multi-mission Observation Strategy and Climate Change Initiative (ESA 24 
CCI) soil moisture, which is a merged product based on both active and passive 25 
microwave observations. The results from direct validation against soil moisture 26 
observations, spatial pattern comparison, as well as seasonal and land use analyses 27 
show that the downscaling method can significantly improve the spatial details of CCI 28 
soil moisture while maintain the accuracy of CCI soil moisture. The accuracy level is 29 
comparable to other downscaling methods that were also validated against 30 
REMEDHUS network. Furthermore, slightly better performance of MSG SEVIRI 31 
over MODIS was observed, which suggests the high potential of applying 32 
geostationary satellite for downscaling soil moisture in the future. Overall, 33 
considering the simplicity, limited data requirements and comparable accuracy level 34 
to other complex methods, the VTCI downscaling method can facilitate relevant 35 
hydrological applications that require high spatial and temporal resolution soil 36 
moisture. 37 
Keywords: Soil moisture; Downscaling; Essential climate variable; MODIS; MSG 38 
SEVIRI; REMEDHUS;  39 
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1. Introduction 40 

Soil moisture (SM) is known to be an important state variable that determines the 41 
partitioning of surface net energy into latent and sensible heat fluxes, as well as the 42 
partitioning of precipitation into infiltration and runoff (e.g., Porporato et al., 2004; 43 
Vereecken et al., 2014). In the context of global climate change, accurate information 44 
of soil moisture is of great importance for advancing our understanding of the energy 45 
and mass exchanges between the atmosphere, hydrosphere and biosphere 46 
(Petropoulos et al., 2015; Seneviratne et al., 2010). In addition, soil moisture is 47 
important for numerous practical applications such as irrigation water management 48 
(Bastiaanssen et al., 2000), ecological modeling (Nemani et al., 2009), vegetation 49 
productivity estimation (Reichstein et al., 2003) and numerical weather prediction 50 
(Douville et al., 2000). However, quantifying the spatially and temporally distributed 51 
soil moisture properties is still challenging due to dynamic meteorological forcing and 52 
surface heterogeneity (Njoku et al., 2003; Loew, 2008). Traditionally, the 53 
ground-based measurements of soil moisture are interpolated to a large scale through 54 
geostatistical techniques such as kriging (Bárdossy and Lehmann, 1998; Qiu et al., 55 
2001). Such method is however limited to areas where dense soil moisture 56 
observational networks are available.  57 

   The advent of satellite remote sensing over the past decades provides an 58 
opportunity to obtain soil moisture estimates at global and regional scales without the 59 
need of ground-based measurements. Tremendous efforts have been devoted to 60 
retrieve soil moisture with measurements from passive and active microwave remote 61 
sensing sensors/satellites, including the Advanced Microwave Scanning Radiometer E 62 
for the Earth observing system (AMSR-E), the Advanced Microwave Scanning 63 
Radiometer-2 (AMSR2), the Advanced Scatterometer (ASCAT), the Soil Moisture 64 
and Ocean Salinity (SMOS), and recently launched Soil Moisture Active Passive 65 
(SMAP) mission. Theoretical and experimental results suggest that both the passive 66 
and active sensors are reliable for estimating soil moisture from space (Owe et al., 67 
2008; Petropoulos et al., 2015). The significant advantages of the microwave remote 68 
sensing techniques are that 1) dielectric constant measurement can be related directly 69 
to soil moisture; 2) soil moisture can be retrieved regardless of the atmospheric 70 
conditions (Hain et al., 2011; Loew et al., 2006). To date, several global microwave 71 
based soil moisture products are available, such as the ASCAT soil moisture product 72 
(Wagner et al., 1999; Naeimi et al., 2009), the AMSR-E and AMSR2 soil moisture 73 
products (Owe et al., 2008; Parinussa et al., 2014a), the SMOS soil moisture product 74 
(Kerr et al., 2001; Jacquette et al., 2010), as well as the European Space Agency's 75 
Water Cycle Multi-mission Observation Strategy and Climate Change Initiative (ESA 76 
CCI) soil moisture product. The CCI SM product is a merged product based on six 77 
microwave products (Liu et al., 2012; Liu et al., 2011; Wagner et al., 2012). These 78 
soil moisture products normally have spatial resolution on the order of tens on 79 
kilometers, which serves well for global scale applications. However, this spatial 80 
resolution is often too coarse for regional and local applications such as agriculture 81 
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monitoring and drought prediction, which normally require a spatial resolution of 82 
1-10 km (Crow et al., 2000; Piles et al., 2011).   83 

Optical/thermal infrared (TIR) sensors can provide complementary information of soil 84 
moisture patterns at higher spatial resolutions (tens of meters to several kilometers) 85 
(Zhang et al., 2014). The surface reflectance observed by optical sensors can be used 86 
to explore the state of soil moisture indirectly through empirical spectral vegetation 87 
index (Gao et al., 2013; Lobell and Asner, 2002). The common method used by 88 
thermal infrared remote sensing to estimate soil moisture is by calculating thermal 89 
inertia (Qin et al., 2013; Verstraeten et al., 2006). Yet, the observations from 90 
optical/thermal infrared sensors are only available under clear sky conditions. To take 91 
the advantages of microwave and optical/TIR remote sensing, more and more studies 92 
try to develop synergistic techniques that use multi-sensors to estimate soil moisture 93 
at different spatial resolutions. These approaches have a wide range of complexity 94 
from empirical regression methods to physically based models (Fang and Lakshmi, 95 
2014; Kim and Hogue, 2012; Merlin et al., 2009; Sahoo et al., 2013). A number of 96 
these methods are based on the relationship between land surface temperature and 97 
vegetation index. When the remote sensed surface temperature and vegetation index 98 
over heterogeneous areas are plotted, the shape of the scatterplot generally resembles 99 
a physically meaningful triangular or trapezoidal feature space, due to different 100 
sensitivity of surface temperature to soil moisture variations over bare soil and 101 
vegetation covered areas (Carlson et al., 1994; Peng et al., 2013b). Based on this 102 
feature space, several indexes such as Vegetation Temperature Condition Index 103 
(VTCI) (Wan et al., 2004) and Temperature Vegetation Dryness Index (TVDI) 104 
(Sandholt et al., 2002) have been widely used for assessing the status of soil moisture 105 
and monitoring drought condition (Patel et al., 2008; Karnieli et al., 2010; Mallick et 106 
al., 2009; Peng et al., 2013a). Similarly, Chauhan et al. (2003) proposed a soil 107 
moisture downscaling scheme that links the soil moisture with surface temperature, 108 
vegetation index and surface albedo through linear regression equation. Following 109 
this idea, some other studies have tried to improve the regression models by including 110 
other inputs such as brightness temperature and surface emissivity (Piles et al., 2014; 111 
Sobrino et al., 2012). Recently, Peng et al. (2016) proposed a new and simple method 112 
to improve the spatial resolution of microwave soil moisture with VTCI as the unique 113 
downscaling factor. They demonstrated the feasibility of the proposed method via 114 
validation against limited ground-based soil moisture measurements and spatial 115 
comparison with land cover map. However, to further investigate the robustness of the 116 
proposed method, Peng et al. (2016) suggested that more validation work against 117 
dense soil moisture observational networks is required.  118 
   Therefore, the present study focuses mainly on investigating the validity and 119 
robustness of this simple downscaling scheme through comparison with ground-based 120 
soil moisture measurements from a dense observational network (REMEDHUS) in 121 
Spain (Martínez-Fernández and Ceballos, 2003). The REMEDHUS site has already 122 
been widely used for validation of soil moisture estimates from remote sensing 123 
(Brocca et al., 2011; Ceballos et al., 2005; Sánchez et al., 2012).  This study has two 124 



