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Abstract  9 

With remote sensing we can readily observe the Earth's surface, but direct observation of the sub-10 

surface remains a challenge. In hydrology, but also in related disciplines such as agricultural and 11 

atmospheric sciences, knowledge on the dynamics of soil moisture in the root zone of vegetation is 12 

essential, as this part of the vadose zone is the core component controlling the partitioning of water 13 

into evaporative fluxes, drainage, recharge and runoff. In this paper we compared the catchment-14 

scale soil moisture content in the root zone of vegetation, computed by a lumped conceptual 15 

model, with the remotely sensed Normalised Difference Infrared Index (NDII) in the Upper Ping 16 

River Basin (UPRB) in Northern Thailand. The NDII is widely used to monitor the Equivalent 17 

Water Thickness (EWT) of leaves and canopy. Satellite data from the Moderate Resolution 18 

Imaging Spectro-radiometer (MODIS) were used to determine the NDII over an 8-day period, 19 

covering the study area from 2001 to 2013. The results show that NDII values decrease sharply at 20 

the end of the wet season in October and reach lowest values near the end of the dry season in 21 

March. The values then increase abruptly after rains have started, but vary in an insignificant 22 

manner from the middle to the late rainy season. This paper investigates if the NDII can be used as 23 

a proxy for moisture deficit and hence for the amount of moisture stored in the root zone of 24 

vegetation, which is a crucial component of hydrological models. During periods of moisture 25 

stress, the 8-day average NDII values were found to correlate well with the 8-day average soil 26 

moisture content (Su) simulated by the lumped conceptual hydrological rainfall-runoff model 27 

FLEX for 8 sub-catchments in the Upper Ping basin. Even the deseasonalized Su and NDII (after 28 

subtracting the dominant seasonal signal) showed good correlation during periods of moisture 29 

stress. The results illustrate the potential of the NDII as a proxy for catchment-scale root zone 30 

moisture deficit and as a potentially valuable constraint for the internal dynamics of hydrological 31 

models. In dry periods, when plants are exposed to water stress, the EWT (reflecting leaf-water 32 
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deficit) decreases steadily, as moisture stress in the leaves is connected to moisture deficits in the 33 

root zone. When subsequently the soil moisture is replenished as a result of rainfall, the EWT 34 

increases without delay. Once leaf-water is close to saturation - mostly during the heart of the wet 35 

season - leaf characteristics and NDII values are not well correlated. However, for both 36 

hydrological modelling and water management the stress periods are most important, which is 37 

why this product has the potential to becoming a highly efficient model constraint, particularly in 38 

ungauged basins.  39 

 40 

1. Introduction 41 

Estimating the moisture content of the soil from remote sensing is one of the major challenges in 42 

the field of hydrology (e.g. De Jeu et al., 2008; Entekhabi et al., 2010). Soil moisture is generally 43 

seen as the key hydrological state variable determining the partitioning of fluxes (into direct 44 

runoff, recharge and evaporation) (Liang et. al., 1994), the interaction with the atmosphere 45 

(Legates et. al., 2011), and the carbon cycle (Porporato et al., 2004). The root zone of ecosystems, 46 

being the dynamic part of the unsaturated zone, is the key part of the soil related to numerous sub-47 

surface processes (Shukla and Mintz, 1982). Several remote sensing products have been developed 48 

especially for monitoring soil moisture (e.g. SMOS, ERS and AMSR-E), but until now 49 

correlations between remote sensing products and observed soil moisture at different depths have 50 

been modest at best (Parajka et al., 2006; Ford et al., 1997). There are a few possible explanations. 51 

One is that it is not (yet) possible to look into the soil deep enough to observe soil moisture in the 52 

root zone of vegetation (Shi et al., 1997; Entekhabi et al., 2010), second is that soil moisture 53 

observations at certain depths are maybe not the right indicators for the amount of moisture stored 54 

in the root zone (Mahmood and Hubbard, 2007), which is rather determined by the vegetation 55 

dependent, spatially variable three-dimensional distribution and density of roots.  56 

These mainstream methods to derive soil moisture from remote sensing have concentrated on 57 

direct observation of soil moisture below the surface. The vegetation, through the Vegetation 58 

Water Content (VWC), perturbs this picture. As a result, previous studies have tried to determine 59 

the VWC from a linear relationship with the Equivalent Water Thickness (EWT) that is measured 60 

by the Normalised Difference Infrared Index (NDII) (e.g. Yilmaz et al., 2008). The NDII was 61 

developed by Hardisky et al. (1983) using ratios of different values of near infrared reflectance 62 

(NIR) and short wave infrared reflectance (SWIR), defined by: (ρNIR−ρSWIR)/(ρNIR+ρSWIR), similar 63 

to the NDVI, which is defined by discrete red and near infrared. Besides for determining the water 64 

content of vegetation, the NDII can be effectively used to detect plant water stress according to the 65 
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property of shortwave infrared reflectance, which is negatively related to leaf water content due to 66 

the large absorption by the leaf (e.g. Steele-Dunne et al., 2012; Friesen et al., 2012; Van Emmerik 67 

et al., 2015). Many studies have found relationships between the equivalent water thickness 68 

(EWT) and reflectance at the near-infrared (NIR) and shortwave infrared (SWIR) portion of the 69 

spectrum used for deriving NDII (Hardisky et al., 1983; Hunt and Rock, 1989; Gao, 1996; Ceccato 70 

et al., 2002; Fensholt and Sandholt, 2003). Yilmaz et al. (2008) found a significant linear 71 

relationship (R2 = 0.85) between equivalent water thickness (EWT) and NDII. Subsequently, they 72 

tried to determine a relationship between EWT and vegetation water content (VWC), in order to 73 

be able to correct direct moisture observations from space. However, these relationships appeared 74 

to be vegetation and crop-type dependent. 75 

Water is one of the determinant environmental variables for vegetation growth, especially in 76 

water-limited ecosystems during dry periods. From plant physiology point of view, water 77 

absorption from the root zone is driven by osmosis. Subsequently, water transport from the roots 78 

to the leaves is driven by water potential differences, caused by diffusion of water out of stomata, 79 

called transpiration. This physiological relationship supports the correlation between root zone soil 80 

moisture content, moisture tension in the leaves and the water content of plants.  81 

Hence, the root zone moisture deficit is connected to the water content of the canopy/leaves, 82 

because soil moisture suction pressure and moisture content in the leaves are directly connected 83 

(Rutter and Sands, 1958). The NDII was developed to monitor leave water content (Hardisky et 84 

al., 1983), so one would expect a direct relation between NDII and root zone moisture deficit. The 85 

deficit again is a direct function of the amount of moisture stored in the root zone. 86 

