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Abstract  9 

With remote sensing we can readily observe the Earth's surface, but direct observation of the sub-10 

surface remains a challenge. In hydrology, but also in related disciplines such as agricultural and 11 

atmospheric sciences, knowledge on the dynamics of soil moisture in the root zone of vegetation is 12 

essential, as this part of the vadose zone is the core component controlling the partitioning of water 13 

into evaporative fluxes, drainage, recharge and runoff. In this paper we tested a novel approach to 14 

estimate the catchment-scale soil moisture content in the root zone of vegetation, by using the 15 

remotely sensed Normalised Difference Infrared Index (NDII) in the Upper Ping River Basin 16 

(UPRB) in Northern Thailand. The NDII is widely used to monitor the Equivalent Water 17 

Thickness (EWT) of leaves and canopy. Satellite data from the Moderate Resolution Imaging 18 

Spectro-radiometer (MODIS) were used to determine the NDII over an 8-day period, covering the 19 

study area from 2001 to 2013. The results show that NDII values decrease sharply at the end of the 20 

wet season in October and reach lowest values near the end of the dry season in March. The values 21 

then increase abruptly after rains have started, but vary in an insignificant manner from the middle 22 

to the late rainy season. This paper hypothesizes that the NDII can be used as a proxy for moisture 23 

deficit and hence for the amount of moisture stored in the root zone of vegetation, which is a 24 

crucial component of hydrological models. During periods of moisture stress, the 8-day average 25 

NDII values were found to correlate well with the 8-day average soil moisture content (Su) 26 

simulated by the lumped conceptual hydrological rainfall-runoff model FLEX for 8 sub-27 

catchments in the Upper Ping basin. Even the deseasonalized Su and NDII (after subtracting the 28 

dominant seasonal signal) showed good correlation during periods of moisture stress. The results 29 

clearly show the usefulness of the NDII as a proxy for catchment-scale root zone moisture deficit 30 

and therefore as a potentially valuable constraint for the internal dynamics of hydrological models. 31 

In dry periods, when plants are exposed to water stress, the EWT (reflecting leaf-water deficit) 32 
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decreases steadily, as moisture stress in the leaves is connected to moisture deficits in the root 33 

zone. When subsequently the soil moisture is replenished as a result of rainfall, the EWT increases 34 

without delay. Once leaf-water is close to saturation - mostly during the heart of the wet season - 35 

leaf characteristics and NDII values are not well correlated. However, for both hydrological 36 

modelling and water management the stress periods are most important, which is why this product 37 

has the potential to becoming a highly efficient model constraint, particularly in ungauged basins.  38 

 39 

1. Introduction 40 

Estimating the moisture content of the soil from remote sensing is one of the major challenges in 41 

the field of hydrology (e.g. De Jeu et al., 2008; Entekhabi et al., 2010). Soil moisture is generally 42 

seen as the key hydrological state variable determining the partitioning of fluxes (into direct 43 

runoff, recharge and evaporation) (Liang et. al., 1994), the interaction with the atmosphere 44 

(Legates et. al., 2011), and the carbon cycle (Porporato et al., 2004). The root zone of ecosystems, 45 

being the dynamic part of the unsaturated zone, is the key part of the soil related to numerous sub-46 

surface processes (Shukla and Mintz, 1982). Several remote sensing products have been developed 47 

especially for monitoring soil moisture (e.g. SMOS, ERS and AMSR-E), but until now 48 

correlations between remote sensing products and observed soil moisture at different depths have 49 

been modest at best (Parajka et al., 2006; Ford et al., 1997). There are a few possible explanations. 50 

One is that it is not (yet) possible to look into the soil deep enough to observe soil moisture in the 51 

root zone of vegetation (Shi et al., 1997; Entekhabi et al., 2010), second is that soil moisture 52 

observations at certain depths are maybe not the right indicators for the amount of moisture stored 53 

in the root zone (Mahmood and Hubbard, 2007), which is rather determined by the vegetation 54 

dependent, spatially variable three-dimensional distribution and density of roots.  55 

These mainstream methods to derive soil moisture from remote sensing have concentrated on 56 

direct observation of soil moisture below the surface. The vegetation, through the Vegetation 57 

Water Content (VWC), perturbs this picture. As a result, previous studies have tried to determine 58 

the VWC from a linear relationship with the Equivalent Water Thickness (EWT) that is measured 59 

by the Normalised Difference Infrared Index (NDII) (e.g. Yilmaz et al., 2008). The NDII was 60 

developed by Hardisky et al. (1983) using ratios of different values of near infrared reflectance 61 

(NIR) and short wave infrared reflectance (SWIR), defined by: (ρNIR−ρSWIR)/(ρNIR+ρSWIR), similar 62 

to the NDVI, which is defined by discrete red and near infrared. Besides for determining the water 63 

content of vegetation, the NDII can be effectively used to detect plant water stress according to the 64 

property of shortwave infrared reflectance, which is negatively related to leaf water content due to 65 
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the large absorption by the leaf (e.g. Steele-Dunne et al., 2012; Friesen et al., 2012; Van Emmerik 66 

et al., 2015). Many studies have found relationships between the equivalent water thickness 67 