 4 

major objectives. First it explores and analyzes the sensitivity and robustness of VTCI 125 
on land surface temperature, vegetation index, clouds, terrain condition and 126 
heterogeneity of land cover and validates the accuracy of soil moisture downscaling 127 
using VTCI over the REMEDHUS site. Secondly it investigates the merit of using of 128 
geostationary satellite data for downscaling soil moisture. Normally the polar orbiting 129 
satellites such as Moderate Resolution Imaging Spectroradiometer (MODIS) and 130 
Advanced Very High Resolution Radiometer (AVHRR) are in general used for 131 
downscaling microwave soil moisture, while the geostationary satellite data are rarely 132 
applied. As geostationary observations can provide more cloud free observations due 133 
to their high temporal resolution, they have the potential of estimating the thermal 134 
inertia at higher frequencies (Fensholt et al., 2007; Shu et al., 2011; Stisen et al., 135 
2008). Hain et al. (2011) successfully used ALEXI model together with thermal 136 
infrared observations from geostationary satellites to estimate soil moisture at a 137 
relatively high spatial resolution of 3 km. Parinussa et al. (2014b) further 138 
inter-compared the geostationary satellite-based soil moisture with microwave-based 139 
soil moisture products at various spatial scales over the Iberian Peninsula. They found 140 
that all these products agree well with ground-based observations. Thus, the results 141 
from both, polar orbit satellite (MODIS Terra/Aqua) as well as geostationary satellite 142 
(MSG SEVIRI) were used in the current study to downscale ESA CCI soil moisture 143 
product. To the best of our knowledge, this is also the first study to inter compare the 144 
performances of geostationary and orbit satellites for downscaling soil moisture.  145 
  146 

2. Study area and REMEDHUS observation network 147 

The current study is carried out in Spain, where a central area is selected for 148 
downscaling CCI SM due to its relatively flat characteristic (Figure 1). The land cover 149 
of this region is dominated by croplands and shrublands, and the mean elevation of 150 
the area is about 650 m above sea level. The region has a continental semiarid 151 
Mediterranean climate, which is characterized by dry and warm summers and cool to 152 
mild and wet winters (Castro et al., 2004; Ceballos et al., 2004). The REMEDHUS 153 
soil moisture observation network is in the central part of the study area and shown in 154 
Figure 1 as well. The network covers a 35 km x 35 km flat area (41.1°-41.5°N; 155 
5.1°-5.7°W) with elevation ranging from 700 to 900 m above sea level. The average 156 
annual precipitation and air temperature are 385 mm and 12 °C respectively. The land 157 
use of the network is mainly rainfed cereals (78%), forest and pasture (13%), irrigated 158 
crops (5%), and vineyards (3%) (Sánchez et al., 2012). A total of 19 soil moisture 159 
stations and 4 automatic weather stations in the REMEDHUS network are used in this 160 
study. The soil moisture stations are equipped with capacitance probes that measure 161 
top layer (0-5cm) soil moisture at hourly intervals. The details of the 19 soil moisture 162 
stations used in our study are summarized in Table 1. The REMEDHUS network has 163 
been widely used for different applications such as parameterization of water balance 164 
models (Sánchez et al., 2010), calibration and validation of soil moisture product from 165 
remote sensing (Sánchez et al., 2012; Wagner et al., 2008), and especially evaluation 166 
of downscaled soil moisture products from SMOS and AMSR-E (Piles et al., 2014; 167 
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Sánchez-Ruiz et al., 2014; Zhao and Li, 2013). These studies presented more complex 168 
downscaling approaches than the one explored in this study. They provide a baseline 169 
to cross compare the downscaling results of this study with their results. Therefore, 170 
study period from January 1st 2010 to December 31st 2011 is chosen to be similar to 171 
the published studies and to make the inter-comparison more reasonable. The soil 172 
moisture measurements are obtained from the International Soil Moisture Network 173 
(ISMN, https://ismn.geo.tuwien.ac.at) (Dorigo et al., 2011; Dorigo et al., 2013).     174 

 175 
Figure 1: Quick view of the study area in central Spain and the location of the REMEDHUS 176 
observation network.  177 

Table 1: Descriptions of the 19 soil moisture stations used in the study. 178 

Station name Short name Land use Elevation (m) Latitude/ Longitude (°) 
Las Tres Rayas E10 Vineyard 870 41.28 / -5.59 
Llanos de la Boveda L7 Rainfed 790 41.36 / -5.33 

El Tomillar H7 Vineyard 755 41.35 / -5.49 
Las Vacas O7 Rainfed 770 41.35 / -5.22 
El Coto I6 Vineyard 720 41.38 / -5.43 
Guarena M13 Forest-Pasture 720 41.20 / -5.27 
Canizal K13 Rainfed 720 41.20 / -5.36 
Las Arenas F6 Vineyard 745 41.37 / -5.55 
Las Brozas L3 Vineyard 675 41.45 / -5.36 
Las Victorias K4 Vineyard 740 41.43 / -5.37 
Las Bodegas H13 Rainfed 900 41.18 / -5.48 
Casa Periles M5 Rainfed 750 41.40 / -5.32 
La Cruz de Elias M9 Rainfed 795 41.29 / -5.30 
Concejo del Monte N9 Rainfed 765 41.30 / -5.25 

Guarrati H9 Forest-Pasture 720 41.29 / -5.43 
Paredinas J3 Vineyard 665 41.46 / -5.41 
Carretoro K10 Rainfed 745 41.27 / -5.38 
La Atalaya J14 Rainfed 830 41.15 / -5.40 
Zamarron F11 Rainfed 855 41.24 / -5.54 