So if leaf water thickness and the suction pressure in the root zone are connected, then the NDII 87 

would directly reflect the moisture content of the root zone. It would only reflect the moisture 88 

content in the influence zone of roots and not beyond that. Hence the NDII could become a 89 

powerful indicator for monitoring root zone moisture content, providing an integrated, depth-90 

independent estimation of how much water is accessible to roots, available for vegetation. In other 91 

words, the NDII would allow us to see vegetation as a sort of natural manometer, providing us 92 

with information on how much water is available in the sub-surface for use by vegetation. It would 93 

be an integrated indicator of soil moisture in the root zone, available directly at the scale of 94 

interest.      95 

Thus, the hypothesis is that we can monitor the moisture content in the root zone from the 96 

observed moisture state of the vegetation by means of the NDII.  97 
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In this paper, we tested whether there exists a direct and functional relationship between a remote 98 

sensing product (the NDII) and the amount of moisture stored in the root zone, as simulated by a 99 

semi-distributed conceptual hydrological model, in which the root zone moisture content is a key 100 

state variable in the short and long term dynamics of the rainfall-runoff signal. Because the NDII 101 

is an indicator for water stress, the index is only expected to show a strong link with the moisture 102 

content of the root zone when there is a soil moisture deficit. Without water stress occurring within 103 

the leaves, particularly during wet periods, NDII would possibly not reflect variation in root zone 104 

soil moisture content (Korres et al., 2015). 105 

The analysis was done using data from eight sub-basins of the Upper Ping River Basin (UPRB), a 106 

tropical seasonal evergreen catchment in northern Thailand. This catchment is adequate for the 107 

purpose because it has eight well-gauged sub-basins with clearly different aridity characteristics 108 

and strong seasonality, providing a good testing ground for the comparison. 109 

The remotely sensed NDII values have been compared to the root zone storage as modelled by a 110 

semi-distributed conceptual model; semi-distributed meaning that for each sub-catchment a 111 

separate conceptual model has been used. The different sub-catchments demonstrate a variety of 112 

climatic properties that allow a more rigorous test than a fully lumped model could provide. In this 113 

way, a compromise has been found between the complexity and data requirements of a fully 114 

distributed model and the simplicity of a completely lumped model. One could argue that a fully 115 

distributed conceptual model would have been a better tool to assess the spatial and temporal 116 

pattern obtained by the NDII. This is correct, but this would have required the availability of more 117 

detailed spatially distributed forcing data (particularly rainfall), which was not available. 118 

Moreover, if a semi-distributed lumped model, potentially less accurate than a distributed model, 119 

provides a good correlation with NDVI, then this would be a tougher text than with a fully 120 

distributed model. 121 

 122 

2. Study site and data  123 

2.1 Study site 124 

The Upper Ping River Basin (UPRB) is situated between latitude 17°14′30″ to 19°47′52″ N, and 125 

longitude 98°4′30″to 99°22′30″ E in Northern Thailand and can be separated into 14 sub-126 

basins (Fig. 1) (Mapiam, et al., 2014). It has an area of approximately 25,370 km2 in the provinces 127 

of Chiang Mai and Lam Phun. The basin landform ranges from an undulating to a rolling terrain 128 

with steep hills at elevations of 1,500 to 2,000 m, and valleys of 330 to 500 m (Mapiam and 129 
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Sriwongsitanon, 2009; Sriwongsitanon, 2010). The Ping River originates in Chiang Dao district, 130 

north of Chiang Mai, and flows downstream to the south to become the inflow for the Bhumiphol 131 

dam - a large dam with an active storage capacity of about 9.7 billion m3 (Sriwongsitanon, 2010). 132 

The climate of the region is controlled by tropical monsoons, with distinctive dry and wet seasons 133 

and free from snow and ice. The rainy season is influenced by the southwest monsoon and brings 134 

about mild to heavy rainfall between May and October. Annual average rainfall and runoff of the 135 

UPRB are approximately 1,170 and 270 mm/y, respectively. Avoiding the influence of other 136 

factors, these catchments are ideal cases to concentrate on the relationship between NDII and root 137 

zone moisture content. The land cover of the UPRB is dominated by forest (Sriwongsitanon and 138 

Taesombat, 2011).  139 

2.2 Data Collection 140 

2.2.1 Rainfall data 141 

Data from 65 non-automatic rain-gauge stations covering the period from 2001 to 2013 were used. 142 

42 stations are located within the UPRB while 23 stations are situated in its surroundings. These 143 

rain gauges are owned and operated by the Thai Meteorological Department and the Royal 144 

Irrigation Department. Quality control of the rainfall data was performed by comparing them to 145 

adjacent rainfall data. For each sub-basin, daily spatially averaged rainfall, by inverse distance 146 

squared, has been used as the forcing data of the hydrological model.  147 

2.2.2 Runoff data 148 

Daily runoff data from 1995 to 2011 at 8 stations located in the UPRB were adequate to be used 149 

for FLEX calibration. These 8 stations are operated by the Royal Irrigation Department in 150 

Thailand. The locations of these 8 stations and the associated sub-basins are shown in Fig. 1. 151 

These 8 stations control the runoff of the eight sub-basins on which the eight lumped conceptual 152 

models were calibrated. Runoff data at these stations are not affected by large reservoirs and have 153 

been checked for their reliability by comparing them with rainfall data covering their catchment 154 

areas at the same periods. Catchment characteristics and available data periods for model 155 

calibration of the selected 8 sub-basins are summarized in Table 1. 156 

2.2.3 NDII data 157 

The satellite data used for calculating the NDII is the MODIS level 3 surface reflectance product 158 

(MOD09A1), which is available at 500 m resolution in an 8-day composite of the gridded level 2 159 
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surface reflectance products. Each product pixel contains the best possible L2G observation during 160 

an 8-day period selected on the basis of high observation coverage, low view angle, absence of 161 

clouds or cloud shadow, and aerosol loading. MOD09 (MODIS Surface Reflectance) is a seven-162 

band product, which provides an estimate of the surface spectral reflectance for each band as it 163 

would have been measured at ground level without atmospheric scattering or absorption. This 164 

product has been corrected for the effects of atmospheric gases and aerosols (Vermote et al., 165 

2011). The available MODIS data covering the UPRB from 2001 to 2013 were downloaded from 166 

ftp://e4ftl01.cr.usgs.gov/MOLT. The HDF-EOS Conversion Tool was applied to extract the 167 

desired bands (bands 2 (0.841-0.876 µm) and 6 (1.628-1.652 µm)) and re-projected into Universal 168 

