

Thank you for the feedback. We copied reviewer comments and provided our responses below

Reviewer #1:

I have reviewed the revised version of the manuscript draft: "Impacts of beaver dams on hydrologic and temperature regimes in a mountain stream" by Majerova et al. The authors build a strong case for the need for more data-driven studies regarding the effects of beaver impoundment on stream hydraulics and habitat, as many previous studies are somewhat speculative in nature. The revised paper well-reflects the suggestions of the two previous reviews. I particularly appreciate the attention to detail with the responses to each point, and the overall high-quality of writing of the main text. The new air temperature data is useful to the effort to separate beaver impacts from inter-annual climate variability. The ANOVA test may not be the most appropriate to identify the potential effects of warmer air temperatures in 2010 on water temperature, but it does help, and the normalized delta T temps are useful. The only addition I take some issue with is the statement

L411: "While the discharge in 2010 could have been influenced by irrigation practices in the nearby field, irrigation usually occurs only from mid-May to mid- or late-July and therefore, only had a potential impact during this time."

It could be expected that several months of irrigation would increase local groundwater levels, and this increase in storage could affect groundwater discharge to the stream for some remainder of the season.

- We agree that the irrigation could increase local groundwater levels and have clarified the sentence to state that surface runoff from irrigation was not present and that the elevated groundwater levels likely persist. These influences, however, were present in our pre-colonization period and similarly influenced groundwater levels during this period. We have changed this statement to the following:

"While the discharge in 2010 could have been influenced by surface runoff from irrigation practices in the nearby field, irrigation usually occurs only from mid-May to mid- or late-July. Local groundwater elevations could remain elevated on this side of the stream and have a potential impact during this time, however, these influences were also present in the reach prior to colonization."

This is similar to the author's hypothesis that greater spring overbank flows and floodplain storage events after dam building augments the local groundwater, and effects groundwater to the discharge over the summer. Perhaps rethink your strong wording on L411 and elsewhere (note all my line numbers refer to the "tracked changes" version of the revised manuscript).

Overall I find this paper in great shape and recommend publication, possible after some minor revisions.

Some minor points to consider:

1. L15 There are other mechanisms by which beaver dams potentially impact these characteristics in addition to flooding and GW/SW exchange

- Changed to:

“Beaver dams affect hydrologic processes, channel complexity, and stream temperature in part by inundating riparian areas, influencing groundwater-surface water interactions, and by changing fluvial processes within stream systems.”

2. L23 and in body text: One study’s reach scale is another’s sub-reach scale, so best to define some general range here so the reader knows what your reference scale for these terms is

- Added to define individual spatial scales (here and in the first paragraph of Methods):

“After beaver colonization, reach scale (~ 750 m in length) discharge observations showed a shift from slightly losing to gaining. However, at the smaller sub-reach scale (ranging from 56 m to 185 m in length), the discharge gains and losses increased in variability due to more complex flow pathways with beaver dams forcing overland flow, increasing surface and subsurface storage, and increasing groundwater elevations. At the reach scale, temperatures were found to increase by 0.38°C (3.8%), which in part is explained by a 230% increase in mean reach residence time. At the smallest, beaver dam scale (including upstream ponded area, beaver dam structure, and immediate downstream section), there were notable increases in the thermal heterogeneity where warmer and cooler niches were created.”

3. L49: Typically solar radiation heats the bed, which in turn transfers heat to the water column via conduction. Therefore residence time, bed color, and depth are also important parameters in addition to increased surface water area

- We agree and have changed the sentence to read:

“Warming due to solar radiation can be a key factor due to increased water surface area (Cook, 1940) and changes in morphology influence shortwave radiation fate within the water column and penetration to the bed sediments (Snow, 2014; Neilson et al. 2009; Merck et al. 2012) that can be critical in understanding instream temperature responses.”

4. L64: what was expected and why was this expectation exceeded?

- Changed to:

“Janzen and Westbrook (2011) found enhanced vertical recharge between the stream and underlying aquifer upstream of dams and longer hyporheic flowpaths than those measured in other studies.”

5. L70 replace “a day” with “1 day”

- Changed

6. L70 downstream delivery of water?

- Yes, added within the MS.

7. L77-81 great to point out these contradictions, make sure to address the best you can with your data in the discussion

- Thank you for the comment. We believe the current discussion addresses this concern given the emphasis on the need to measure and interpret hydrologic and thermal responses on different spatial and temporal scales. We have tried to highlight that the apparent contradictions in previous studies primarily originated from differences in measurement times, locations, and scales.

8. L90 is this Beaver Management Plan citation in the correct format?

- Changed citation to Utah Division of Wildlife Resources, 2010. The full reference could be found in References section.

9. L100 consider removing this sentence, it belongs in the discussion/conclusions

- Deleted

10. L113 Beavers are only recently (~ last 20 yr) returning to many systems after strong hunting pressures. How old are these relic structures?