(EWT) and reflectance at the near-infrared (NIR) and shortwave infrared (SWIR) portion of the 68 

spectrum used for deriving NDII (Hardisky et al., 1983; Hunt and Rock, 1989; Gao, 1996; Ceccato 69 

et al., 2002; Fensholt and Sandholt, 2003). Yilmaz et al. (2008) found a significant linear 70 

relationship (R2 = 0.85) between equivalent water thickness (EWT) and NDII. Subsequently, they 71 

tried to determine a relationship between EWT and vegetation water content (VWC), in order to 72 

be able to correct direct moisture observations from space. However, these relationships appeared 73 

to be vegetation and crop-type dependent. 74 

Water is one of the determinant environmental variables for vegetation growth, especially in 75 

water-limited ecosystems during dry periods. From plant physiology point of view, water 76 

absorption from the root zone is driven by osmosis. Subsequently, water transport from the roots 77 

to the leaves is driven by water potential differences, caused by diffusion of water out of stomata, 78 

called transpiration. This physiological relationship supports the correlation between root zone soil 79 

moisture content, moisture tension in the leaves and the water content of plants.  80 

Hence, the root zone moisture deficit is connected to the water content of the canopy/leaves, 81 

because soil moisture suction pressure and moisture content in the leaves are directly connected 82 

(Rutter and Sands, 1958). The NDII was developed to monitor leave water content (Hardisky et 83 

al., 1983), so one would expect a direct relation between NDII and root zone moisture deficit. The 84 

deficit again is a direct function of the amount of moisture stored in the root zone. 85 

So if leaf water thickness and the suction pressure in the root zone are connected, then the NDII 86 

would directly reflect the moisture content of the root zone. It would only reflect the moisture 87 

content in the influence zone of roots and not beyond that. Hence the NDII could become a 88 

powerful indicator for monitoring root zone moisture content, providing an integrated, depth-89 

independent estimation of how much water is accessible to roots, available for vegetation. In other 90 

words, the NDII would allow us to see vegetation as a sort of natural manometer, providing us 91 

with information on how much water is available in the sub-surface for use by vegetation. It would 92 

be an integrated indicator of soil moisture in the root zone, available directly at the scale of 93 

interest.      94 

Thus, the hypothesis is that we can derive the moisture content in the root zone from the observed 95 

moisture state of the vegetation by means of the NDII.  96 

In this paper, we tested whether there exists a direct and functional relationship between a remote 97 

sensing product (the NDII) and the amount of moisture stored in the root zone, as simulated by a 98 



4 
 

conceptual hydrological model, in which the root zone moisture content is a key state variable in 99 

the short and long term dynamics of the rainfall-runoff signal.  100 

The analysis was done using data from the Upper Ping River Basin (UPRB), a tropical seasonal 101 

evergreen catchment in northern Thailand. This catchment is adequate for the purpose because 102 

there is clear seasonal dynamics, there is a variety of well-gauged sub-catchments with different 103 

aridity characteristics, while the phenology is less variable, being an evergreen ecosystem. 104 

 105 

2. Study site and data  106 

2.1 Study site 107 

The Upper Ping River Basin (UPRB) is situated between latitude 17°14′30″ to 19°47′52″ N, and 108 

longitude 98°4′30″to 99°22′30″ E in Northern Thailand and can be separated into 14 sub-109 

basins (Fig. 1) (Mapiam, et al., 2014). It has an area of approximately 25,370 km2 in the provinces 110 

of Chiang Mai and Lam Phun. The basin landform ranges from an undulating to a rolling terrain 111 

with steep hills at elevations of 1,500 to 2,000 m, and valleys of 330 to 500 m (Mapiam and 112 

Sriwongsitanon, 2009; Sriwongsitanon, 2010). The Ping River originates in Chiang Dao district, 113 

north of Chiang Mai, and flows downstream to the south to become the inflow for the Bhumiphol 114 

dam - a large dam with an active storage capacity of about 9.7 billion m3 (Sriwongsitanon, 2010). 115 

The climate of the region is controlled by tropical monsoons, with distinctive dry and wet seasons 116 

and free from snow and ice. The rainy season is influenced by the southwest monsoon and brings 117 

about mild to heavy rainfall between May and October. Annual average rainfall and runoff of the 118 

UPRB are approximately 1,170 and 270 mm/y, respectively. Avoiding the influence of other 119 

factors, these catchments are ideal cases to concentrate on the relationship between NDII and root 120 

zone moisture content. The land cover of the UPRB is dominated by forest (Sriwongsitanon and 121 

Taesombat, 2011).  122 

2.2 Data Collection 123 

2.2.1 Satellite data 124 

The satellite data used for calculating the NDII is the MODIS level 3 surface reflectance product 125 

(MOD09A1), which is available at 500 m resolution in an 8-day composite of the gridded level 2 126 

surface reflectance products. Each product pixel contains the best possible L2G observation during 127 

an 8-day period selected on the basis of high observation coverage, low view angle, absence of 128 
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clouds or cloud shadow, and aerosol loading. MOD09 (MODIS Surface Reflectance) is a seven-129 

band product, which provides an estimate of the surface spectral reflectance for each band as it 130 

would have been measured at ground level without atmospheric scattering or absorption. This 131 

product has been corrected for the effects of atmospheric gases and aerosols (Vermote et al., 132 