Transverse Mercator (Zone 47N, WGS84) from the original ISIN mapping grid. 169 

 170 

3. Methods 171 

3.1 Estimating vegetation water content using near infrared and short wave infrared 172 

Estimates of vegetation water content (the amount of water in stems and leaves) are of interest to 173 

assess the vegetation water status in agriculture and forestry and have been used for drought 174 

assessment (Cheng et al., 2006; Gao, 1996; Gao and Goetz, 1995; Ustin et al., 2004; Peñuelas et 175 

al., 1993). Evidence from physically-based radiative transfer models and laboratory studies 176 

suggests that changes in water content in plant tissues have a large effect on the leaf reflectance in 177 

several regions of the 0.7-2.5 µm spectrum (Fensholt and Sandholt, 2003). Tucker (1980) 178 

suggested that the spectral interval between 1.55 and 1.75 µm (SWIR) is the most suitable region 179 

for remotely sensed leaf water content. It is well known that these wavelengths are negatively 180 

related to leaf water content due to a large absorption by leaf water (Tucker, 1980; Ceccato et al., 181 

2002). However, variations in leaf internal structure and leaf dry matter content also influence the 182 

SWIR reflectance. Therefore, SWIR reflectance values alone are not suitable for retrieving 183 

vegetation water content. To improve the accuracy in estimating the vegetation water content, a 184 

combination of SWIR and NIR (0.7 to 0.9 µm) reflectance information was utilized because NIR 185 

is only affected by leaf internal structure and leaf dry matter content but not by water content. A 186 

combination of SWIR and NIR reflectance information can remove the effect of leaf internal 187 

structure and leaf dry matter content and can improve the accuracy in retrieving the vegetation 188 

water content (Ceccato et al., 2001; Yilmaz et al., 2008; Fensholt and Sandholt, 2003). 189 

On the basis of this idea, Hardisky et al. (1983) derived the NDII: 190 

!"## = ! !!.!"!!!.!"!!.!"!!!.!"
         (1) 191 
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where ρ0.85 and ρ1.65 are the reflectances at 0.85 µm and 1.65 µm wavelengths, respectively. NDII 192 

is a normalized index and the values theoretically vary between -1 and 1. A low NDII value and 193 

especially below zero means that reflectance from ρ0.85 is lower than the reflectance from ρ1.65 194 

which indicates canopy water stress. 195 

The 8-day NDII values, as collected from MODIS, were averaged over each sub-basin to allow 196 

comparison to the 8-day average Su (root zone storage) values extracted from the FLEX model 197 

results at each of the 8 runoff stations. 198 

We did not use field observations of soil moisture. One could argue that field observations should 199 

be used to link NDII to moisture stress. However, besides not being available, it is doubtful if 200 

point observations at fixed depth would provide a correct measure for the moisture content in the 201 

root zone. It is more likely that vegetation distributes its roots and adjusts its root density to the 202 

specific local conditions and that the root density and distribution is not homogeneous in space and 203 

depth. 204 

 205 

3.2 The semi-distributed FLEX Model 206 

FLEX (Fig. 2) is a conceptual hydrological model with an HBV-like model structure developed in 207 

a flexible modelling framework (Fenicia et al., 2011; Gao et al., 2014a; Gao et al., 2014b). The 208 

model structure comprises four conceptual reservoirs: the interception reservoir Si (mm), the root 209 

zone reservoir representing the moisture storage in the root zone Su (mm), the fast response 210 

reservoir Sf (mm), and the slow response reservoir Ss (mm). It also includes two lag functions 211 

representing the lag time from storm to peak flow (TlagF), and the lag time of recharge from the 212 

root zone to the groundwater (TlagS). Besides a water balance equation, each reservoir has process 213 

equations that connect the fluxes entering or leaving the storage compartment to the storage in the 214 

reservoirs (so-called constitutive functions). Table 2 shows the 15 equations of the FLEX model, 215 

discussed below. The 11 model parameters with their distribution values are shown in Table 3, 216 

which have to be determined by model calibration. Forcing data include the elevation-corrected 217 

daily average rainfall (Gao et al., 2014a), daily average, minimum and maximum air temperature, 218 

and potential evaporation derived by Hargreaves equation (Hargreaves and Samani, 1985). 219 

3.2.1 Interception reservoir 220 

The interception reservoir uses the water balance equation, Eq. (2), presented in Table 2. The 221 

interception evaporation Ei (mm d-1) is calculated by potential evaporation E0 (mm d-1) and the 222 
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storage of the interception reservoir Si (mm) (Eq. (3)). There is no effective rainfall Pe (mm d-1) as 223 

long as the Si is less than its storage capacity Si,max (mm) (Eq. (4)) (de Groen and Savenije, 2006). 224 

3.2.2 Root zone reservoir 225 

The moisture content in the root zone is simulated by a 'reservoir' (Eq. (5)), that partitions effective 226 

rainfall into infiltration, and runoff R (mm d-1), and determines the transpiration by vegetation Et 227 

(mm d-1). Being the key partitioning point, the root zone storage reservoir is the core of the FLEX 228 

model. For the partitioning between infiltration and runoff we applied the widely used beta 229 

function (Eq. (6)) of the Xinanjiang model (Zhao, 1992; Liang et al., 1992), developed based on 230 

the variable contribution area theory (Hewlett and Hibbert, 1967; Beven, 1979), but which can 231 

equally reflect the spatial probability distribution of runoff thresholds. The moisture storage in the 232 

root zone 'reservoir' is represented by Su (mm). The beta function defines the runoff percentage Cr 233 

(-) for each time step as a function of the relative soil moisture content (Su/Su,max). In Eq. (6), Su,max 234 

(mm) is the root zone storage capacity, and β (-) is the shape parameter describing the spatial 235 

distribution of the root zone storage capacity over the catchment. In Eq. (7), the relative soil 236 

moisture and potential evaporation are used to determine the transpiration Et (mm d-1); Ce (-) 237 

indicates the fraction of Su,max above which the transpiration is no longer limited by soil moisture 238 

stress (Et=E0-Ei). 239 

3.2.3 Response routine 240 

In Eq. (8), Rf (mm d-1) indicates the flow into the fast response routine; D (-) is a splitter to 241 

separate recharge from preferential flow. In Eq. (9), Rs (mm d-1) indicates the flow into the 242 

groundwater reservoir. Equation (10) and (11) are used to describe the lag time between storm and 243 

peak flow. Rf (t-i+1) is the generated fast runoff from the root zone at time t-i+1; Tlag is a 244 

parameter which represents the time lag between storm and fast runoff generation; c(i) is the 245 

weight of the flow in i-1 days before; and Rfl(t) is the discharge into the fast response reservoir 246 

after convolution. 247 

The linear response reservoirs, representing linear relationships between storages and releases, are 248 

applied to conceptualize the discharge from the fast runoff reservoir, and slow response reservoir. 249 

Eq. (12) presents the water balance of the fast reservoir, in which Qff (mm d-1) is the direct surface 250 

runoff, with timescale Kff (d), described by Eq. (13), activated when the storage of fast response 251 

reservoir exceeds the threshold Sf,max (mm), and  Qf (mm d-1) is the fast sub-surface flow, with time 252 

scale Kf (d), described by Eq. (14). The slow groundwater reservoir is described by Eq. (15), 253 

which generates the slow runoff Qs (mm d-1) with time scale Ks (d) described by Eq. (16). Qm (mm 254 
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d-1) is the total amount of runoff simulated from the three individual components, adding up: Qff, 255 