- Deleted the sentence. There is no evidence about historic activity and surfaces created by beavers in the area but we do not know any details and would have to speculate without further research.

11. L124 remove “roughly”

- Deleted

12. L152 quantify reach scale ranges

- Added:

“Flow information was collected at the reach (~750 m in length) and sub-reach scale (between 56 m and 168 m in length) to compare influences of individual beaver dams and

cumulative impacts.”

13. L168 move the sentence “The flow velocity...” above the previous sentence

- Moved; great point; thank you.

14. L172 comma after “activity”

- Added

15. Equation 1 define the variables Qd, Cd

- Defined

16. L221 consider including some details on the UAS thermal camera system used here, or provide a link to the aggie air website. This will be one of the first published examples of UAS TIR data for stream habitat/refugia so there will be much interest in the equipment used

- The link for the Aggie Air website was added to SI Figure 5 captions.

17. L414 citing the specific personal communication here as you did in the reviewer response will give your irrigation timing statement more weight

- Added:

“However, due to drier conditions in 2010 and water right requirements, irrigation stopped earlier than usual (likely early July, personal communication with Kelly Pitcher, Hardware Ranch operations).”

18. L516 Perhaps plug the use of FO-DTS and TIR for capturing thermal patchiness at nested scales

- Given the potential influences of radiation on DTS cables in shallow, clear, and slow moving waters common within the beaver ponds (Neilson et al., Solar radiative heating of fiber-optic cables used to monitor temperatures in water, *Water Resources*, 46, W08540, doi: 10.1029/2009WR008354, 2010), the authors are not convinced that the DTS cables are the most appropriate tool for characterizing thermal patchiness in this situation.

List of relevant changes made in the manuscript

All the relevant changes made in the manuscript follow the reviewer's comments and are as followed (the line numbers correspond with the original reviewer's numbering):

1. L411:

“While the discharge in 2010 could have been influenced by surface runoff from irrigation practices in the nearby field, irrigation usually occurs only from mid-May to mid- or late-July. Local groundwater elevations could remain elevated on this side of the stream and have a potential impact during this time, however, these influences were also present in the reach prior to colonization.”

2. L15:

“Beaver dams affect hydrologic processes, channel complexity, and stream temperature in part by inundating riparian areas, influencing groundwater-surface water interactions, and by changing fluvial processes within stream systems.”

3. L23: Added more specific definition for individual spatial scales here, as well as in the first paragraph of Methods

“After beaver colonization, reach scale (~ 750 m in length) discharge observations showed a shift from slightly losing to gaining. However, at the smaller sub-reach scale (ranging from 56 m to 185 m in length), the discharge gains and losses increased in variability due to more complex flow pathways with beaver dams forcing overland flow, increasing surface and subsurface storage, and increasing groundwater elevations. At the reach scale, temperatures were found to increase by 0.38°C (3.8%), which in part is explained by a 230% increase in mean reach residence time. At the smallest, beaver dam scale (including upstream ponded area, beaver dam structure, and immediate downstream section), there were notable increases in the thermal heterogeneity where warmer and cooler niches were created.”

4. L49:

“Warming due to solar radiation can be a key factor due to increased water surface area (Cook, 1940) and changes in morphology influence shortwave radiation fate within the water column and penetration to the bed sediments (Snow, 2014; Neilson et al. 2009; Merck et al. 2012) that can be critical in understanding instream temperature responses.”

5. L64:

“Janzen and Westbrook (2011) found enhanced vertical recharge between the stream and underlying aquifer upstream of dams and longer hyporheic flowpaths than those measured in other studies.”

6. L90:

Changed citation to Utah Division of Wildlife Resources, 2010. The full reference could be found in References section.

7. L152:

“Flow information was collected at the reach (~750 m in length) and sub-reach scale (between 56 m and 168 m in length) to compare influences of individual beaver dams and cumulative impacts.”

8. L414:

“However, due to drier conditions in 2010 and water right requirements, irrigation stopped earlier than usual (likely early July, personal communication with Kelly Pitcher, Hardware Ranch operations).”