2011). The available MODIS data covering the UPRB from 2001 to 2013 were downloaded from 133 

ftp://e4ftl01.cr.usgs.gov/MOLT. The HDF-EOS Conversion Tool was applied to extract the 134 

desired bands (bands 2 (0.841-0.876 µm) and 6 (1.628-1.652 µm)) and re-projected into Universal 135 

Transverse Mercator (Zone 47N, WGS84) from the original ISIN mapping grid. 136 

2.2.2 Rainfall data 137 

Data from 65 non-automatic rain-gauge stations covering the period from 2001 to 2013 were used. 138 

42 stations are located within the UPRB while 23 stations are situated in its surroundings. These 139 

rain gauges are owned and operated by the Thai Meteorological Department and the Royal 140 

Irrigation Department. Quality control of the rainfall data was performed by comparing them to 141 

adjacent rainfall data. For each sub-basin, daily spatially averaged rainfall, by inverse distance 142 

squared, has been used as the forcing data of the hydrological model.  143 

2.2.3 Runoff data 144 

Daily runoff data from 1995 to 2011 at 8 stations located in the UPRB were adequate to be used 145 

for FLEXL calibration. These 8 stations are operated by the Royal Irrigation Department in 146 

Thailand. The locations of these 8 stations and the associated sub-basins are shown in Fig. 1. 147 

Runoff data at these stations are not affected by large reservoirs and have been checked for their 148 

reliability by comparing them with rainfall data covering their catchment areas at the same 149 

periods. Catchment characteristics and available data periods for model calibration of the selected 150 

8 sub-basins are summarized in Table 3. 151 

2.3 NDII drought index for the UPRB 152 

The NDII from 2001 to 2013, covering the UPRB, was computed using MODIS bands 2 and 6 153 

reflectance data. The 8-day surface reflectance data of near infrared (band 2: wavelength between 154 

0.841-0.876 µm) and short wave infrared (band 6: wavelength between 1.628-1.652 µm) are 155 

described by Eq. (1). The 8-day NDII values were averaged over each sub-basin to allow 156 

comparison to the 8-day average Su (root zone storage reservoir) values extracted from the FLEXL 157 

model results at each of the 8 runoff stations. 158 
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We did not use field observations of soil moisture. One could argue that field observations should 159 

be used to link NDII to moisture stress. However, besides not being available, it is doubtful if 160 

point observations at fixed depth would provide a correct measure for the moisture content in the 161 

root zone. It is more likely that vegetation distributes its roots and adjusts its root density to the 162 

specific local conditions and that the root density and distribution is not homogeneous in space and 163 

depth. 164 

 165 

 166 

3. Methods 167 

3.1 Estimating vegetation water content using near infrared and short wave infrared 168 

Estimates of vegetation water content (the amount of water in stems and leaves) are of interest to 169 

assess the vegetation water status in agriculture and forestry and have been used for drought 170 

assessment (Cheng et al., 2006; Gao, 1996; Gao and Goetz, 1995; Ustin et al., 2004; Peñuelas et 171 

al., 1993). Evidence from physically-based radiative transfer models and laboratory studies 172 

suggests that changes in water content in plant tissues have a large effect on the leaf reflectance in 173 

several regions of the 0.7-2.5 µm spectrum (Fensholt and Sandholt, 2003). Tucker (1980) 174 

suggested that the spectral interval between 1.55 and 1.75 µm (SWIR) is the most suitable region 175 

for remotely sensed leaf water content. It is well known that these wavelengths are negatively 176 

related to leaf water content due to a large absorption by leaf water (Tucker, 1980; Ceccato et al., 177 

2002). However, variations in leaf internal structure and leaf dry matter content also influence the 178 

SWIR reflectance. Therefore, SWIR reflectance values alone are not suitable for retrieving 179 

vegetation water content. To improve the accuracy in estimating the vegetation water content, a 180 

combination of SWIR and NIR (0.7 to 0.9 µm) reflectance information was utilized because NIR 181 

is only affected by leaf internal structure and leaf dry matter content but not by water content. A 182 

combination of SWIR and NIR reflectance information can remove the effect of leaf internal 183 

structure and leaf dry matter content and can improve the accuracy in retrieving the vegetation 184 

water content (Ceccato et al., 2001; Yilmaz et al., 2008; Fensholt and Sandholt, 2003). 185 

On the basis of this idea, Hardisky et al. (1983) derived the NDII: 186 

𝑁𝐷𝐼𝐼 =    !!.!"!!!.!"
!!.!"!!!.!"