Qf, and Qs. 256 

3.2.4 Model calibration  257 

A multi-objective calibration strategy has been adopted in this study to allow for the model to 258 

effectively reproduce different aspects of the hydrological response, i.e. high flow, low flow and 259 

the flow duration curve. The model was therefore calibrated to three Kling-Gupta efficiencies 260 

(Gupta et al., 2009): 1) the K-G efficiency of flows (IKGE) measures the performance of 261 

hydrograph reproduction especially for high flows; 2) the K-G efficiency of the logarithm of flows 262 

emphasizes low flows (IKGL), and 3) the K-G efficiency of the flow duration curve (IKGF) to 263 

represent the flow statistics. 264 

The MOSCEM-UA (Multi-Objective Shuffled Complex Evolution Metropolis-University of 265 

Arizona) algorithm (Vrugt et al., 2003) was used as the calibration algorithm to find the Pareto-266 

optimal solutions defined by the mentioned three objective functions. This algorithm requires 3 267 

parameters including the maximum number of iterations, the number of complexes, and the 268 

number of random samples that is used to initialize each complex. To ensure fair comparison, the 269 

parameters of MOSCEM-UA were set based on the number of model parameters. Therefore, the 270 

number of complexes is equal to the number of free parameters n; the number of random samples 271 

is equal to n*n*10; and the number of iterations was set to 30000. The model is a widely validated 272 

model, which is only used here to derive the magnitude of the root zone moisture storage. 273 

Therefore validation is not considered necessary, since the model is merely meant to compare 274 

calibrated values of Su with NDII.  275 

3.3 Deseasonalization 276 

Seasonal signals exist both in NDII and Su time series. This can lead to spurious correlation. 277 

Therefore we deseasonalized both signals to eliminate this strong signal (Schaefli & Gupta, 2007) 278 

and subsequently compare the deviations from the seasonal signals of both NDII and Su. Firstly, 279 

the NDII and Su were normalized between 0 and 1. Then seasonal patterns of NDII and Su were 280 

determined as the average seasonal signals, after which they were subtracted from the normalised 281 

data.  282 

 283 

4. Results 284 

4.1 Spatial and seasonal variation of NDII values over the UPRB  285 
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To demonstrate the spatial and seasonal behaviour of the NDII over the UPRB, the 8-day NDII 286 

values were aggregated to monthly values for 2001 to 2013. Figure 3 shows examples of monthly 287 

average NDII values for the UPRB in 2004, which is the year with the lowest annual average NDII 288 

value. The figure shows that NDII values are higher during the wet season (May to October) and 289 

lower during the dry season (from November to April). The lower amounts of rainfall between 290 

November and April cause a continuous reduction of NDII values. On the other hand, higher 291 

amounts of rainfall between May and October result in increasing NDII values. However, NDII 292 

values appear to vary little between July and October.  293 

The average NDII values during the wet season, the dry season, and the whole year within the 13 294 

years are presented in Table 4. The table also shows the order of the NDII values from the highest 295 

(number 1) to the lowest (number 13). It can be seen that the annual average NDII value for the 296 

whole basin is approximately 0.165, while the average values during the wet and dry season are 297 

about 0.211 and 0.118, respectively. The highest mean annual value (NDII = 0.177) occurred in 298 

2002-2003 and the lowest (NDII = 0.149) in 2004-2005. The highest (NDII = 0.149) and lowest 299 

(NDII = 0.088) dry season values were reported in 2002-2003 and 2004-2005, respectively. On the 300 

other hand, the highest (NDII = 0.224) and lowest (NDII = 0.197) wet season values were 301 

observed in 2006-2007 and 2010-2011, respectively. It can be concluded that a dry season with 302 

relatively low moisture content and a wet season with high moisture content as specified by NDII 303 

values do not normally occur in the same year. 304 

The 8-day NDII values were also computed for each of the 14 tributaries within the UPRB from 305 

2001 to 2013. Table 5 shows the monthly averaged NDII values between 2001 and 2013 and the 306 

ranking order for each of the 14 tributaries. The results suggest that the Nam Mae Taeng, Nam 307 

Mae Rim, and Upper Mae Chaem, which have higher mean annual NDII values, have a higher 308 

moisture content than other tributaries; while Nam Mae Haad, Nam Mae Li, and Ping River 309 

Sections 2 are 3, with lower mean annual NDII values, have lower moisture content than other 310 

tributaries. Monthly average NDII values for these 6 tributaries are presented in Fig. 4. It can be 311 

seen that during the dry season, NDII values of the 3 tributaries with the lowest values are a lot 312 

lower than those of the 3 with the highest NDII values. However, NDII values for these 2 groups 313 

are not significantly different during the wet season. The figure also reveals that NDII values tend 314 

to continuously increase from relatively low values in March to higher values in June. The values 315 

slightly fluctuate during the wet season before sharply falling once again when the rainy season 316 

ends, and reach their minimum values in February. 317 

4.2 FLEX Model results 318 



11 
 

Calibration of FLEX was done on the 8 sub-catchments that have runoff stations. The results are 319 

summarized in Table 6. The performance of the model was quite good as demonstrated in Table 7. 320 

In Fig. 5, the flow duration curves of runoff stations P.20 and P.21 are presented as examples of 321 

model performance. Table 7 shows the average Kling-Gupta efficiencies values for IKGE, IKGL and 322 

IKGF, which indicate the performance of high flows, low flows, and flow duration curve for the 8 323 

runoff stations. The results for the flow duration curve appear to be better than those of the high 324 

flows and especially the low flows. However, the overall results are acceptable and can be used for 325 

further analysis in this study. 326 

4.3 Relation between NDII and root zone moisture storage (Su) 327 

The 8-day NDII values were compared to the 8 day average root zone moisture storage values of 328 

the FLEX model. It appears that during moisture stress periods, the relationship can be well 329 

described by an exponential function, for each of the 8 sub-catchments. Table 8 presents the 330 

coefficients of the exponential relationships as well as the coefficients of determination (R2) for 331 

annual, wet season, and dry season values for each sub-catchment. The coefficients are merely 332 

meant for illustration. They should not be seen as functional relationships yet. The corresponding 333 

scatter plots are shown in Fig. 6. It can be clearly seen that the correlation is much better in the dry 334 

season than in the wet season. During the wet season, there may also be short period of moisture 335 

stress, where the exponential pattern can be recognized, but no clear relation is found when the 336 

vegetation does not experience any moisture stress. 337 

Examples of deseasonalized and scaled time series of NDII and root zone storage (Su) values for 338 

the sub-catchments P.20 and P.21 are presented in Figure 7. The scaled time series of the NDII 339 

and Su values were calculated by dividing their value by the differences between their maximum 340 

and minimum values: NDII/(NDIImax-NDIImin) and Su/( Su,max- Sumin), respectively, while the 341 

maximum and the minimum are the values within the overall considered time series. Figure 7 342 

shows that the scaled NDII and Su values are highly correlated during the dry season, but less so 343 

during the wet season. These results confirm the potential of NDII to effectively reflect the 344 

vegetation water content, which, through the suction pressure exercised by the moisture deficit, 345 

relates to the moisture content in the root zone. During dry periods, or during dry spells in the 346 

rainy season, as soon as the leaves of the vegetation experience suction pressure, we see high 347 

values of the coefficient of determination. 348 

If the soil moisture in the root zone is above a certain threshold value, then the leaves are not 349 

under stress. In the UPRB this situation occurs typically during the middle and late rainy season. 350 