1 **Impacts of beaver dams on hydrologic and temperature regimes in a mountain stream**

2
3 M. Majerova,¹ B. T. Neilson,¹ N. M. Schmadel,¹ J. M. Wheaton,² C. J. Snow¹

4
5
6 ¹ Utah Water Research Laboratory, Department of Civil and Environmental Engineering, Utah
7 State University, 8200 Old Main Hill, Logan, Utah, 84322-8200, United States

8 ² Department of Watershed Sciences, Utah State University, 8200 Old Main Hill, Logan, Utah
9 84322-8200, United States

10
11 *Correspondence to:* M. Majerova (milada.majerova@gmail.com) and B.T. Neilson
12 (bethany.neilson@usu.edu)

13

14 Abstract

15 Beaver dams affect hydrologic processes, channel complexity, and stream temperature in part by
16 inundating riparian areas, influencing groundwater-surface water interactions, and by changing
17 fluvial processes within stream systems. We explored the impacts of beaver dams on hydrologic
18 and temperature regimes at different spatial and temporal scales within a mountain stream in
19 northern Utah over a three-year period spanning pre- and post-beaver colonization. Using
20 continuous stream discharge, stream temperature, synoptic tracer experiments, and groundwater
21 elevation measurements we documented pre-beaver conditions in the first year of the study. In
22 the second year, we captured the initial effects of three beaver dams, while the third year
23 included the effects of ten dams. After beaver colonization, reach scale (~ 750 m in length)
24 discharge observations showed a shift from slightly losing to gaining. However, at the smaller
25 sub-reach scale (ranging from 56 m to 185 m in length), the discharge gains and losses increased
26 in variability due to more complex flow pathways with beaver dams forcing overland flow,
27 increasing surface and subsurface storage, and increasing groundwater elevations. At the reach
28 scale, temperatures were found to increase by 0.38°C (3.8%), which in part is explained by a
29 230% increase in mean reach residence time. At the smallest, beaver dam scale (including
30 upstream ponded area, beaver dam structure, and immediate downstream section), there were
31 notable increases in the thermal heterogeneity where warmer and cooler niches were created.
32 Through the quantification of hydrologic and thermal changes at different spatial and temporal
33 scales, we document increased variability during post-beaver colonization and highlight the need
34 to understand the impacts of beaver dams on stream ecosystems and their potential role in stream
35 restoration.

36
37 **Keywords:** beaver dams, *Castor canadensis*, stream discharge, stream temperature, stream
38 restoration

40 1. Introduction

41 Beaver dams create ponds that change surface water elevations, alter channel
42 morphology, and decrease flow velocities (Gurnell, 1998; Meentemeyer and Butler, 1999;
43 Pollock et al., 2007; Rosell et al., 2005). These ponds and the overflow side channels are forced
44 by high dam crest elevations and generally increase water storage, water residence time, and
45 depositional areas for sediments. The increased storage attenuates hydrographs (Gurnell, 1998)
46 and can increase base flow (Nyssen et al., 2011). Specifically in the beaver ponds, water
47 infiltration through the bed and adjacent banks influences local groundwater elevations (Hill and
48 Duval, 2009). Within the stream channel, beaver dams break up the average hydraulic gradient
49 into series of disrupted head drops and flat ponded sections. This change in average hydraulic
50 gradient increases the potential for hyporheic exchange (Lautz and Siegel, 2006). Such changes
51 in channel morphology and hydrology alter stream temperature regimes. Warming due to solar
52 radiation can be a key factor due to increased water surface area (Cook, 1940) and changes in
53 morphology influence shortwave radiation fate within the water column and penetration to the

54 bed sediments (Snow, 2014; Neilson et al. 2009; Merck et al. 2012) that can be critical in
55 understanding instream temperature responses. Further, foraging and extensive inundation can
56 lead to loss of riparian vegetation that decreases riparian canopy and the associated shading
57 influences (Beschta et al., 1987). Changes in groundwater-surface water interactions can also
58 impact the overall temperature regime (e.g., upwelling zones decrease temperatures below
59 beaver dams (Fanelli and Lautz, 2008; White, 1990)). Regardless of this implied connection
60 between hydrologic and stream temperature changes due to beaver dam construction, most
61 studies have investigated these changes separately. Furthermore, the temporal and spatial scales
62 considered within individual studies vary widely, leading to inconsistent conclusions regarding
63 beaver dam impacts on stream systems (Kemp et al., 2012).

64 When considering hydrologic influences at the beaver dam scale (which includes the
65 beaver dam structure, the upstream ponded area, and the section below the dam), Briggs et al.
66 (2012) found a connection between streambed morphologies formed upstream of a beaver pond
67 and the hyporheic flow patterns. Similarly, Lautz and Siegel (2006) showed that beaver dams
68 promoted higher infiltration of surface water into the subsurface. Janzen and Westbrook (2011)
69 found enhanced vertical recharge between the stream and underlying aquifer upstream of dams
70 and longer hyporheic flowpaths than those measured in other studies. Nyssen et al. (2011)
71 studied impacts of beaver dams at a larger reach scale and throughout a series of beaver dams.
72 Similar to other literature (Gurnell, 1998; Burns and McDonnell, 1998), they found that a series
73 of beaver dams retained water during high flows and increased low flows through drier periods.
74 The authors found that the recurrence interval for major floods increased over 20 years and peak
75 flows were decreased and delayed by approximately 1 day. In contrast, some argue that while
76 beaver dams affect downstream delivery of water, they provide minimal retention during
77 extreme runoff events (Burns and McDonnell, 1998).