         (1) 187 

where ρ0.85 and ρ1.65 are the reflectances at 0.85 µm and 1.65 µm wavelengths, respectively. NDII 188 

is a normalized index and the values theoretically vary between -1 and 1. A low NDII value and 189 
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especially below zero means that reflectance from ρ0.85 is lower than the reflectance from ρ1.65 190 

which indicates canopy water stress. 191 

3.2 The semi-distributed FLEX Model 192 

The relationship between spatially average NDII and root zone moisture content has been 193 

evaluated in eight sub-basins of the UPRB. Because the NDII is an indicator for water stress, the 194 

index is only expected to show a strong link with the moisture content of the root zone when there 195 

is a soil moisture deficit. Without water stress occurring within the leaves, particularly during wet 196 

periods, NDII would possibly not reflect variation in root zone soil moisture content (Korres et al., 197 

2015). 198 

The remotely sensed NDII values have been compared to the root zone storage as modelled by a 199 

semi-distributed conceptual model; semi-distributed meaning that for each sub-catchment a 200 

separate conceptual model has been used. The different sub-catchments demonstrate a variety of 201 

climatic properties that allow a more rigorous test than a fully lumped model could provide. In this 202 

way, a compromise has been found between the complexity and data requirements of a fully 203 

distributed model and the simplicity of a completely lumped model. One could argue that a fully 204 

distributed conceptual model would have been a better tool to assess the spatial and temporal 205 

pattern obtained by the NDII. This is correct, but this would have required the availability of more 206 

detailed spatially distributed forcing data (particularly rainfall), which was not available. 207 

Moreover, if a semi-distributed lumped model, potentially less accurate than a distributed model, 208 

provides a good correlation with NDVI, then this would be a tougher text than with a fully 209 

distributed model. 210 

FLEX (Fig. 2) is a conceptual hydrological model with an HBV-like model structure developed in 211 

a flexible modelling framework (Fenicia et al., 2011; Gao et al., 2014a; Gao et al., 2014b). The 212 

model structure comprises four conceptual reservoirs: the interception reservoir Si (mm), the root 213 

zone reservoir representing the moisture storage in the root zone Su (mm), the fast response 214 

reservoir Sf (mm), and the slow response reservoir Ss (mm). It also includes two lag functions 215 

representing the lag time from storm to peak flow (TlagF), and the lag time of recharge from the 216 

root zone to the groundwater (TlagS). Besides a water balance equation, each reservoir has process 217 

equations that connect the fluxes entering or leaving the storage compartment to the storage in the 218 

reservoirs (so-called constitutive functions). Table 1 shows 15 mathematical expressions used for 219 

modelling the FLEX. A total of 11 model parameters with their distribution values are shown in 220 

Table 2 and they have to be identified by model calibration. Forcing data include the elevation-221 

corrected daily average rainfall (Gao et al., 2014a), daily average, minimum and maximum air 222 



8 
 

temperature, and potential evaporation derived by Hargreaves equation (Hargreaves and Samani, 223 

1985). 224 

3.2.1 Interception reservoir 225 

The interception evaporation Ei (mm d-1) is calculated by potential evaporation E0 (mm d-1) and 226 

the storage of the interception reservoir Si (mm) (Eq. (3)). There is no effective rainfall Pe (mm d-1) 227 

as long as the Si is less than its storage capacity Si,max (mm) (Eq. (4)) (de Groen and Savenije, 228 

2006). 229 

3.2.2 Root zone reservoir 230 

The moisture content in the root zone is simulated by a 'reservoir' that partitions effective rainfall 231 

into infiltration, and runoff R (mm d-1), and determines the transpiration by vegetation. Therefore, 232 

it is the core of the FLEX model. For the partitioning between infiltration and runoff we applied 233 

the widely used beta function (Eq. (6)) of the Xinanjiang model (Zhao, 1992; Liang et al., 1992), 234 

developed based on the variable contribution area theory (Hewlett and Hibbert, 1967; Beven, 235 

1979), but which can equally reflect the spatial probability distribution of runoff thresholds. The 236 

moisture storage in the root zone 'reservoir' is represented by Su (mm). The beta function defines 237 

the runoff percentage Cr (-) for each time step as a function of the relative soil moisture content 238 

(Su/Su,max). In Eq. (6), Su,max (mm) is the root zone storage capacity, and β (-) is the shape parameter 239 

describing the spatial distribution of the root zone storage capacity over the catchment. In Eq. (7), 240 

the relative soil moisture and potential evaporation are used to determine the transpiration Et (mm 241 

d-1); Ce (-) indicates the fraction of Su,max above which the transpiration is no longer limited by soil 242 

moisture stress (Et=E0-Ei). 243 

3.2.3 Response routine 244 

In Eq. (8), Rf (mm d-1) indicates the flow into the fast response routine; D (-) is a splitter to 245 

separate recharge from preferential flow. In Eq. (9), Rs (mm d-1) indicates the flow into the 246 

groundwater reservoir. Equation (10) and (11) are used to describe the lag time between storm and 247 

peak flow. Rf (t-i+1) is the generated fast runoff from the root zone at time t-i+1; Tlag is a 248 

parameter which represents the time lag between storm and fast runoff generation; c(i) is the 249 

weight of the flow in i-1 days before; and Rfl(t) is the discharge into the fast response reservoir 250 

after convolution. 251 

The linear response reservoirs, representing linear relationships between storages and releases, are 252 