 179 

3. Satellite data 180 
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Several satellite platforms with different temporal and spatial resolutions are used in 181 
this study. They provide different land surface products such as soil moisture, land 182 
surface temperature and vegetation indexes. Table 2 gives an overview of these 183 
satellite products used in our study.  184 

    Table 2: Descriptions of the satellite-based products used in this study. 185 

Satellite product Temporal resolution Spatial resolution 
resolutiresolution 

Projection Variable used  
ESA CCI SM  Daily 0.25° – Soil moisture 
MOD11C1 (Terra) Daily 0.05º  Plate caree Surface temperature 
MYD11C1 (Aqua) Daily 0.05º  Plate caree Surface temperature 
MYD11A1 (Aqua) Daily 1 km  Sinusoidal Surface temperature 
MOD13C1 (Terra) 16-day composite  0.05º  Plate caree EVI and NDVI 
MCD15A3 (Aqua and Terra) 4-day composite  1 km Sinusoidal  LAI and FPAR 
LSA-SAF LST 15 minutes 4.8 km Curvilinear  Surface temperature 

 186 

3.1 ESA CCI soil moisture  187 

The ESA CCI soil moisture is a unique multi-decadal (35 years from 1978 to 2013) 188 
satellite-based soil moisture dataset on a daily basis and at a spatial resolution of 0.25°, 189 
which has great potential for climate related studies and applications (Loew et al., 190 
2013). The CCI SM was developed under the framework of ESA Water Cycle 191 
Multi-mission Observation Strategy and ESA Soil Moisture Climate Change Initiative 192 
(Hollmann et al., 2013). It was generated by merging four passive (SMMR, SSM/I, 193 
TMI, and AMSR-E) and two active (ERS AMI and ASCAT) microwave SM products 194 
together with a cumulative distribution function (CDF) matching technique. The 195 
detailed harmonization procedure is described in Liu et al. (2012; 2011). The first 196 
version of the CCI SM dataset (01.0) was published in 2012 covering the 32 years 197 
period from 1978 to 2010. To extend the temporal coverage to 2013, improve the 198 
gapping filling and processing algorithm, a new version of CCI SM product (02.1) 199 
was released recently. It contains three soil moisture products: active only, passive 200 
only, and merged active-passive product. A comprehensive validation of the merged 201 
active-passive product using 596 sites from 28 different observation networks 202 
worldwide was carried out by Dorigo et al. (2015). It was shown that the CCI SM 203 
product has a mean correlation coefficient (R) of 0.46 and an average unbiased root 204 
mean square deviation (ubRMSD) of 0.05 m3/m3 on daily timescales. Similarly, 205 
Albergel et al. (2013) provided an evaluation of CCI SM and two reanalysis soil 206 
moisture products using in-situ observations from five networks across the world. 207 
They concluded that the CCI SM product correlates well with in-situ observations 208 
with average R of 0.60. Furthermore, the trend of CCI SM highly agrees with the 209 
trends of precipitation, and vegetation vigor from various reanalysis products 210 
(Albergel et al., 2012; Dorigo et al., 2012; Peng et al., 2015). Therefore, the CCI 211 
merged soil moisture is selected in our study to explore the possibility and potential of 212 
downscaling to high spatial resolution with optical/thermal infrared data. 213 
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3.2 MODIS land surface temperature (LST) and vegetation 214 

index 215 

The Moderate Resolution Imaging Spectroradiometer (MODIS) is the primary 216 
instrument in the NASA Earth Observing System (EOS) Terra and Aqua satellites, 217 
which were launched in December 1999 and May 2002 respectively. With 36 discrete 218 
spectral bands ranging from visible, near infrared, to thermal infrared, the MODIS has 219 
been widely used for land, ocean and atmosphere research (Salomonson et al., 1989; 220 
Huete et al., 2002). The Terra and Aqua satellites have different overpass times of 221 
10:30 PM/10:30 AM for Terra, 1:30 PM/1:30 AM for Aqua in ascending/descending 222 
modes. The MODIS data from either Terra or Aqua have been used for downscaling 223 
soil moisture (e.g. Srivastava et al. (2013), Choi and Hur (2012)). The surface 224 
temperature normally has strong diurnal variation. Therefore, the surface temperature 225 
products provided by Terra and Aqua have different values due to different overpass 226 
time of Terra and Aqua. Since surface temperature is one of the most important inputs 227 
in downscaling methods, both MODIS/Terra and MODIS/Aqua are used to downscale 228 
soil moisture in this study. The MODIS products used in this study are Collection 5 229 
MODIS land surface temperature and vegetation indexes (MOD11C1, MYD11C1, 230 
MYD11A1 MOD13C1, MCD15A3). Among them, MOD11C1 and MYD11C1 231 
provide daily land surface temperature at 0.05 spatial resolution, while MYD11A1 232 
provides daily surface temperature at 1 km resolution. MOD13C1 contains 16-day 233 
composite of Normalized Difference Vegetation Index (NDVI) and Enhanced 234 
Vegetation Index (EVI). MCD15A3 provides the combined (Terra and Aqua) MODIS 235 
Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation absorbed 236 
by vegetation (FPAR) products every 4 days at 1 km resolution. The above products 237 
have all been validated against a wide range of in situ observations, and applied in 238 
many scientific studies (Coll et al., 2009; Fensholt et al., 2004; Tian et al., 2002). 239 

 240 

3.3 MSG SEVIRI data 241 

The Spinning Enhanced Visible and Infrared Imager (SEVIRI) is the main instrument 242 
on board Meteosat Second Generation (MSG) geostationary satellites (Schmetz et al., 243 
2002). The SEVIRI has 12 separate channels from visible to thermal infrared and can 244 
provide observations at very high temporal resolution (every 15 min), which makes it 245 
possible to resolve the diurnal cycle of environmental variables such as land surface 246 
temperature (Peres and DaCamara, 2004). So far, geostationary satellite data has not 247 
been used for soil moisture downscaling. Compared to the polar orbit satellites, the 248 
geostationary satellites normally provide measurements with relatively low spatial 249 
resolution. As for SEVIRI, its spatial resolution is approximately 4.8 km with spatial 250 
sampling of 3 km for nadir view. But the major advantage of the SEVIRI over 251 
MODIS is the high temporal frequency (96 times per day), which can highly increase 252 
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the possibility of obtaining cloud-free measurements. Furthermore, the downscaling 253 
approach used in this study can further benefit from the increased observation 254 
frequency through obtaining thermal inertial information from surface temperature 255 
diurnal cycle. The 15 min 4.8 km land surface temperature product generated by the 256 
Land Surface Analysis Satellite Applications Facility (LSA SAF, 257 
http://landsaf.meteo.pt) is used in this study.  258 