The NDII then does not vary significantly while the root zone moisture storage may still vary, 351 
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albeit above the threshold where moisture stress occurs. This causes a lower correlation between 352 

NDII and root zone storage during wet periods. Interestingly, even during the wet season dry 353 

spells can occur. We can see in Fig. 6, that during such a dry spell, the NDII and Su again follow 354 

an exponential relationship. 355 

 356 

We can see that the Su, derived merely from precipitation and energy, is strongly correlated to the 357 

vegetation water observed by NDII during condition of moisture stress, without time lag (Figure 6, 358 

S1, S2). Introduction of a time lag resulted in reduction of the correlation coefficients 359 

(Supplementary material). This confirms the direct response of vegetation to soil moisture stress, 360 

which confirms that the NDII can be used as a proxy for root zone moisture content. 361 

The deseasonalized results of dry periods in sub-catchments P.20 and P.21 are shown in Figure 7. 362 

We found these variations of deseasonalized NDII and Su to be similar in these two sub-363 

catchments, with the coefficients of determination (R2) as 0.32 and 0.18 respectively in P.20 and 364 

P.21. More important than the coefficient of determination is the similarity between the 365 

deseasonalized patterns. For P.20, the year 2001 is almost identical, whereas the years 2004 and 366 

2006 are dissimilar. In general the patterns are well reproduced, especially if we take into account 367 

the implicit uncertainties of the lumped hydrological model, the uncertainties in the 8-day derived 368 

NDII, and the data of precipitation and potential evaporation used in the model. The results of 369 

other tributaries can be found in the supplementary materials.  370 

 371 

5. Discussion 372 

5.1 Is vegetation a trouble-maker or a good indicator for the moisture content of the root 373 

zone? 374 

In bare soil, remote sensors can only detect soil moisture until a few centimetres below the surface 375 

(~5cm) (Entekhabi et al., 2010). Unfortunately, for hydrological modelling, the moisture state of 376 

the bare surface is of only limited interest. What is of key interest for understanding the dynamics 377 

of hydrological systems is the variability of the moisture content of the root zone, in which the 378 

main dynamics take place. This variability determines the rainfall-runoff behaviour, the 379 

transpiration of vegetation, and the partitioning between different hydrological fluxes. However, 380 

observing the soil moisture content in the root zone is still a major challenge (Entekhabi et al., 381 

2010). 382 
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What is normally done, is to link the moisture content of the surface layer to the total amount of 383 

moisture in the root zone. Knowing the surface soil moisture, the root zone soil moisture can be 384 

estimated by an exponential decay filter (Albergel et al., 2008; Ford et al., 2014) or by models 385 

(Reichle, 2008) However, the surface soil moisture is only weakly related with root zone soil 386 

moisture (Mahmood and Hubbard, 2007); it only works if there is connectivity between the 387 

surface and deeper layers and when a certain state of equilibrium has been reached (when the short 388 

term dynamics after a rainfall event has levelled out). It is also observed that the presence of 389 

vegetation prevents the observation of soil moisture and further deteriorates the results (Jackson 390 

and Schmugge, 1991). Avoiding the influence of vegetation in observing soil moisture (e.g. by 391 

SMOS or SMAP) is seen as a challenge by some in the remote sensing community (Kerr et al., 392 

2001; Entekhabi et al., 2010). Several algorithms have been proposed to filter out the vegetation 393 

impact (Jackson and Schmugge, 1991), also based on NDII (e.g. Yilmaz et al., 2008). But is 394 

vegetation a trouble-maker, or does it offer an excellent opportunity to directly gauge the state of 395 

the soil moisture? 396 

In this study, we found that vegetation rather than a problem could become key to sensing the 397 

storage dynamics of moisture in the root zone. The water content in the leaves is connected to the 398 

suction pressure in the root zone (Rutter and Sands, 1958). If the suction pressure is above a 399 

certain threshold, then this connection is direct and very sensitive. We found a highly significant 400 

correlation between NDII and Su, particularly during periods of moisture stress. During dry 401 

periods, or during dry spells in the rainy season, as soon as the leaves of the vegetation experience 402 

suction pressure, we see high values of the coefficient of determination. Observing the moisture 403 

content of vegetation provides us with directly information on the soil moisture state in the root 404 

zone. We also found that there is almost no lag time between Su and NDII. This illustrates the fast 405 

response of vegetation to soil moisture variation, which makes the NDII a sensitive and direct 406 

indicator for root zone moisture content. In fact, the canopy acts as a kind of manometer for the 407 

root zone moisture content. 408 

5.2 The validity of the hypothesis 409 

In natural catchments, it is not possible to prove a hypothesis by using a calibrated model. There 410 

are too many factors contributing to the uncertainty of results: the processes are too heterogeneous, 411 

the observations are not without error, the climatic drivers are too uncertain and heterogeneous and 412 

finally there is substantial model uncertainty, both in the semi-distributed hydrological model and 413 

in the remote sensing model used to determine the 8-day NDII product. In this case we have 414 

selected a lumped conceptual model, which is good at mimicking the main runoff processes, but 415 
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which lacks the detail of distributed models. Distributed models, however, require detailed and 416 

spatially explicit information (which is missing) and are generally over-parameterized, turning 417 

them highly unreliable in data-scarce environments. On top of this there is considerable doubt if 418 

they provide the right answers for the right reasons. 419 

This paper is not a modelling study, but a test of the hypothesis whether the observed NDII 420 

correlates with the modelled root zone storage. We have seen in Figure 6 that the correlation is 421 

strong during periods of moisture stress, but that when the root zone is near saturation the 422 

correlation is weak. But we also saw that even in the wet season, during short dry spells, the 423 

correlation is strong. Even when the seasonality is removed, the patterns between NDII and Su in 424 

Figure 7 are similar, although there are two dry seasons when this is less the case (in 2004 and 425 

2006). So given the implicit uncertainty of the hydrological model, the uncertainty of the 426 

meteorological drivers, as well as the river discharges to which the models have been calibrated, 427 

and the uncertainty associated with the relationship between NDII and EWT, the good 428 

correspondence between the NDII and the root zone storage of the model during periods of 429 

moisture stress support the potential value of the NDII as a proxy for root zone storage in a 430 

conceptual model. It is in our view even likely that the differences between the signals of the NDII 431 

and the Su are rather related to model uncertainty, the uncertainty of the climatic drivers, the 432 

uncertainty in the relationship between NDII and EWT, and the problems of determining accurate 433 