78 The documented impacts of beaver dams on temperature are more variable. Some studies
79 found that beaver dams and beaver ponds cause overall increases in downstream temperatures
80 (Andersen, 2011; Margolis et al., 2001; Salyer, 1935; McRae and Edwards, 1994; Shetter and
81 Whalls, 1955) with reported values as high as 9°C during summer months (Margolis et al.,
82 2001). Fuller and Peckarsky (2011) also observed increases in temperatures below low-head
83 beaver dams, but a cooling effect below high-head beaver dams. At the longer reach scale (22
84 km), Talabere (2002) found no significant influence of beaver dams on stream temperature. A
85 recent literature review regarding the impacts of beaver dams on fish further summarizes such
86 inconsistent findings. Kemp et al. (2012) cited 13 articles that argued beaver dams provided
87 thermal refugia and 11 articles that argued negative impacts from altered thermal regime (i.e.,
88 detrimental increases in summer temperatures). Interestingly, this review also pointed out that of
89 the 13 articles claiming temperature benefits of beaver dams, only seven were data driven and
90 the remaining six were speculative. By contrast, of the 11 articles showing temperature
91 impairments, only one was data driven while the rest were speculative. Another recent literature
92 review regarding the effects of beaver activity in stream restoration and management further
93 revealed that a majority of studies cover small spatial scale areas (e.g., small reach scales), are

94 mainly qualitative, and many hypotheses are supported only by anecdotal or speculative
95 information (Gibson and Olden, 2014). Particularly in the context of stream management, where
96 beaver have recently been considered as a potential restoration tool (e.g., Utah Division of
97 Wildlife Resources, 2010), a more quantitative understanding based on field observations of the
98 hydrologic and thermal impacts of beaver within stream systems is critical.

99 Variability in hydrologic and thermal responses in streams with beaver dams and the
100 subsequent inconsistent conclusions found in the literature highlight the need for more data
101 driven studies across multiple spatial and temporal scales. In an effort to link hydrologic and
102 temperature responses due to beaver dam development, we present data from different spatial
103 (reach, sub-reach, and beaver dam) and temporal scales (instantaneous to continuous three-year
104 time series) that span a period prior to and during the establishment of 10 beaver dams. We
105 illustrate how the development of beaver dams shifts instream hydrologic and thermal responses.

106
107

Site Description

108 Curtis Creek, a tributary of the Blacksmith Fork River of Northern Utah drains a portion
109 of the Bear River Range. Curtis Creek is a first-order perennial mountain stream with
110 intermittent tributaries. The mountainous watershed includes a combination of hard sedimentary
111 rock, Paleozoic and Precambrian limestone bedrock that is strongly indurated. The valley
112 broadens in the lower portion of Curtis Creek and is primarily dominated by remnant low-angle
113 alluvial fans. The valley bottom is comprised of a mix of longitudinally stepped floodplain
114 surfaces and channel that are both partly confined by coarse-grained alluvial fan deposits with
115 gravel, cobble, boulders and some soil development.

116 Data were gathered in a 750 m long study site on the lower portion of Curtis Creek that is
117 located about 25 km east of Hyrum, Utah at Hardware Ranch (an elk refuge operated by the Utah
118 Division of Wildlife Resources (UDWR)). In 2001, the UDWR conducted a stream relocation
119 project within the study reach and some segments of the channel were moved and reconstructed,
120 leaving portions of the original channel abandoned. The study reach has a relatively steep
121 streambed slope of 0.035, supporting a bed of coarse gravel to large cobble with some man-made
122 boulder vortex weirs placed within the new channel with a meandering planform. The banks of
123 the realigned channel were stabilized with boulders, root wads, logs, and erosion control
124 blankets.

125 The riparian area surrounding the channel prior to and following relocation was heavily
126 grazed by elk and did not support woody riparian vegetation. Around 2005, grazing pressure was
127 lessened and the area was fenced (though some grazing was still allowed). This facilitated some
128 modest recovery of the riparian woody vegetation which was enough to attract beaver. In early
129 summer of 2009, beaver colonization began with beaver dam 7 being constructed in the middle
130 of the study reach (Fig. 1). Beaver dams 4 and 5 were also completed during the summer of
131 2009. New beaver dams (3 and 8) were established early-summer 2010 and by the late summer-
132 early fall, dams 2, 6, 9, and 10 were completed. By the end of fall 2010, beaver dam 1 was built
133 at the upstream end of the study reach resulting in a total of 10 beaver dams with an average

134 height of 1 m (measured at the downstream face of a dam as the difference between the channel
135 bottom and the top of the dam crest). In addition, two small (less than 0.5 m in height) beaver
136 dams were constructed in the old channel (Fig. 1, dams without numbers). Beaver built seven of
137 their dams using the artificial restoration structures as foundations. By the end of fall 2010, the
138 channel consisted of sections with flowing water (main channel and side channels), ponded water
139 (beaver ponds), and beaver dam structures (Fig. 1). The resulting dam density by 2010 was 13.3
140 dams/km.