It should be noted here that the satellite-based products used in this study have 259 
different data formats, spatial resolutions and projections. Therefore, a preprocessing 260 
is required to make them consistent in space. The surface temperature and vegetation 261 
indexes products from MODIS and SEVIRI are all resampled to a regular latitude / 262 
longitude grid with 0.05º spacing. 263 

4. Methodology  264 

The methodology used in this study includes a soil moisture downscaling scheme and 265 
evaluation strategies. The details are described in the following paragraphs. 266 

4.1 Downscaling scheme 267 

The soil moisture downscaling scheme used in this study was proposed by Peng et al. 268 
(2016). It uses VTCI as the only scaling factor to improve the soil moisture from 269 
coarse to high spatial resolution. The theoretical basis of this approach is that the 270 
VTCI can represent the status of soil moisture, and has been widely used for 271 
estimating soil moisture and monitoring drought condition (Petropoulos et al., 2009). 272 
The estimation of VTCI is based on the triangular or trapezoidal feature space that is 273 
constructed by land surface temperature and vegetation index (Figure 2) over the 274 
study area. It is calculated by rescaling the surface temperature of each pixel between 275 
two extreme surface temperature values for each vegetation index interval: 276 

 𝑉𝑇𝐶𝐼 = !!"#  !  !!
!!"#  !  !!"#

       
 
 (1) 

 277 
where Ts is the observed surface temperature for a given pixel, Tmax and Tmin are the 278 
corresponding maximum and minimum surface temperatures that have the same 279 
vegetation index value as the given pixel. The assumption behind is that the variation 280 
of Ts between the two extreme Ts values reflects the changes of evapotranspiration 281 
and soil moisture (Peng and Loew, 2014). The maximum and minimum temperature 282 
values form the dry and wet edges in the triangular/trapezoidal feature space. The dry 283 
edge reflects the status of limited soil moisture and minimum evapotranspiration, 284 
while the wet edge reflects the condition of unlimited soil moisture and maximum    285 
evapotranspiration. To accurately estimate dry and wet edges, different approaches 286 
have been proposed such as Tang et al. (2010) and Long et al. (2012). Some of these 287 
methods are physically based, but increase the operational difficulty due to the 288 
requirements of ground-based measurements such as air temperature and wind speed. 289 
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To keep the simplicity of the downscaling method, we use a relatively simple method 290 
proposed by de Tomás et al. (2014) to determine dry and wet edges in this study. The 291 
calculation of dry edge is based on the linear regression between each vegetation 292 
index interval and corresponding maximum surface temperature within this interval 293 
(Tmax = a + b*vegetation index), where a and b are the intercept and slope of the dry 294 
edge. Before performing the linear fit, the maximum surface temperature that are to 295 
the left (with lower vegetation index) and the maximum surface temperature less than 296 
mean minimum surface temperature are removed, to filter out the spurious dry points 297 
and outliers. The wet edge is the mean of the minimum surface temperature within the 298 
last five vegetation index intervals. 299 
 300 

 301 

 302 
Figure 2: Conceptual diagram of the triangular/trapezoidal feature space that constructed by land 303 
surface temperature and vegetation index. 304 

In order to downscale the coarse resolution CCI soil moisture, the spatially average 305 
VTCI (𝑉𝑇𝐶𝐼) is then estimated for each CCI soil moisture grid box at 0.25° (CMG) as:  306 

𝑉𝑇𝐶𝐼 =
1
𝑛 𝑉𝑇𝐶𝐼!

𝑛

𝑖=1

 

                                                                  (2) 307 

where n is the number of 0.05° grids in the 𝑆𝑀 0.25° grid. Based on the above results, 308 
the following equation is used to downscale the soil moisture: 309 

 
𝑆𝑀 = 𝑉𝑇𝐶𝐼 ∗

𝑆𝑀
𝑉𝑇𝐶𝐼 

 

 
    

(3) 
where SM is the downscaled CCI soil moisture at 0.05° (CMG), 𝑆𝑀 is the actual CCI 310 
soil moisture at 0.25° (CMG), VTCI stands for the scaling factor at 0.05° (CMG). 311 
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Compared to other downscaling methods, this downscaling approach is very simple 312 
and requires only limited input data. 313 

   Since VTCI is the key variable in the downscaling scheme, it determines the 314 
accuracy of the downscaled soil moisture field. The performance of VTCI mainly 315 
depends on the accuracy of surface temperature and type of vegetation index. 316 
Furthermore, clouds, terrain and land cover heterogeneity might be also sources of the 317 
errors for the estimation of VTCI (de Tomás et al., 2014). Therefore, to optimize the 318 
performance of VTCI as the proxy of soil moisture, a sensitivity analysis of VTCI to 319 
five influential factors (surface temperature, vegetation index, cloud, topography and 320 
land cover heterogeneity) was conducted before downscaling soil moisture. The VTCI 321 
was firstly calculated with different settings (see Table 3). Then the estimated VTCI 322 
were compared with ground-based soil moisture measurements from the 323 
REMEDHUS network to investigate the influence of the five factors on the 324 
performance of VTCI. The details of these factors are listed below, and the 325 
combinations of these factors for estimating VTCI are shown in Table 3. 326 
 327 
1. Surface temperature: The instantaneous surface temperature observed at the time 328 
of satellite overpass is typically used for constructing a triangular/trapezoidal feature 329 
space. To avoid the influence of uncertainty of instantaneous surface temperature and 330 
make use of thermal inertial information, the surface temperature difference has been 331 
used by many studies such as Stisen et al. (2008) and Wang et al. (2006). Therefore, 332 
the influence of different surface temperature on the VTCI was investigated using 333 
different temperature proxies: (1) daytime temperature from Terra MODIS (10:30 334 
AM), (2) daytime nighttime temperature difference from Terra MODIS, (3) daytime 335 
temperature from Aqua MODIS (1:30 PM), (4) daytime nighttime temperature 336 
difference from Aqua MODIS, (5) instantaneous MSG SEVIRI temperature at 10:30 337 
AM, (6) instantaneous MSG SEVIRI temperature at 1:30 PM, (7) MSG SEVIRI 338 
temperature difference between 8:00 AM and 12:00 AM, (8) MSG SEVIRI 339 
temperature difference between daily maximum and minimum temperature. 340 
 341 
2. Vegetation index: The NDVI is originally used for the estimation of VTCI due to 342 
its simplicity. But the NDVI can suffer saturation problem at high levels of vegetation 343 
density (Carlson et al., 1990). Therefore, different vegetation indexes instead of 344 
NDVI such as EVI and LAI are also explored in the present study. To test the impact 345 
of different types of vegetation indexes on VTCI, the following vegetation indexes 346 
generated by MODIS are investigated: (1) NDVI, (2) EVI, (3) FPAR and (4) LAI. 347 
 348 
3. Cloud: As clouds restrict optical/TIR remote sensing, only measurements under 349 
cloud free conditions are useable. Two cloud thresholds are tested to examine the 350 
influence of clouds on VTCI. They are 75% and 85%, which mean that 75% and 85% 351 
of the study area are cloud free. It should be noted here that the higher the threshold is, 352 
the less clear sky sample days remain. 353 
 354 
4. Topography: The estimation of VTCI requires a relatively flat area, because the 355 
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variation of surface temperature in the triangular/trapezoidal feature space is assumed 356 
to be caused by evaporative cooling effect rather than the variation of elevation. To 357 
examine the effects of topography on VTCI, the performances of non-masked terrain 358 
and masked terrain are both tested. In this study the masked terrain is based on 359 
removing the areas with 300 meters higher or lower elevation than average 360 
REMEDHUS elevation.  361 
 362 
5. Land cover heterogeneity: In order to get the triangular/trapezoidal feature space, 363 
the study domain should cover a wide range of soil moisture and vegetation cover 364 
conditions. On the other hand, the study area also needs to be homogeneous in terms 365 
of vegetation type and surface roughness (Moran et al., 1994). The sensitivity of 366 
VTCI to land cover heterogeneity is evaluated at two conditions: (1) full land cover, 367 
(2) only cropland. 368 
 369 
   Finally, the optimized VTCI is calculated based on the sensitivity analysis results. 370 
The CCI soil moisture is then downscaled with the optimized VTCI. 371 
 372 