NDII estimates over 8-days periods, than due to a weak correlation between the root zone storage 434 

and the NDII. 435 

5.3 Implication in hydrological modelling 436 

Simulation of root zone soil moisture is crucial in hydrological modelling (Houser et al., 1998; 437 

Western and Blöschl, 1999). Using estimates of soil moisture states could increase model 438 

performance and realism, but moreover, it would be powerful information to facilitate prediction 439 

in ungauged basins (Hrachowitz et al., 2013). However, until now, it has not been practical (e.g. 440 

Parajka et al., 2006; Entekhabi et al., 2010). Assimilating soil moisture in hydrological models, 441 

either from top-soil observation by remote sensing, or from the deeper soil column by models 442 

(Reichle, 2008), is still a challenge. Several studies showed how difficult it is to assimilate soil 443 

moisture data to improve daily runoff simulation (Parajka et al., 2006; Matgen et al., 2012).  444 

There are several reasons why we have not compared our results with soil moisture observations in 445 

the field. Firstly, observations of soil moisture are not widely available. Moreover, it is not 446 

straightforward to link classical soil moisture observations to the actual moisture available in the 447 

root zone. Most observations are conducted at fixed depths and at certain locations within a highly 448 
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heterogeneous environment. Without knowing the details of the root distribution, both horizontally 449 

and vertically, it is hard, if not impossible, to estimate the water volume accessible to plants 450 

through their root systems. We should realize that it is difficult to observe root zone soil moisture 451 

even at a local scale. But measuring root zone soil moisture at a catchment scale is even more 452 

challenging. State-of-the-art remote sensing techniques can observe spatially distributed soil 453 

moisture, but what they can see is only the near-surface layers if not blocked by vegetation. The 454 

top layer moisture may or not be correlated with the root zone storage, amongst others depending 455 

on the vegetation type, but it is definitely not the same.  456 

By observing the moisture content of the leaves, the NDII represents the soil moisture content of 457 

the entire root zone, which is precisely the information that hydrological models require as this is 458 

the component that controls the occurrence and magnitude of storage deficits and thereby the 459 

moisture dynamics of a system. This study clearly shows the temporal correlation between Su and 460 

NDII. From the relationship between NDII and Su, we can directly derive a proxy for the soil 461 

moisture state at the actual scale of interest, which can potentially be assimilated in hydrological 462 

models. Being such a key state variable, the NDII-derived Su could become a potentially powerful 463 

and otherwise unavailable constraint for the soil moisture component of hydrological models. This 464 

would mean a breakthrough in hydrological modelling as it would allow a robust parameterization 465 

of water partitioning into evaporative fluxes and drainage even in data scarce environments. Given 466 

the implicit uncertainties in hydrological modelling, this new and readily available proxy could 467 

potentially enhance our implicitly uncertain modelling practice. More importantly it would open 468 

completely new venues for modelling ungauged parts of the world and could become extremely 469 

useful for discharge prediction in ungauged basins (Hrachowitz et al., 2013). 470 

We should, of course, be aware of regional limitations. The proxy only appears to work for periods 471 

of moisture stress. This study considered a tropical seasonal evergreen ecosystem, where periods 472 

of moisture stress regularly occur. In ecosystems which shed their leaves, or go dormant, other 473 

conditions may apply. We need further investigations into the usefulness of this approach in 474 

catchments with different climates. In addition, the phenology of the ecosystem is of importance, 475 

which should be taken into consideration in follow-up research. Finally, a comparison with 476 

distributed or semi-distributed models would be a further test of the value of the NDII as proxy for 477 

the root zone moisture content. 478 

 479 

6. Conclusions 480 
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The NDII was used to investigate drought for the UPRB from 2001 to 2013. Monthly average 481 

NDII values appear to be spatially distributed over the UPRB, in agreement with seasonal 482 

variability and landscape characteristics. NDII values appear to be lower during the dry season and 483 

higher during the wet season as a result of seasonal differences between precipitation and 484 

evaporation. The NDII appears to correlate well with the moisture content in the root zone, 485 

offering a potential proxy variable for calibration of hydrological models in ungauged basins. 486 

To illustrate the importance of NDII as a proxy for root zone moisture content in hydrological 487 

models, we applied the FLEX model to assess the root zone soil moisture storage (Su) of 8 sub-488 

catchments of the UPRB controlled by 8 runoff stations. The results show that the 8-day average 489 

NDII values over the study sub-basin correlate well with the 8-day average Su for all sub-490 

catchments during dry periods (average R2 equals 0.87), and less so during wet spells (average R2 491 

equals 0.61). The NDII appears to be a promising proxy for root zone moisture content during dry 492 

spells when leaves are under moisture stress. The natural interaction between rainfall, soil 493 

moisture, and leave water content can be visualised by the NDII, making it an important indicator 494 

both for hydrological modelling and drought assessment. 495 

The potential of using the NDII to constrain model parameters (such as the power of the beta 496 

function β, recharge splitter D and Ce in the transpiration function) in ungauged basins is an 497 

important new venue, which could potentially facilitate the major question of prediction in 498 

ungauged basins.  499 
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Table 1. Catchment characteristics and data period for selected 8 sub-basins in the UPRB. 658 

Sub-basin 

Mae Taeng at Ban 

Mae Taeng 

(P.4A) 

Nam Mae Chaem at 

Kaeng Ob Luang 

(P.14) 

Ping River at 

Chiang Dao 

(P.20) 

Nam Mae Rim at 

Ban Rim Tai 

(P.21) 

Nam Mae Klang at 

Pracha Uthit Bridge 

(P.24A) 

Nam Mae Khan at 

Ban Klang 

(P.71) 

Nam Mae Li at Ban 

Mae E Hai 

(P.76) 

Nam Mae Tha at Ban 

Sop Mae Sapuad 

(P.77) 

Area (km2) 1902 3853 1355 515 460 1771 1541 547 

Altitude range (m) 1020 991 790 731 888 828 618 641 

Average channel slope (%) 0.78 0.81 0.80 0.72 0.98 0.69 0.41 0.63 

Average forest and agricultural 

areas (%) 
81.9, 16.5 91.8, 7.4 80.9, 12.8 86.1, 11.6 79.7, 14.2 86.1, 10.1 69.7, 20.1 80.4, 12.7 

Average rainfall depth 

(wet season/ dry season) (mm) 

953 (88%) 

130 (12%) 

883 (92%) 

75 (8%) 

1076 (88%) 

150 (12%) 

1019 (90%) 

115 (10%) 

860 (88%) 

121(12%) 

1090 (89%) 