applied to conceptualize the discharge from the surface runoff reservoir, fast response reservoir 253 
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and slow response reservoir. In Eq. (12), Qff (mm d-1) is the surface runoff, with timescale Kff (d), 254 

activated when the storage of fast response reservoir exceeds the threshold Sf,max (mm). In Eq. (14) 255 

and (16), Qf (mm d-1) and Qs (mm d-1) represent the fast and slow runoff; Kf (d) and Ks (d) are the 256 

time scales of the fast and slow runoff, respectively. Qm (mm d-1) is the total amount of runoff 257 

simulated from the three individual components, including Qff, Qf, and Qs. 258 

3.2.4 Model calibration  259 

A multi-objective calibration strategy has been adopted in this study to allow for the model to 260 

effectively reproduce different aspects of the hydrological response, i.e. high flow, low flow and 261 

the flow duration curve. The model was therefore calibrated to three Kling-Gupta efficiencies 262 

(Gupta et al., 2009): 1) the K-G efficiency of flows (IKGE) measures the performance of 263 

hydrograph reproduction especially for high flows; 2) the K-G efficiency of the logarithm of flows 264 

emphasizes low flows (IKGL), and 3) the K-G efficiency of the flow duration curve (IKGF) to 265 

represent the flow statistics. 266 

The MOSCEM-UA (Multi-Objective Shuffled Complex Evolution Metropolis-University of 267 

Arizona) algorithm (Vrugt et al., 2003) was used as the calibration algorithm to find the Pareto-268 

optimal solutions defined by the mentioned three objective functions. This algorithm requires 3 269 

parameters including the maximum number of iterations, the number of complexes, and the 270 

number of random samples that is used to initialize each complex. To ensure fair comparison, the 271 

parameters of MOSCEM-UA were set based on the number of model parameters. Therefore, the 272 

number of complexes is equal to the number of free parameters n; the number of random samples 273 

is equal to n*n*10; and the number of iterations was set to 30000. The model is a widely validated 274 

model, which is only used here to derive the magnitude of the root zone moisture storage. 275 

Therefore validation is not considered necessary, since the model is merely meant to compare 276 

calibrated values of Su with NDII.  277 

3.3 Deseasonalization 278 

Seasonal signals exist both in NDII and Su time series. This can lead to spurious correlation. 279 

Therefore we deseasonalized both signals to eliminate this strong signal (Schaefli & Gupta, 2007) 280 

and subsequently compare the deviations from the seasonal signals of both NDII and Su. Firstly, 281 

the NDII and Su were normalized between 0 and 1. Then seasonal patterns of NDII and Su were 282 

determined as the average seasonal signals, after which they were subtracted from the normalised 283 

data.  284 

 285 
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4. Results 286 

4.1 Spatial and seasonal variation of NDII values for the UPRB and its 14 sub-basins 287 

To demonstrate the spatial and seasonal behaviour of the NDII over the UPRB, the 8-day NDII 288 

values were aggregated to monthly values for 2001 to 2013. Figure 3 shows examples of monthly 289 

average NDII values for the UPRB in 2004, which is the year with the lowest annual average NDII 290 

value. The figure shows that NDII values are higher during the wet season (May to October) and 291 

lower during the dry season (from November to April). The lower amounts of rainfall between 292 

November and April cause a continuous reduction of NDII values. On the other hand, higher 293 

amounts of rainfall between May and October result in increasing NDII values. However, NDII 294 

values appear to vary little between July and October.  295 

The average NDII values during the wet season, the dry season, and the whole year within the 13 296 

years are presented in Table 4. The table also shows the order of the NDII values from the highest 297 

(number 1) to the lowest (number 13). It can be seen that the annual average NDII value for the 298 

whole basin is approximately 0.165, while the average values during the wet and dry season are 299 

about 0.211 and 0.118, respectively. The highest mean annual value (NDII = 0.177) occurred in 300 

2002-2003 and the lowest (NDII = 0.149) in 2004-2005. The highest (NDII = 0.149) and lowest 301 

(NDII = 0.088) dry season values were reported in 2002-2003 and 2004-2005, respectively. On the 302 

other hand, the highest (NDII = 0.224) and lowest (NDII = 0.197) wet season values were 303 

observed in 2006-2007 and 2010-2011, respectively. It can be concluded that a dry season with 304 

relatively low moisture content and a wet season with high moisture content as specified by NDII 305 

values do not normally occur in the same year. 306 

The 8-day NDII values were also computed for each of the 14 tributaries within the UPRB from 307 

2001 to 2013. Table 5 shows the monthly averaged NDII values between 2001 and 2013 and the 308 

ranking order for each of the 14 tributaries. The results suggest that Nam Mae Taeng, Nam Mae 309 

Rim, and Upper Mae Chaem sub-basins, which have higher mean annual NDII values, have a 310 

higher moisture content than other sub-basins; while Nam Mae Haad, Nam Mae Li, and Ping 311 