Table 3: Different combinations of the five influential factors (surface temperature, vegetation index, 373 
cloud, topography and land cover heterogeneity) for the estimation of VTCI. 374 

 375 
Acronym 

 

Satellite 

 

Surface temperature 

 

Vegetation index 

 

Cloud fraction 

 

Elevation mask 

 

Land cover 

 Terra Aqua MSG 10:30 13:30 12:00-8:00 day-night max-min NDVI EVI FPAR  LAI 75% 85% No Yes Full Cropland 

NDVI_T_D +   +     +    +  +  +  

NDVI_T_DN +      +  +    +  +  +  

NDVI_A_D  +  +     +    +  +  +  

NDVI_A_DN  +     +  +    +  +  +  

FPAR_A_DN  +     +    +  +  +  +  

EVI_A_DN  +     +   +   +  +  +  

LAI_A_DN  +     +     + +  +  +  

LAI_A_DN_cf85  +     +     +  + +  +  

LAI_A_DN_elev  +     +     + +   + +  

LAI_DN_crop  +     +     + +  +   + 

NDVI_1030   + +     +    +  +  +  

NDVI_1330   +  +    +    +  +  +  

NDVI_0812   +   +   +    +  +  +  

NDVI_tmintmax   +     + +    +  +  +  

FPAR_tmintmax   +     +   +  +  +  +  

EVI_tmintmax   +     +  +   +  +  +  

LAI_tmintmax   +     +    + +  +  +  

LAI_tmintmax _cf85   +     +    +  + +  +  

LAI_tmintmax _elev   +     +    + +   + +  

LAI_tmintmax _crop   +     +    + +  +   + 

 376 
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4.2 Evaluation strategies 377 

Two metrics are used to evaluate the performance of the downscaled soil moisture. 378 
The first is direct comparison between satellite-based products including CCI SM and 379 
downscaled CCI SM, and measured soil moisture at each REMEDHUS station. In 380 
addition, the cross comparisons between the present results and reported results from 381 
published researches are summarized as well. In order to investigate the influence of 382 
land use on the downscaled soil moisture, the comparisons between satellite-based 383 
results and in situ measurements are performed per land use of the stations. These 384 
land use are rainfed, vineyard and forest-pasture. Furthermore, a seasonal analysis is 385 
also carried out to examine its influence on downscaled soil moisture. The study 386 
period is separated into four seasons to represent different dry/wet conditions and 387 
vegetation growth conditions. The four seasons are September/October/ November 388 
(autumn), December/January/February (winter), March/April/May (march), and 389 
June/July/August (summer) respectively. The widely used statistical metrics including 390 
correlation coefficient (R), mean bias error (BIAS), root mean square difference 391 
(RMSD), and unbiased RMSD (ubRMSD) are used in this study to quantify the 392 
differences between satellite-based products and in situ measurements (Entekhabi et 393 
al., 2010).  394 
 395 

5 Results and discussion 396 

5.1 Sensitivity analyses of the VTCI to surface temperature, vegetation 397 

index, cloud, topography and land cover heterogeneity 398 

Figure 3 shows the box plots of R for the comparisons between in situ soil moisture 399 
measurements and VTCI estimated from different settings (Table 3) for all stations. 400 
For the effects of surface temperature, the use of surface temperature difference 401 
generally shows better results than the use of instantaneous surface temperature. 402 
However, for SEVIRI, the use of temperature difference between 8:00 AM and 12:00 403 
AM does not improve VTCI compared to the use of instantaneous surface temperature 404 
at 10:30 AM and 1:30 PM. For Terra MODIS, the daytime nighttime temperature 405 
difference method performs slightly worse than the daytime method. As stated before, 406 
one advantage of temperature difference method is avoiding the uncertainty of 407 
instantaneous surface temperature. The similar performance between temperature 408 
difference method and instantaneous temperature method can be expected if the 409 
surface temperature product has high accuracy. Nevertheless, the improvements of 410 
VTCI are clearly observed when using maximum and minimum temperature 411 
difference for SEVIRI, as well as daytime nighttime temperature difference for Aqua 412 
MODIS. These results indicate the effectiveness of integrating the information of 413 
thermal inertial. From definition, the thermal inertial requires the maximum diurnal 414 
temperature difference, which is fully met by the SEVIRI. For Aqua MODIS, the 415 
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observations at 1:30 AM and 1:30 PM are also close to the local maximum and 416 
minimum temperature. But in reality, the time of local maximum and minimum 417 
temperature change with seasons and locations. Therefore, the use of SEVIRI can 418 
give better performance than MODIS platforms due to the better integration of 419 
thermal inertial information. It should be also noted that Aqua has slightly better 420 
performance than Terra in terms of mean R. The reason is likely because the 421 
observation time (1:30 PM/1:30 AM) of Aqua is closer to the time of daily maximum 422 
and minimum surface temperature than those of Terra (10:30 PM/10:30 AM). 423 

 424 

 425 

Figure 3: Sensitivity analyses of VTCI to different variables. The box plots show the R values of the 426 
comparisons between in situ soil moisture measurements and VTCI calculated from different 427 
configurations (Table 3) for all stations. The results for MODIS and SEVIRI are shown separately. 428 