132 (11%) 

1092 (91%) 

106 (9%) 

757 (88%) 

88 (10%) 

Number of years data is 

coincident with NDII 
11 7 12 11 12 9 12 12 

Data period 1995-2011 1995-2007 1995-2012 1995-2011 1995-2012 1996-2009 1996-2012 1996-2012 
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Table 2. Water balance and constitutive equations used in FLEXL. 660 

Reservoirs Water balance equations Equation Constitutive equations Equation 
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Table 3. Parameter ranges of the FLEX Model. 662 

Parameter Range Parameters Range 

Si,max (mm) (0.1, 6) Kff (d) (1, 9) 

Su,max (mm) (10, 1000) TlagF (d) (0, 5) 

β (-) (0, 2) TlagS (d) (0, 5) 

Ce (-) (0.1, 0.9) Kf (d) (1, 40) 

D (-) (0, 1) Ks (d) (10, 500) 

Sf,max (mm) (10, 200)   
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Table 4. Average NDII values during the wet season, the dry season, and the whole year from 664 

2001 to 2013, and their order of moisture content (Range from 1 to 13. Less value indicates less 665 

NDII) for the entire Upper Ping River Basin. 666 

Year!

Wet season !

(May-October)!

Dry season !

(November-April)! Annual!

2001-2002! 0.223 (2)! 0.119 (7)! 0.171 (4)!

2002-2003! 0.205 (9)! 0.149 (1)! 0.177 (1)!

2003-2004! 0.218 (5)! 0.091 (12)! 0.155 (12)!

2004-2005! 0.210 (8)! 0.088 (13)! 0.149 (13)!

2005-2006! 0.200 (11)! 0.128 (3)! 0.164 (7)!

2006-2007! 0.224 (1)! 0.111 (10)! 0.168 (5)!

2007-2008! 0.222 (3)! 0.130 (2)! 0.176 (2)!

2008-2009! 0.221 (4)! 0.123 (5)! 0.172 (3)!

2009-2010! 0.213 (7)! 0.101 (11)! 0.157 (11)!

2010-2011! 0.197 (13)! 0.128 (4)! 0.163 (8)!

2011-2012! 0.216 (6)! 0.116 (9)! 0.166 (6)!

2012-2013! 0.201 (10)! 0.118 (8)! 0.159 (10)!

2013-2014! 0.199 (12)! 0.123 (6)! 0.161 (9)!

Average! 0.211!  0.118!  0.165!

Maximum! 0.224!  0.149!  0.177!

Minimum! 0.197!  0.088!  0.149!
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Table 5. Monthly average NDII values between 2001 and 2013 and the order of basin moisture content for each of 14 sub-basins within the UPRB. 668 

Sub-basin! Jan! Feb! Mar! Apr! May! Jun! Jul! Aug! Sep! Oct! Nov! Dec! Average!

Ping River Section 1! 0.14  (7.5)! 0.06  (7.4)! 0.02  (8.8)! 0.07  (8.9)! 0.17  (8.4)! 0.21  (6.2)! 0.22  (4.5)! 0.22  (6.1)! 0.24  (7.5)! 0.23  (8.3)! 0.22  (7.8)! 0.18  (7.2)! 0.16 (8)!

Nam Mae Ngad! 0.17  (5.2)! 0.11  (5.9)! 0.07  (6.2)! 0.10  (6.3)! 0.18  (6.9)! 0.21  (7.1)! 0.21  (7.5)! 0.22  (8.0)! 0.23  (9.2)! 0.23  (7.9)! 0.23  (6.4)! 0.20 (5.7)! 0.18 (6)!

Nam Mae Taeng! 0.21  (1.3)! 0.16  (1.0)! 0.13  (1.2)! 0.14  (2.1)! 0.19  (3.9)! 0.21  (6.1)! 0.22  (6.0)! 0.23  (4.5)! 0.25  (3.1)! 0.25  (2.6)! 0.26  (1.2)! 0.24 (1.7)! 0.21  (1)!

Ping River Section 2! 0.07  (11.5)! 0.02  (9.8)! 0.01  (9.2)! 0.04  (11.6)! 0.13  (13.1)! 0.18  (13.0)! 0.18  (13.5)! 0.19  (13.3)! 0.21  (13.6)! 0.21  (12.7)! 0.17  (13.4)! 0.12 (13.5)! 0.13  (12)!

Nam Mae Rim! 0.17  (5.3)! 0.13  (4.3)! 0.10 (3.9)! 0.13  (3.3)! 0.20  (2.6)! 0.22 (3.7)! 0.22  (4.0)! 0.24  (2.5)! 0.26  (1.3)! 0.26  (1.2)! 0.24  (3.7)! 0.20 (5.6)! 0.20  (2)!

Nam Mae Kuang! 0.09  (9.4)! 0.03  (9.5)! 0.02  (9.3)! 0.05  (10.1)! 0.15  (10.0)! 0.20  (8.1)! 0.21  (8.1)! 0.22  (8.2)! 0.24  (7.0)! 0.23  (7.5)! 0.20  (10.4)! 0.14  (10.7)! 0.15  (9)!

Nam Mae Ngan! 0.18  (4.0)! 0.13  (4.4)! 0.10  (4.9)! 0.13  (4.1)! 0.19  (3.9)! 0.21  (5.3)! 0.22  (5.5)! 0.23  (5.2)! 0.25  (3.9)! 0.24  (4.5)! 0.24 (4.5)! 0.22 (4.0)! 0.19  (5)!

Nam Mae Li! 0.05  (12.5)! -0.04  (12.5)! -0.04  (12.7)! 0.02  (12.1)! 0.14  (11.9)! 0.19 (11.8)! 0.20  (9.7)! 0.23  (8.3)! 0.23  (9.9)! 0.21  (13.0)! 0.18  (13.2)! 0.13 (12.5)! 0.12 (13)!

Nam Mae Klang! 0.19  (3.3)! 0.13 (3.5)! 0.12 (2.8)! 0.14  (2.3)! 0.20  (2.9)! 0.22 (4.8)! 0.22  (7.2)! 0.23  (7.6)! 0.23  (8.6)! 0.24 (7.2)! 0.24 (4.5)! 0.22 (3.3)! 0.20 (4)!

Ping River Section 3! 0.06  (11.7)! -0.03  (12.5)! -0.04  (12.3)! 0.03  (11.2)! 0.15  (9.3)! 0.21  (7.2)! 0.21  (8.7)! 0.21  (9.9)! 0.22 (11.4)! 0.21  (11.9)! 0.19 (11.2)! 0.15 (10.3)! 0.13  (11)!

Upper Nam Mae Chaem! 0.20  (1.9)! 0.15  (2.0)! 0.12 (2.3)! 0.13  (4.2)! 0.18  (6.7)! 0.20  (9.5)! 0.21  (9.2)! 0.21  (9.1)! 0.24 (6.2)! 0.25  (3.9)! 0.26  (2.1)! 0.24 (1.6)! 0.20  (3)!