141

142

143 **2. Methods**

144 The field site was originally instrumented with pressure transducers, temperature sensors,
145 and groundwater observation wells to investigate groundwater-surface water interactions in the
146 absence of beaver. After one year of data collection, beaver colonization occurred within the
147 study reach, changing the objectives of the study. In short, it produced the perfect accidental
148 experiment and a unique opportunity to quantify fundamental hydrologic and thermal impacts of
149 beaver dam construction on stream systems. In an effort to specifically investigate these
150 impacts, three primary data types were collected over a three-year period spanning pre- and post-
151 beaver colonization (Table 1, Fig. 1). Flow information was collected at the reach (~ 750 m in
152 length) and sub-reach scale (between 56 m and 185 m in length) to compare influences of
153 individual beaver dams and cumulative impacts. In addition, groundwater levels were observed
154 within the floodplain of the study reach. To explore the corresponding impacts of dams on
155 thermal regimes, stream temperature data were collected and analyzed at the reach, sub-reach
156 and beaver dam scales. Both the hydrologic and temperature data collection took place over
157 different temporal scales and the frequency varied from instantaneous measurements to
158 continuous data throughout the three-year period.

159

160 **2.1 Data Collection**

161 The study reach boundaries were set following a previous study (Schmadel et al., 2010)
162 and locations along the reach were denoted by distance downstream from an arbitrary datum set
163 upstream of the study reach (Fig. 1). Water level and temperature were measured using KWK
164 Technologies® SPXD™ 610 (0-5 psig) (Spokane, Washington) pressure transducers (PT) with
165 vented cables and Campbell Scientific® CR-206 data loggers (Logan, Utah) at the upstream,
166 inflow (PT515, Fig. 1) and downstream, outflow study reach limit (PT1252, Fig. 1). Both
167 pressure transducers were installed in the flowing water close to the bank with an average bed
168 slope of 0.017 and 0.024 for inflow (PT515) and outflow (PT1252), respectively. Water level
169 and temperature were measured at 30-second intervals and five-minute averages were recorded.
170 Discharges were measured at each PT under the full range of flow conditions using the velocity-
171 area method to establish rating curves. The flow velocity was recorded with a Marsh McBirney
172 Inc. ® Flo-Mate™ (Model 2000, Frederick, Maryland). The lowest flow measured was 157 L s⁻¹
173 at PT1252 and the highest flow measured was 1510 L s⁻¹ also at PT1252. To provide a local

174 comparison of hydrologic responses due to beaver activity, continuous discharge data were
 175 similarly collected at the bounds of a control reach approximately 535 m long without any
 176 beaver activity, located immediately upstream from our study reach (PT0).

177 The study reach was further divided into six sub-reaches, ranging from 56 to 168 m and
 178 numbered sequentially downstream (Fig. 1). The six sub-reaches spanned individual dams (e.g.,
 179 sub-reach 4), multiple dams (e.g., sub-reach 2 and 5), and a non-impounded sub-reach that
 180 received surface return flows via small side channels or overland flow from an upstream beaver
 181 pond (sub-reach 3). The boundaries for the sub-reaches were chosen to ensure completely mixed
 182 conditions necessary for dilution gaging (Schmadel et al., 2010). Dilution gaging was conducted
 183 at the sub-reach scale on July 16, 2008 (pre-beaver) and July 19, 2010 (post-beaver) to provide a
 184 longitudinal understanding of flow variability. As described within Schmadel et al. (2010, 2014),
 185 chloride (from NaCl) was used as a conservative tracer (Zellweger, 1994) and rhodamine WT
 186 was used as a visual indicator for a qualitative assessment of mixing. Tracer injection masses
 187 ranged from 600 to 3300 g as NaCl and were varied to achieve large enough responses in
 188 electrical conductivity above background for dilution gauging and mass recovery purposes.
 189 Tracer responses were measured following an instantaneous tracer injection starting at the
 190 downstream end of the study reach and then moving upstream to individual sub-reach limits.
 191 Each response was measured with specific conductance (SC) (electrical conductivity normalized
 192 to 25 °C as a surrogate to chloride concentrations) at one-second intervals using YSI® sondes
 193 (models 600 LS and 600 XLM, Yellow Springs, Ohio) calibrated in the field. The background
 194 SC was corrected to zero (Gooseff and McGlynn, 2005; Payn et al., 2009) and each corrected
 195 response was correlated to chloride concentrations with calibration regressions. To estimate
 196 tracer mass losses and gross stream losses, mass recoveries were quantified using (Payn et al.,
 197 2009):

$$199 \quad M_R = Q_D \int C_D(t) dt \quad (1)$$

200
 201 where Q_D is discharge at the downstream end (L s^{-1}), and C_D is the tracer concentration at the
 202 downstream end (mg L^{-1}).