 429 

   The change of VTCI when using different type of vegetation index is also shown 430 
in Figure 3. The LAI gives the best performance in terms of mean R for both SEVIRI 431 
and MODIS platforms, and then followed by EVI and FPAR. The NDVI gives 432 
relatively worse performance. It is because NDVI is only an indicator of surface 433 
greenness due to its sensitivity to effect of soil background. The other indexes are 434 
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physical parameters and can better represent the reality of vegetation density, which 435 
leads to better performance of VTCI. To our knowledge, many studies have used one 436 
of these vegetation indexes to form the triangular/trapezoidal feature space, but none 437 
of them compare and quantify the difference of VTCI estimated from different types 438 
of vegetation indexes. The results suggest that LAI is the best proxy for vegetation 439 
cover among different vegetation indexes in the applications based on the 440 
triangular/trapezoidal feature space.  441 

   Regarding the influence of clouds, Figure 3 shows that the 85% cloud mask gives 442 
worse performance for VTCI than 75% cloud mask. In theory, the increase of the 443 
cloud mask threshold should lead to the improvement of the accuracy of VTCI. The 444 
opposite result obtained here is due to the sharply decreased sample days for 85% 445 
cloud mask. It should be noted that the totally clear sky in the study domain is rare in 446 
real conditions. The higher cloud mask threshold normally results in less sample days. 447 
To keep the balance between avoiding the influence of clouds and having more 448 
sample days, we use 75% cloud mask in this study.   449 

   Contrary to our expectations, the masked terrain performs quite similar to 450 
non-masked terrain method. It is because that the masked out pixels are normally 451 
located within the triangular/trapezoidal feature space (see green color points in 452 
Figure 5 f and g), which means the dry and wet edges keep almost the same for both 453 
methods. Therefore, the terrain has no strong impacts on VTCI in our study area. But 454 
for other study areas, the terrain effects still need to be investigated before the 455 
estimation of VTCI.  456 

   The use of full land cover types gives better performance of VTCI than the use of 457 
croplands. It suggests that although the use of croplands keeps the surface cover more 458 
homogeneous in terms of vegetation properties and surface roughness, the range of 459 
surface moisture conditions that are required for the estimation of VTCI decreases 460 
meanwhile. In arid or semiarid study areas such as our study area, only one vegetation 461 
type cannot represent a wide range of soil moisture that is required by the estimation 462 
of VCTI. For these kinds of study areas, the requirements of homogeneous surface 463 
cover and wide range of soil moisture conditions cannot be met at the same time. As 464 
shown in our results, for the estimation of VTCI, having a wide range of soil moisture 465 
is more important than keeping surface cover homogeneous in such areas.  466 

   Based on the above results, it can be seen that these factors have strong impacts on 467 
performance of VTCI. The optimal configurations in this study for the estimation of 468 
VTCI are using Aqua MODIS daytime nighttime temperature difference, SEVIRI 469 
maximum and minimum temperature difference, LAI, 75% cloud mask, non-masked 470 
terrain and full land cover types. 471 

5.2 VTCI as a proxy of soil moisture 472 

To further investigate the performance of VTCI as the proxy of soil moisture, the 473 
temporal evolution of station averaged LAI, surface temperature, VTCI and in situ 474 
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soil moisture over REMEDHUS are presented in Figure 4. Meanwhile, the R between 475 
each parameter and soil moisture measurement is also shown. The LAI has similar 476 
seasonal trend as in situ measured soil moisture, but with very low R of 0.04 between 477 
them. Compared to LAI, a significantly negative correlation with R of -0.25/-0.57 for 478 
MODIS/SEVIRI between surface temperature and soil moisture are obtained. The 479 
results suggest that the surface temperature is more sensitive to soil moisture than the 480 
LAI. As expected, the VTCI, combining the information from both LAI and surface 481 
temperature, agrees well with soil moisture with R of 0.38/0.53 for MODIS/SEVIRI, 482 
which further demonstrating the effectiveness of VTCI as a proxy of soil moisture.  483 

 484 

Figure 4: Time series of the station averaged LAI, surface temperature, VTCI and in situ soil moisture 485 
over REMEDHUS during the study period. The R values listed in the figure refer to the correlation 486 
coefficient with measured soil moisture. 487 

 488 

5.3 Spatial patterns of the soil moisture estimates 489 

On the basis of VTCI, the CCI SM is downscaled to high spatial resolution using the 490 
proposed method during the study time period. The spatial distributions of original 491 
CCI SM and downscaled soil moisture on May 22nd 2010 are shown in Figure 5. It 492 
can be clearly seen that the downscaled soil moisture (Figure 5 b and c) have quite 493 
similar spatial patterns as the original CCI SM. High soil moisture is typically 494 
presented in northwest and southwest, while low soil moisture appears in northeast 495 
and southeast. Meanwhile, the spatial details of the soil moisture are highly improved 496 
by the downscaling scheme. The downscaled soil moisture map (Figure 5 d) 497 
generated from MODIS also exhibits very similar patterns as that (Figure 5 e) from 498 
SEVIRI. It is due to the similar VTCI patterns calculated from MOIDS and SEVIRI. 499 
The similar shape of the triangular/trapezoidal feature space constructed from MODIS 500 
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and SEVIRI can also be seen from Figure 5 f and g. These results suggest that the 501 
proposed downscaling scheme can capture the spatial pattern of original CCI soil 502 
moisture, and similar performance of downscaled soil moisture maps can be obtained 503 
from both MODIS and SEVIRI. The following section will further investigate the 504 
accuracy of the downscaled soil moisture and quantify the difference between 505 
estimates from MODIS and SEVIRI. 506 
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(a) CCI SM 

 
(b) MODIS downscaled SM 

 
(c) MSG downscaled SM 

 
(d) MODIS VTCI 

 
(e) MSG VTCI 

 
(f) MODIS triangular feature space 

 
(g) MSG triangular feature space 

 507 



 18 

 508 

Figure 5: Spatial comparisons between coarse CCI soil moisture (a) and downscaled CCI soil moisture 509 
(b and c) based on MODIS and SEVIRI for May 22nd 2010. The corresponding VTCI (d and e) and    510 
triangular/trapezoidal feature space (f and g) are also shown. The green points in the triangular feature 511 
space indicate the pixels with elevation 300 meters higher or lower than average REMEDHUS 512 
elevation. 513 