River Section 2 are 3 sub-basins, with lower mean annual NDII values, have lower moisture 312 

content than other sub-basins. Monthly average NDII values for these 6 sub-basins are presented 313 

in Fig. 4. It can be seen that during the dry season, NDII values of the 3 sub-basins with the lowest 314 

values are a lot lower than those of the 3 sub-basins with the highest NDII values. However, NDII 315 

values for these 2 groups are not significantly different during the wet season. The figure also 316 

reveals that NDII values tend to continuously increase from relatively low values in March to 317 
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higher values in June. The values slightly fluctuate during the wet season before sharply falling 318 

once again when the rainy season ends, and reach their minimum values in February. 319 

4.2 FLEX Model results 320 

Calibration of FLEX was done on the 8 sub-catchments that have runoff stations. The results are 321 

summarized in Table 6. The performance of the model was quite good as demonstrated in Table 7. 322 

In Fig. 5, the flow duration curves of runoff stations P.20 and P.21 are presented as examples of 323 

model performance. Table 7 shows the average Kling-Gupta efficiencies values for IKGE, IKGL and 324 

IKGF, which indicate the performance of high flows, low flows, and flow duration curve for the 8 325 

runoff stations. The results for the flow duration curve appear to be better than those of the high 326 

flows and especially the low flows. However, the overall results are acceptable and can be used for 327 

further analysis in this study. 328 

4.3 Relation between NDII and root zone moisture storage (Su) 329 

The 8-day NDII values were compared to the 8 day average root zone moisture storage values of 330 

the FLEX model. It appears that during moisture stress periods, the relationship can be well 331 

described by an exponential function, for each of the 8 sub-catchments. Table 8 presents the 332 

coefficients of the exponential relationships as well as the coefficients of determination (R2) for 333 

annual, wet season, and dry season values for each sub-catchment. The coefficients are merely 334 

meant for illustration. They should not be seen as functional relationships yet. The corresponding 335 

scatter plots are shown in Fig. 6. It can be clearly seen that the correlation is much better in the dry 336 

season than in the wet season. During the wet season, there may also be short period of moisture 337 

stress, where the exponential pattern can be recognized, but no clear relation is found when the 338 

vegetation does not experience any moisture stress. 339 

Examples of deseasonalized and scaled time series of NDII and root zone storage (Su) values for 340 

the sub-catchments P.20 and P.21 are presented in Figure 7. The scaled time series of the NDII 341 

and Su values were calculated by dividing their value by the differences between their maximum 342 

and minimum values: NDII/(NDIImax-NDIImin) and Su/( Su,max- Sumin), respectively, while the 343 

maximum and the minimum are the values within the overall considered time series. Figure 7 344 

shows that the scaled NDII and Su values are highly correlated during the dry season, but less so 345 

during the wet season. These results confirm the potential of NDII to effectively reflect the 346 

vegetation water content, which, through the suction pressure exercised by the moisture deficit, 347 

relates to the moisture content in the root zone. During dry periods, or during dry spells in the 348 
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rainy season, as soon as the leaves of the vegetation experience suction pressure, we see high 349 

values of the coefficient of determination. 350 

If the soil moisture in the root zone is above a certain threshold value, then the leaves are not 351 

under stress. In the UPRB this situation occurs typically during the middle and late rainy season. 352 

The NDII then does not vary significantly while the root zone moisture storage may still vary, 353 

albeit above the threshold where moisture stress occurs. This causes a lower correlation between 354 

NDII and root zone storage during wet periods. Interestingly, even during the wet season dry 355 

spells can occur. We can see in Fig. 6, that during such a dry spell, the NDII and Su again follow 356 

an exponential relationship. 357 

 358 

We can see that the Su, derived merely from precipitation and energy, is strongly correlated to the 359 

vegetation water observed by NDII during condition of moisture stress, without time lag (Figure 6, 360 

S1, S2). Introduction of a time lag resulted in reduction of the correlation coefficients 361 

(Supplementary material). This confirms the direct response of vegetation to soil moisture stress, 362 

which confirms that the NDII can be used as a proxy for root zone moisture content. 363 

The deseasonalized results of dry periods in sub-catchments P.20 and P.21 are shown in Figure 7. 364 

We found these variations of deseasonalized NDII and Su to be similar in these two sub-365 

catchments, with the coefficients of determination (R2) as 0.32 and 0.18 respectively in P.20 and 366 

P.21. More important than the coefficient of determination is the similarity between the 367 

deseasonalized patterns. For P.20, the year 2001 is almost identical, whereas the years 2004 and 368 

2006 are dissimilar. In general the patterns are well reproduced, especially if we take into account 369 

the implicit uncertainties of the lumped hydrological model, the uncertainties in the 8-day derived 370 

NDII, and the data of precipitation and potential evaporation used in the model. The results of 371 

other sub-basins can be found in the supplementary materials.  372 

 373 

5. Discussion 374 

5.1 Is vegetation a trouble-maker or a good indicator for the moisture content of the root 375 

zone? 376 

In bare soil, remote sensors can only detect soil moisture until a few centimetres below the surface 377 