203 To capture changes in groundwater levels throughout the reach, groundwater observation
 204 wells were installed in June 2008 (Fig. 1). These wells were constructed from half inch polyvinyl
 205 chloride (PVC), 2 m in length with 40 cm of perforation covered with 2 mm flexible nylon
 206 screen to exclude soil. Elevations were established for individual wells using a total station and
 207 later using differential rtkGPS (Trimble® R8, Global Navigation Satellite System, Dayton,
 208 Ohio). Groundwater levels were determined by measuring the distance from the top of each well
 209 to the groundwater surface level in each well using a Solinst® electronic well sounder (Model
 210 101 Mini, Georgetown, Ontario, Canada). The groundwater levels were measured four times in
 211 2008 (June, July (twice), August), five times in 2009 (June, July, August (twice), and
 212 November), and four times in 2011 (April, June, July, and November).

213 At the finer beaver dam scale, temperature measurements were collected upstream of
 214 ponded water of beaver dams and downstream of individual beaver dams at 10-minute intervals
 215 using Onset® HOBO® Temp Pro V2 (Bourne, Massachusetts) deployed from September 2 to
 216 October 15, 2010 (Fig. 1, Table 1, Table 2). The temperature sensors were placed in the thalweg
 217 of the flowing channel entering the pond to ensure well mixed flow. The sensors downstream
 218 from the beaver dams were placed downstream of the scour pool, but in the completely mixed
 219 portion of the channel. The temperature sensors were attached to metal stakes, placed in the
 220 middle of the channel, approximately halfway through the water column. Individual sensors were
 221 wrapped in aluminum foil to reduce solar radiation influence in slower moving waters.

222 Aerial imagery was used to delineate and compare pre- and post-beaver colonization
 223 flowing and ponded water area. Pre-beaver colonization conditions (2006) were captured with
 224 high resolution aerial imagery available through the Utah Automated Geographic Reference
 225 Center (AGRC). Post colonization, NIR (Near Infrared) and RGB (Red-Green-Blue) aerial
 226 imagery were collected using Aggie Air UAVs (Unmanned Aerial Vehicle) in 2010. Aggie Air
 227 flights that additionally included thermal aerial images were completed in 2011-2013.

228

229 **2.2 Data Analysis**

230 At the reach scale, the five-minute continuous stage and temperature data recorded at the
 231 study reach boundaries were averaged to daily values to illustrate changes over the three-year
 232 study period. Data from the winter months were excluded from the analysis because they were
 233 influenced by ice buildup around the pressure transducers. Rating curves were developed from
 234 the measured discharges and continuous stage from PTs in the form (Cey et al., 1998; Rantz,
 235 1982):

236

$$237 Q = aZ^b \quad (2)$$

238

239 where Q is the predicted discharge (L s^{-1}), a and b are the regression parameters, and Z is the
 240 stage measured by the pressure transducer (m). The regression parameters, a and b , were
 241 estimated through nonlinear regression and were the minimum sum of squares occurred.
 242 Uncertainty in these parameters was assessed from values within the 95% joint confidence
 243 region (Schmadel et al., 2010). The continuous discharge estimates provided continuous
 244 estimates of net change in stream discharge (ΔQ) at the reach scale (downstream discharge
 245 minus upstream discharge). To illustrate percent net change ($\% \Delta Q$), ΔQ was normalized by
 246 upstream discharge (Q at the upstream reach boundary). The error for the reach scale discharge
 247 was estimated directly from the rating curve where the 95% confidence interval was generated
 248 (Schmadel et al., 2010). The net change in stream temperature (ΔT , downstream temperature
 249 minus upstream temperature) and $\% \Delta T$ were also calculated at the reach scale. To determine if
 250 weather conditions were influencing the water temperature differences between years, we first
 251 compared average daily air temperatures for each year through a one-way ANOVA ($p=0.05$). We

252 then compared daily ΔT values normalized by air temperature for the days when both water and
253 air temperature were available within each year ($p = 0.01$).