5.4 Validation of the soil moisture estimates against in situ soil 514 

moisture measurements  515 

The validation results between original CCI SM and in situ soil moisture 516 
measurements at each station are shown in Figure 6, with mean R of 0.53±0.13, mean 517 
Bias of 0.07±0.08 m3/m3, mean RMSD of 0.11±0.04 m3/m3, and mean ubRMSD of 518 
0.05±0.02 m3/m3. These values are consistent with the reported accuracy level of CCI 519 
SM from a recent validation study over Tibetan Plateau (Zeng et al., 2015), and are 520 
slightly better than the reported accuracy (mean R = 0.46, ubRMSD = 0.05 m3/m3) 521 
from the global validation of CCI SM by Dorigo et al. (2015). Regarding the 522 
validation results of downscaled soil moisture, the general accuracy level is similar to 523 
that of original CCI SM, with mean R of 0.42±0.17/0.48±0.15, BIAS of 524 
0.06±0.09/0.06±0.08 m3/m3, RMSD of 0.12±0.05/011±0.04 m3/m3, and ubRMSD of 525 
0.06±0.02/0.05±0.02 m3/m3 for MODIS and SEVIRI respectively. When compared to 526 
original CCI SM at each individual station, the downscaled soil moisture has clearly 527 
better performance at some stations such as H9P and M9R, while performs worse at 528 
stations like L3V and K4V. These results suggest that the downscaled soil moisture 529 
can maintain the accuracy of original CCI SM but cannot highly improve its accuracy. 530 
Similar results have been reported by many soil moisture downscaling studies (Choi 531 
and Hur, 2012; Sánchez-Ruiz et al., 2014; Zhao and Li, 2013), which suggest that the 532 
accuracy level of downscaled soil moisture highly depend on the original soil 533 
moisture. Besides, as expected, slightly better performance of SEVIRI over MODIS 534 
can be observed due to the better performance of VTCI from MSG, which 535 
demonstrates the potential of MSG for downscaling soil moisture.  536 
 537 
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 538 

Figure 6: Bar plots for the comparisons between CCI soil moisture, downscaled soil moisture and in 539 
situ soil moisture at each station. 540 

 541 
   The temporal variations of downscaled soil moisture for individual station are also 542 
investigated here. The stations K13 and M13 are selected due to their representatives 543 
of wet and dry soil moisture conditions (Sánchez et al., 2012). Besides, the location of 544 
K13 is close to one weather station (Figure 1), which gives us the chance to 545 
investigate the connection between soil moisture and rainfall. Figure 7 displays the 546 
time series of the in situ soil moisture, CCI soil moisture, downscaled CCI soil 547 
moisture, as well as rainfall for stations K13 and M13 respectively. For dry station 548 
K13, the CCI soil moisture and downscaled soil moisture both agree well with in situ 549 
soil moisture. Regarding the wet station M13, the in situ soil moisture responds well 550 
to the rainfall, with high soil moisture occurring during the rainfall period in spring. 551 
But the CCI soil moisture and downscaled soil moisture seem to be insensitive to the 552 
rainfall, presenting relatively low value compared to in situ soil moisture during the 553 
rainfall period. The results here are similar to that reported by (Sánchez-Ruiz et al., 554 
2014). They found that the downscaled SMOS soil moisture has limited response to 555 
rain events.   556 
 557 
    558 
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559 

560 

 561 

Figure 7: Time series of the in situ soil moisture, CCI soil moisture, downscaled CCI soil moisture, as 562 
well as rainfall for stations K13 and M13. The results from MODIS and SEVIRI are shown separately. 563 

 564 
   In addition to the validation at each individual station, the performance of 565 
different soil moisture results averaged at REMEDHUS network scale are also 566 
analyzed and summarized in Figure 8. Similar to the above results, both original CCI 567 
SM and downscaled soil moisture agree well with the averaged in situ soil moisture 568 
over network in terms of R, BIAS, RMSD and ubRMSD. But systematic 569 
overestimation of soil moisture from all of them can also be observed. It implies that 570 
the CCI SM has the problem of overestimating soil moisture, which needs to be 571 
further investigated. Overall, the above results suggest that the downscaled soil 572 
moisture can preserve the accuracy of coarse CCI SM, and meanwhile present more 573 
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detailed spatial details. Since the proposed downscaling method highly depends on the 574 
original CCI soil moisture and VTCI, the accuracy of the downscaled soil moisture is 575 
expected to be improved if the VTCI can better represent the soil moisture.  576 
 577 

 578 

Figure 8: Scatter plots of the REMEDHUS network averaged estimates and soil moisture 579 
measurements. The corresponding comparison statistics are shown as well.   580 

 581 
   Furthermore, the above results are also compared with other published soil 582 
moisture downscaling studies. These studies apply different downscaling methods to 583 
downscale soil moisture product from SMOS and AMSR-E, using either MODIS or 584 
SEVIRI data as inputs. The results are all validated against the observations from 585 
REMEDHUS network, which makes them ideal for inter-comparison with our results. 586 
Table 4 lists the statistics of the comparison between downscaled and measured soil 587 
moisture from different studies. It can be seen that the R, BIAS, RMSD and ubRMSD 588 
of these published studies range respectively from 0.467 to 0.73, -0.026 to 0.108 589 
m3/m3, 0.049 to 0.109 m3/m3, and 0.040 to 0.042 m3/m3. The corresponding statistics 590 
of the current study are within theses ranges, which imply that the results of current 591 
study are reasonable and satisfactory. Considering the simplicity, limited inputs, and 592 
acceptable accuracy, we conclude that the proposed downscaling method is feasible 593 
and effective for improving soil moisture from coarse to high spatial resolution. 594 

Table 4: Summary of the errors statistics from other soil moisture downscaling studies using 595 
REMEDHUS observation for validation as well. The statistics of the current study are from the 596 
comparison of station averaged soil moisture. 597 

Reference  

 

Soil moisture  Sensor 
used 
resoluti
resoluti
on 

R BIAS (m3/m3) RMSD (m3/m3) ubRMSD (m3/m3) 
Sánchez-Ruiz et al. (2014) SMOS MODIS 0.73 -0.026 0.049 0.042 
Piles et al. (2014) SMOS MODIS  0.590 -0.010 0.050 0.040 
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Zhao and Li (2013) AMSR-E SEVIRI 0.467 0.108 0.109 – 

 
Current study CCI SM 

MODIS 
SEVIRI 
 
 
 
 