(~5cm) (Entekhabi et al., 2010). Unfortunately, for hydrological modelling, the moisture state of 378 

the bare surface is of only limited interest. What is of key interest for understanding the dynamics 379 
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of hydrological systems is the variability of the moisture content of the root zone, in which the 380 

main dynamics take place. This variability determines the rainfall-runoff behaviour, the 381 

transpiration of vegetation, and the partitioning between different hydrological fluxes. However, 382 

observing the soil moisture content in the root zone is still a major challenge (Entekhabi et al., 383 

2010). 384 

What is normally done, is to link the moisture content of the surface layer to the total amount of 385 

moisture in the root zone. Knowing the surface soil moisture, the root zone soil moisture can be 386 

estimated by an exponential decay filter (Albergel et al., 2008; Ford et al., 2014) or by models 387 

(Reichle, 2008) However, the surface soil moisture is only weakly related with root zone soil 388 

moisture (Mahmood and Hubbard, 2007); it only works if there is connectivity between the 389 

surface and deeper layers and when a certain state of equilibrium has been reached (when the short 390 

term dynamics after a rainfall event has levelled out). It is also observed that the presence of 391 

vegetation prevents the observation of soil moisture and further deteriorates the results (Jackson 392 

and Schmugge, 1991). Avoiding the influence of vegetation in observing soil moisture (e.g. by 393 

SMOS or SMAP) is seen as a challenge by some in the remote sensing community (Kerr et al., 394 

2001; Entekhabi et al., 2010). Several algorithms have been proposed to filter out the vegetation 395 

impact (Jackson and Schmugge, 1991), also based on NDII (e.g. Yilmaz et al., 2008). But is 396 

vegetation a trouble-maker, or does it offer an excellent opportunity to directly gauge the state of 397 

the soil moisture? 398 

In this study, we found that vegetation rather than a problem could become key to sensing the 399 

storage dynamics of moisture in the root zone. The water content in the leaves is connected to the 400 

suction pressure in the root zone (Rutter and Sands, 1958). If the suction pressure is above a 401 

certain threshold, then this connection is direct and very sensitive. We found a highly significant 402 

correlation between NDII and Su, particularly during periods of moisture stress. During dry 403 

periods, or during dry spells in the rainy season, as soon as the leaves of the vegetation experience 404 

suction pressure, we see high values of the coefficient of determination. Observing the moisture 405 

content of vegetation provides us with directly information on the soil moisture state in the root 406 

zone. We also found that there is almost no lag time between Su and NDII. This illustrates the fast 407 

response of vegetation to soil moisture variation, which makes the NDII a sensitive and direct 408 

indicator for root zone moisture content. In fact, the canopy acts as a kind of manometer for the 409 

root zone moisture content. 410 

5.2 The validity of the hypothesis 411 
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In natural catchments, it is not possible to prove a hypothesis by using a calibrated model. There 412 

are too many factors contributing to the uncertainty of results: the processes are too heterogeneous, 413 

the observations are not without error, the climatic drivers are too uncertain and heterogeneous and 414 

finally there is substantial model uncertainty, both in the semi-distributed hydrological model and 415 

in the remote sensing model used to determine the 8-day NDII product. In this case we have 416 

selected a lumped conceptual model, which is good at mimicking the main runoff processes, but 417 

which lacks the detail of distributed models. Distributed models, however, require detailed and 418 

spatially explicit information (which is missing) and are generally over-parameterized, turning 419 

them highly unreliable in data-scarce environments. On top of this there is considerable doubt if 420 

they provide the right answers for the right reasons. 421 

This paper is not a modelling study, but a test of the hypothesis whether the observed NDII 422 

correlates with the modelled root zone storage. We have seen in Figure 6 that the correlation is 423 

strong during periods of moisture stress, but that when the root zone is near saturation the 424 

correlation is weak. But we also saw that even in the wet season, during short dry spells, the 425 

correlation is strong. Even when the seasonality is removed, the patterns between NDII and Su in 426 

Figure 7 are similar, although there are two dry seasons when this is less the case (in 2004 and 427 

2006). So given the implicit uncertainty of the hydrological model, the uncertainty of the 428 

meteorological drivers, as well as the river discharges to which the models have been calibrated, 429 

and the uncertainty associated with the relationship between NDII and EWT, the good 430 

correspondence between the NDII and the root zone storage of the model during periods of 431 

moisture stress gives strong support to the hypothesis, which therefore cannot be rejected. It is in 432 

our view even likely that the differences between the signals of the NDII and the Su are rather 433 

related to model uncertainty, the uncertainty of the climatic drivers, the uncertainty in the 434 

relationship between NDII and EWT, and the problems of determining accurate NDII estimates 435 

over 8-days periods, than due to a weak correlation between the root zone storage and the NDII. 436 

5.3 Implication in hydrological modelling 437 

Simulation of root zone soil moisture is crucial in hydrological modelling (Houser et al., 1998; 438 

Western and Blöschl, 1999). Using estimates of soil moisture states could increase model 439 

performance and realism, but moreover, it would be powerful information to facilitate prediction 440 

in ungauged basins (Hrachowitz et al., 2013). However, until now, it has not been practical (e.g. 441 