254 At the finer, sub-reach scale, stream discharge was calculated at each sub-reach limit
255 from dilution gaging using (Kilpatrick and Cobb, 1985):

$$256 \quad Q = \frac{M}{\int_0^{\tau} (C(t) - C_b(t)) dt} = \frac{M}{\int_0^{\tau} C(t) dt} \quad (3)$$

257 where Q is the stream discharge (L s^{-1}), M is the mass of solute tracer injected (mg), $C(t)$ is the
258 tracer concentration (mg L^{-1}), $C_b(t)$ is the background tracer concentration (corrected to zero)
259 (mg L^{-1}), t is time (s), and τ is the measurement time period from tracer injection to last detection
260 (s). The net ΔQ was also estimated at the limits of each sub-reach (Fig. 1). The net ΔQ for each
261 sub-reach was again normalized by the discharge at the corresponding upstream sub-reach limit
262 resulting in a net $\% \Delta Q$ to allow for direct comparison between sub-reaches. Uncertainty in the
263 estimates was quantified using the same technique presented in Schmadel et al. (2010) and
264 provided the 95% prediction interval around the discharge estimate. Tracer mass recovery
265 through each sub-reach was calculated to provide information regarding flow diversions within
266 and possible returns to some sub-reaches. In addition, mean residence times (μ_t) for individual
267 sub-reaches were estimated from the first temporal moment or expected value of each recovered
268 tracer response as:

$$269 \quad \mu_t = \frac{\int_0^{\tau} t C_D(t) dt}{\int_0^{\tau} C_D(t) dt} \quad (4)$$

270 where $C_D(t)$ is the recovered tracer response at the downstream sub-reach limit (mg L^{-1}).

271 To further understand hydrologic impacts of beaver dam construction and to illustrate the
272 channel and groundwater elevation gradient changes over time, these data were grouped by each
273 sub-reach and were evaluated for 2008, 2009, and 2011. The groundwater elevation data
274 collected in 2010 were limited and thus post-beaver colonization period was represented by the
275 2011 data. Due to the established groundwater observation wells not being distributed evenly
276 throughout the study reach, changes in groundwater over the study period are only available for
277 sub-reaches 2, 3, and 5.

278 The temperature impacts at the beaver dam scale were quantified from the data collected
279 upstream of ponded waters and downstream of individual beaver dams (3, 4, 5, 7, and 8) from
280 fall 2010 (Fig. 1 and Table 2). In case of beaver dam 7 and 8, the ponded water from beaver dam
281 8 extended to beaver dam 7. Therefore, we used data upstream from dam 7 and downstream
282 from dam 8. A 24-hour moving average was calculated from the data to detect temporal trends
283 other than diurnal patterns. The net temperature change, ΔT , for each individual beaver dam was

284 calculated by subtracting the temperature upstream of the beaver dam from the temperature
 285 downstream of the beaver dam. A positive change represented net warming, while a negative
 286 change represented net cooling downstream from the beaver dams. The area of flowing water
 287 (represented by the stream channel) and ponded water from the beaver dams was digitized and
 288 calculated from the 2006 (pre-beaver conditions) and 2010 (post-beaver colonization conditions)
 289 imagery (Table 3). The main channel water volume for pre- and post-beaver dams were also
 290 estimated based on one-dimensional HEC-RAS hydraulic model built to replicate the two
 291 different states (Table 3).

292

293

294 **3. Results**

295 **3.1 Reach Scale Responses**

296 At the reach scale, the average daily discharge (Fig. 2) illustrates the seasonal variations
 297 and changes in flow conditions at the inflow (PT515) and outflow PT1252 for 2008 through
 298 2010. The 2008 and 2009 flows were fairly comparable with peak flows at PT1252 of 1698 L s^{-1}
 299 and 1549 L s^{-1} , respectively. The 2010 flows were, however, one third of peak flow in
 300 comparison to previous years (592 L s^{-1} at PT1252). This difference is also illustrated with snow
 301 water equivalent and precipitation accumulation from nearby a SNOTEL site (SI Fig. 1). The
 302 impacts of beaver dam building activities are directly reflected in the reach scale flow conditions
 303 and in the year-to-year variability in net ΔQ and $\% \Delta Q$ (Fig. 3). Negative changes indicate a net
 304 losing reach while positive values indicate net gains in flow. The daily average value for March-
 305 October of 2008 (pre-beaver) was -5.6 L s^{-1} for ΔQ and -4.4% for $\% \Delta Q$. As the beaver dams
 306 were built and increased in number, the average values of ΔQ and $\% \Delta Q$ increased to 51.2 L s^{-1}
 307 and 13.2% in 2009 and to 81.2 L s^{-1} and 53.1% in 2010, respectively.

308 Across shorter temporal scales, variability within each season of each year was also
 309 apparent. Even though data are only available for short portion of the spring period in 2008, the
 310 reach was gaining. In July 2008, the $\% \Delta Q$ became negative suggesting that the reach was losing
 311 after the spring flood recession. In early spring of 2009, the reach shifted from losing to gaining.
 312 However, the reach did not switch back to losing conditions during lower flows and gains were
 313 approximately 10% during the months of June, July, and August. In September 2009, the $\% \Delta Q$
 314 further increased to 30% over one week and was followed by a slow decrease of approximately
 315 20% the following two weeks before increasing again. Similar gaining conditions continued
 316 throughout 2009 and into 2010. In 2010, another increase in $\% \Delta Q$ was observed in April at the
 317 beginning of snowmelt and reached up to 60%. The greatest $\% \Delta Q$ occurred at the end of June
 318 2010 reaching approximately 80% (Fig. 3). This drastic change may be partially affected by
 319 irrigation patterns in nearby fields during the summer months (mid-May through July).