0.580 
0.617 

0.063 
0.060 

0.076 
0.072 

0.042 
0.040 

 598 
 599 

5.5 Seasonal and land use analyses of the soil moisture estimates 600 

To investigate the performance of the downscaling method over different climatic and 601 
vegetation growth conditions, seasonal analysis has been performed based on the 602 
comparisons between network-averaged soil moisture estimates and in situ soil 603 
moisture observations for different seasons. Figure 9 shows the statistical results of 604 
the comparisons between CCI SM, downscaled soil moisture, and in situ soil moisture. 605 
It can be seen that the downscaled soil moisture especially from SEVIRI has similar 606 
performance as original CCI SM, with better performance in summer and winter in 607 
terms of R, BIAS, RMSD and ubRMSD values. The worse performance in spring 608 
might be due to flat temporal pattern of CCI SM (Figure 7). As discussed in section 609 
5.4, it seems that CCI SM has limited response to rainfall, while the study area has 610 
frequent rainfall during spring. Compared to CCI soil moisture, the downscaled soil 611 
moisture from SEVIRI has slightly better performance in terms of R and BIAS. 612 
Similar to the previous results, the SEVIRI generally has slightly better performance 613 
than MODIS in terms of R, BIAS, RMSD and ubRMSD values.  614 
 615 

 616 
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Figure 9: Bar plots for the comparisons between soils moisture estimates and in situ soil moisture over 617 
seasons. 618 

 619 

   The influence of land use on the downscaling scheme is also investigated and the 620 
results are summarized in Figure 10. The stations are divided into three land use 621 
groups: vineyard (7), rainfed (9) and forest-pasture (2). Figure 10 shows the 622 
performances of original CCI SM and downscaled SM over different land use 623 
categories. It can be seen that vineyard and rainfed have similar performance in terms 624 
of R and ubRMSD, while the forest-pasture presents relatively high R and ubRMSD 625 
that might be due to its limited number of stations. These results suggest that both 626 
CCI SM and downscaled soil moisture are not sensitive to the generally used land use.   627 
Furthermore, the results from MODIS and SEVIRI have similar performance, which 628 
further implies that the proposed method is independent on platforms. It has the 629 
potential to be used on different platforms and other regions.  630 

 631 

Figure 10: Bar plots for the comparisons between soils moisture estimates and in situ soil moisture per 632 
land use (vineyard, rainfed and forest-pasture).  633 

5.6 Evaluation of downscaled soil moistrue at different spatial 634 

resolutions 635 

Since MODIS has the advantage of providing measurements at high spatial resolution 636 
of 1 km, it gives us the opportunity to evaluate the downscaled soil moisture at 637 
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different spatial resolutions. Figure 11 displays the spatial patterns of downscaled soil 638 
moisture at 1 km and 0.05°(CMG) on May 22nd 2010. It can be seen that these two 639 
maps have quite similar patterns, implying that the downscaling scheme can be 640 
applied at different spatial scales. To further evaluate the performance of downscaled 641 
soil moisture at different spatial resolutions, Figure 12 shows the bar plots of the 642 
comparisons between downscaled soil moisture from MODIS different spatial 643 
resolution MODIS and measured soil moisture at each station. In general, the 644 
downscaled soil moisture at 1 km has similar accuracy level as that at 0.05°, which 645 
suggests that the accuracy of CCI soil moisture can be preserved at higher spatial 646 
resolutions. Besides, the 1 km soil moisture has slightly better performance than 0.05° 647 
soil moisture in terms of mean R (0.465/0.44), RMSD (0.112/0.113 m3/m3), ubRMSD 648 
(0.055/0.058 m3/m3) values. It further suggests that finer spatial resolution datasets 649 
can improve the accuracy of downscaled soil moisture, which demonstrates the 650 
assumption proposed by Sánchez-Ruiz et al. (2014). In summary, the above results 651 
indicate that the downscaling scheme can be applied at different spatial resolutions. 652 
Taking advantage of high spatial resolution of MODIS datasets, combined use of 653 
MODIS and MSG datasets has the potential of providing downscaled soil moisture at 654 
high spatial and temporal resolutions.  655 

 656 

 
(a) MODIS downscaled SM (1km) 

 
(b) MODIS downscaled SM (0.05°) 

 657 

Figure 11:  Spatial patterns of the downscaled soil moisture from MODIS at (a) 1 km and (b) 0.05° 658 
spatial resolutions.  659 

 660 
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 661 

Figure 12: Bar plots for the comparisons between measured soil moistureand downscaled soil moisture 662 
at 1 km and 0.05° spatial resolutions.  663 

 664 

6 Conclusions 665 

In this study, a newly developed soil moisture downscaling method was applied to the 666 
ESA CCI soil moisture product and validated against the REMEDHUS soil moisture 667 
observation network in Spain. In general, agreement between the CCI soil moisture 668 
and the in situ soil moisture was observed with similar accuracy level to the published 669 
validation studies. But systematic overestimation of soil moisture was also observed 670 
for CCI SM from the network-averaged analysis. Before applying the downscaling 671 
scheme, the sensitivity analyses of the downscaling factor VTCI were conducted. The 672 
surface temperature difference method performs better than instantaneous surface 673 
temperature method due to the integrated information of thermal inertial. Besides, the 674 
VTCI performance also depends on the type of vegetation index. The LAI performs 675 
best for estimation of VTCI compared to NDVI, EVI and FPAR. After downscaling 676 
the CCI soil moisture from coarse to high spatial resolution, the soil moisture map can 677 
replicate the CCI soil moisture spatial patterns and show more spatial details. 678 
Comparisons with in situ soil moisture indicate that the downscaled soil moisture can 679 
maintain the accuracy of original CCI soil moisture. Further inter-comparisons with 680 
published soil moisture downscaling studies suggest that the accuracy level of the 681 
proposed method is comparable. Compared with those methods, the advantages of the 682 
proposed method are its simplicity, the fewer required inputs and comparable 683 
accuracy level.  684 
   In addition, the downscaled soil moisture from MSG SEVIRI performs better than 685 
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that from MODIS, which is due to the better performance of corresponding VTCI 686 
from SEVIRI. It indicates the great potential of applying SEVIRI to downscale soil 687 
moisture. To take full advantages of the high temporal resolution of SEVIRI and high 688 
spatial resolution of MODIS, combined use of data from both platforms should be 689 
considered in soil moisture downscaling applications in the future.  690 
   In summary, the present study, together with the work by Peng et al. (2016) 691 
demonstrated the feasibility of downscaling soil moisture with the proposed method. 692 
The notable advantage of this approach is simplicity in terms of inputs requirement 693 
and implementation. Furthermore, the proposed method is independent on satellite 694 
platforms, implying that the downscaled soil moisture can be obtained at either very 695 
high spatial resolution (500 m for MODIS) or very high temporal resolution (every 15 696 
minutes for SEVIRI). It has potential to facilitate regional hydrological related studies 697 
that require soil moisture information at different spatial and temporal scales. 698 
Application of the proposed method in other regions and comparison with other 699 
downscaling methods will be conducted in future studies. 700 
 701 
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