Parajka et al., 2006; Entekhabi et al., 2010). Assimilating soil moisture in hydrological models, 442 

either from top-soil observation by remote sensing, or from the deeper soil column by models 443 
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(Reichle, 2008), is still a challenge. Several studies showed how difficult it is to assimilate soil 444 

moisture data to improve daily runoff simulation (Parajka et al., 2006; Matgen et al., 2012).  445 

There are several reasons why we have not compared our results with soil moisture observations in 446 

the field. Firstly, observations of soil moisture are not widely available. Moreover, it is not 447 

straightforward to link classical soil moisture observations to the actual moisture available in the 448 

root zone. Most observations are conducted at fixed depths and at certain locations within a highly 449 

heterogeneous environment. Without knowing the details of the root distribution, both horizontally 450 

and vertically, it is hard, if not impossible, to estimate the water volume accessible to plants 451 

through their root systems. We should realize that it is difficult to observe root zone soil moisture 452 

even at a local scale. But measuring root zone soil moisture at a catchment scale is even more 453 

challenging. State-of-the-art remote sensing techniques can observe spatially distributed soil 454 

moisture, but what they can see is only the near-surface layers if not blocked by vegetation. The 455 

top layer moisture may or not be correlated with the root zone storage, amongst others depending 456 

on the vegetation type, but it is definitely not the same.  457 

By observing the moisture content of the leaves, the NDII represents the soil moisture content of 458 

the entire root zone, which is precisely the information that hydrological models require as this is 459 

the component that controls the occurrence and magnitude of storage deficits and thereby the 460 

moisture dynamics of a system. This study clearly shows the strong temporal correlation between 461 

Su and NDII. From the relationship between NDII and Su, we can directly derive a proxy for the 462 

soil moisture state at the actual scale of interest, which can potentially be assimilated in 463 

hydrological models. Being such a key state variable, the NDII-derived Su could become a 464 

potentially powerful and otherwise unavailable constraint for the soil moisture component of 465 

hydrological models. This would mean a breakthrough in hydrological modelling as it would 466 

allow a robust parameterization of water partitioning into evaporative fluxes and drainage even in 467 

data scarce environments. Given the implicit uncertainties in hydrological modelling, this new and 468 

readily available proxy could potentially enhance our implicitly uncertain modelling practice. 469 

More importantly it would open completely new venues for modelling ungauged parts of the 470 

world and could become extremely useful for discharge prediction in ungauged basins 471 

(Hrachowitz et al., 2013). 472 

We should, of course, be aware of regional limitations. This study considered a tropical seasonal 473 

evergreen ecosystem, where periods of moisture stress regularly occur. In ecosystems which shed 474 

their leaves, or go dormant, other conditions may apply. We need further investigations into the 475 

usefulness of this approach in catchments with different climates. In addition, the phenology of the 476 
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ecosystem is of importance, which should be taken into consideration in follow-up research. 477 

Finally, a comparison with distributed or semi-distributed models would be a further test of the 478 

value of the NDII as proxy for the root zone moisture content. 479 

 480 

6. Conclusions 481 

The NDII was used to investigate drought for the UPRB from 2001 to 2013. Monthly average 482 

NDII values appear to be spatially distributed over the UPRB, in agreement with seasonal 483 

variability and landscape characteristics. NDII values appear to be lower during the dry season and 484 

higher during the wet season as a result of seasonal differences between precipitation and 485 

evaporation. The NDII appears to correlate well with the moisture content in the root zone, 486 

offering an interesting proxy variable for calibration of hydrological models in ungauged basins. 487 

To illustrate the importance of NDII as a proxy for root zone moisture content in hydrological 488 

models, we applied the FLEX model to assess the root zone soil moisture storage (Su) of 8 sub-489 

catchments of the UPRB controlled by 8 runoff stations. The results show that the 8-day average 490 

NDII values over the study sub-basin correlate well with the 8-day average Su for all sub-491 

catchments during dry periods (average R2 equals 0.87), and less so during wet spells (average R2 492 

equals 0.61). The NDII appears to be a good proxy for root zone moisture content during dry 493 

spells when leaves are under moisture stress. The natural interaction between rainfall, soil 494 

moisture, and leave water content can be visualised by the NDII, making it an important indicator 495 

both for hydrological modelling and drought assessment. 496 

The potential of using the NDII to constrain model parameters (such as the power of the beta 497 

function β, recharge splitter D and Ce in the transpiration function) in ungauged basins is an 498 

important new venue, which could potentially facilitate the major question of prediction in 499 

ungauged basins.  500 
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Table 1. Water balance and constitutive equations used in FLEXL. 659 

Reservoirs Water balance equations Equation Constitutive equations Equation 
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Table 2. Parameter range of the FLEXL Model. 661 

Parameter Range Parameters Range 

Si,max (mm) (0.1, 6) Kff (d) (1, 9) 

Su,max (mm) (10, 1000) TlagF (d) (0, 5) 

β (-) (0, 2) TlagS (d) (0, 5) 

Ce (-) (0.1, 0.9) Kf (d) (1, 40) 

D (-) (0, 1) Ks (d) (10, 500) 

Sf,max (mm) (10, 200)   
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