Lower Nam Mae Chaem! 0.09  (9.8)! 0.006  (10.7)! -0.007  (10.8)! 0.05  (10.2)! 0.15  (10.2)! 0.20 (10.2)! 0.20  (9.9)! 0.21  (8.9)! 0.23  (9.5)! 0.23  (8.3)! 0.21  (8.9)! 0.16 (9.2)! 0.14  (10)!

Nam Mae Haad! 0.03  (14.0)! -0.07  (14.0)! -0.06  (13.8)! 0.003  (12.9)! 0.15  (10.0)! 0.21 (5.8)! 0.22  (6.4)! 0.23  (6.2)! 0.24  (5.2)! 0.22  (9.7)! 0.19  (11.2)! 0.12 (12.4)! 0.12  (14)!

Nam Mae Tuen! 0.13  (7.6)! 0.05  (7.7)! 0.05  (7.0)! 0.10  (5.9)! 0.19 (5.2)! 0.21 (6.2)! 0.22  (4.9)! 0.222  (7.2)! 0.23  (8.7)! 0.24  (6.2)! 0.23  (6.5)! 0.20 (6.5)! 0.17  (7)!

Average! 0.13! 0.06! 0.04! 0.08! 0.17! 0.20! 0.21! 0.22! 0.24! 0.23! 0.22! 0.18! 0.16!

Maximum! 0.21! 0.16! 0.13! 0.14! 0.20! 0.22! 0.22! 0.24! 0.26! 0.26! 0.26! 0.24! 0.21!

Minimum! 0.03! -0.07! -0.06! 0.003! 0.13! 0.18! 0.18! 0.19! 0.21! 0.21! 0.17! 0.12! 0.12!
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Table 6. FLEX parameters calibrated at 8 runoff stations located in the UPRB. 671 

Runoff station!
Si,max!

(mm)!

Su,max!

(mm)!

Ce!

(-)!

β!

(-)!

D!

(-)!

Kf!

(days)!

Ks!

(days)!

TlagF!

(days)!

TlagS!

(days)!

Sf,max!

(mm)!

Kff!

(days)!

P.4A! 2.0! 463! 0.30! 0.66! 0.77! 2.9! 42! 1.1! 49! 93! 9.1!

P.14! 2.3! 269! 0.55! 1.16! 0.65! 4.0! 63! 1.5! 39! 155! 7.6!

P.21! 2.3! 388! 0.31! 0.90! 0.64! 2.1! 66! 2.4! 48! 33! 2.5!

P.20! 2.0! 324! 0.47! 0.50! 0.79! 7.7! 103! 1.0! 25! 69! 1.7!

P.24A! 3.2! 209! 0.77! 1.53! 0.89! 3.2! 267! 1.5! 44! 24! 4.2!

P.76! 2.3! 486! 0.62! 0.32! 0.89! 2.4! 191! 2.7! 3! 130! 7.4!

P.77! 4.5! 344! 0.48! 0.27! 0.75! 1.5! 65! 1.2! 30! 164! 5.6!

P.71! 4.3! 532! 0.34! 0.46! 0.90! 3.5! 80! 1.8! 15! 179! 6.5!
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Table 7. FLEX model performance at 8 runoff stations. 673 

Station� Data period! IKGE! IKGL! IKGF!

P.4A! 1995-2009! 0.822! 0.667! 0.963!

P.14! 1995-2007! 0.796! 0.442! 0.966!

P.21! 1995-2009! 0.814! 0.718! 0.985!

P.20! 1995-2011! 0.792! 0.685! 0.964!

P.24A! 1995-2011! 0.623! 0.598! 0.945!

P76! 2000-2011! 0.539! 0.665! 0.916!

P.77! 1999-2011! 0.775! 0.612! 0.970!

P.71! 1996-2009! 0.823! 0.714! 0.975!

Average! � 0.748! 0.638! 0.961!
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Table 8. Exponential relationships between the average NDII values and simulated root zone 675 

moisture storage (Su) in the 8 sub-basins controlled by the 8 runoff stations. 676 

Runoff 

station 

Annual Relationship Wet Season Relationship Dry Season Relationship 

a b R2 a b R2 a b R2 

P.4A 11.2 12.4 0.66 11.1 12.9 0.53 12.6 11.2 0.90 

P.14 21.9 9.8 0.81 19.2 10.8 0.71 24.6 8.5 0.92 

P.20 52.3 7.4 0.79 36.2 9.1 0.72 59.7 6.7 0.91 

P.21 30.8 9.0 0.68 27.8 9.3 0.53 30.6 9.22 0.86 

P.24A 22.1 8.5 0.60 24.2 8.3 0.41 22.4 8.1 0.81 

P.71 2.1 19.9 0.77 1.9 20.5 0.65 2.3 19.0 0.87 

P.76 10.1 13.6 0.85 8.1 14.4 0.74 10.8 14.6 0.87 

P.77 35.4 8.0 0.70 20.7 10.2 0.61 40.6 7.7 0.83 

Average - - 0.73 - - 0.61 - - 0.87 

Note: !!= !!!"#$$ 677 
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 679 
 680 

Figure 1. The Upper Ping River Basin (UPRB) and the locations of the rain-gauge and runoff 681 

stations. The numbers indicate the 14 sub-basins of the UPRB. 682 
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 683 
 684 

Figure 2. Model structure of the FLEX. 685 

 686 
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Figure 3. Monthly average NDII values for the UPRB in 2004. The�green color indicates an NDII between 0.15 and 0.30, yellow 

between 0 and 0.15, orange between -0.15 and 0 and red an NDII<-0.15) representing relatively high-, medium-, low-, and very 

low- root zone moisture content. 
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Figure 4. Monthly average NDII values for 6 sub-basins compared to the basin average in the 

UPRB. Note that three wettest and three driest basins are presented in this graph.  
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(a) Flow duration curves 

  

  

(b) Hydrograph in 1995 

  

  

(c) Hydrograph in 1997 

 

Figure 5. Examples of flow duration curves and simulated hydrographs using FLEX at runoff 

stations P.20 and P.21. 
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Figure 6. Scatter plots between the average NDII and the average root zone moisture storage (Su) for 8 sub-basins controlled by runoff stations. 

Regression lines are added merely to illustrate the degree of correlation.  
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Figure 7. Scaled time series, seasonality and de-seasonalized (dry seasons) time series of the 8-days-averaged NDII values compared to the 8-days-

averaged simulated root zone moisture storage (Su) in Nam Mae Rim sub-basin at P.20 (Chiang Dao) and P.21 (Ban Rim Tai) runoff stations. The 

coefficients of determination (R2) of the de-seasonalized NDII and Su are 0.32 and 0.18 respectively for P.20 and P.21. For the results of all the 8 

sub-basins, please refer to the supplementary material.  