320 At the reach scale, stream temperatures consistently increased during the summer with
 321 peaks occurring at the end of July and beginning of August with some periods of cooling within
 322 the reach in the fall and winter for all three years (Fig. 4). Net and percent changes in
 323 temperature (ΔT and $\% \Delta T$) show a warming trend from 2008 to 2010 corresponding to the

324 increase in the number of dams (Fig. 5). In 2008, the average daily ΔT was 0.22°C and in 2010
 325 the average ΔT was 0.43°C. The average increase from 2008 to 2010, with differences based on
 326 the daily ΔT (not on their yearly averages), was 0.38°C (% ΔT = 3.8%). The maximum difference
 327 in ΔT between these years was 0.77°C (% ΔT = 8.5%) and occurred on August 1st (Fig. 5).

328 The one-way ANOVA for air temperature comparison showed no statistical difference
 329 between individual years ($p > 0.05$). Further comparison of daily ΔT values normalized by air
 330 temperature showed a significant difference in the daily average values ($p < 0.01$) between years.
 331 This suggests that the between year variability in air temperature is not controlling the observed
 332 ΔT patterns.

333 Reach scale data from a smaller temporal scale (a five-day period in July) illustrates the
 334 links between discharge and temperature patterns associated with beaver dam construction (Fig.
 335 6). Comparison of ΔQ and % ΔQ show similar trends to those in Fig. 3 (i.e., an increase in the
 336 amount of water gained over the reach each year), but with diurnal patterns. The % ΔQ for 2010
 337 shows approximate 80% increase in discharge when compared to 2008 (Fig. 6B). The
 338 transformation from losing in 2008 to gaining in 2010 is also more pronounced at this shorter
 339 five-day scale. Similarly, when comparing ΔT and % ΔT values there is an average increase of
 340 0.6 °C and 4.6% from 2008 to 2010, respectively. The data also contain a diurnal pattern with a
 341 maximum difference of 1.1°C (8%) between 2008 and 2010 (Fig. 6C-D). The ΔT values show
 342 that the range of temperature differences during the day doubled in 2010. In 2008, the flowing
 343 water surface area was estimated to be 1776 m² with no ponded area (Fig. 1, Table 3). In 2010,
 344 the flowing water surface area decreased to 1211 m² with the ponded area covering about 2830
 345 m². The water surface area in 2010 had more than doubled.

346

347 **3.2 Sub-reach Scale Responses**

348 With an increase in the number of beaver dams for each consecutive year, the
 349 groundwater elevation increased in sub-reaches as shown by the changes in the annual
 350 distribution and median values (Fig. 7, Fig. SI2). The response was greatest for sub-reach 2,
 351 where median groundwater levels increased approximately 0.03 m during the first year (2008-
 352 2009) and by another 0.34 m from 2009 to 2011. For sub-reaches 3 and 5, median groundwater
 353 levels increased by 0.02 m and 0.12 m from 2008 to 2009, respectively. From 2009 to 2011,
 354 these levels increased further by 0.10 m in sub-reach 3 and by 0.15 m in sub-reach 5. Based on
 355 the positive head gradient between groundwater and surface water, sub-reach 2 and sub-reach 3
 356 is primarily gaining. However, sub-reach 5 is generally neutral in 2008 and is more commonly
 357 losing in surface water in 2009 and 2010 (Fig. 7, SI Fig. 2). The head gradients from the cross-
 358 section of wells in sub-reach 5 show an increase in groundwater elevation over time and
 359 generally depict a positive gradient on one side of the channel and negative gradient on the other
 360 (SI Fig. 2).

361 Groundwater-surface water exchanges in the study reach prior to beaver dam influences
 362 were documented in Schmadel et al. (2014). Discharge estimated at various locations
 363 longitudinally illustrates the variability in flows prior to beaver dam influences (Fig. 8A) and the

364 sub-reach scale $\% \Delta Q$ showed some sub-reaches gaining while others losing (Fig. 8B). The 2010
 365 discharge values showed greater variability after beaver dams were constructed in the reach (Fig.
 366 8A). In contrast with the yearly average head gradient (Fig. 7), the net $\% \Delta Q$ in sub-reach 2
 367 shows a transition from gaining in 2008 to losing in 2010, sub-reach 3 from neutral to gaining,
 368 and sub-reach 5 from neutral to losing in 2010 (Fig. 8B). In 2008, the error in flow estimates for
 369 the individual sub-reaches was about 8% for both Q and $\% \Delta Q$. In 2010, the errors ranged from
 370 6% to 28% for Q and 8% to 29% for $\% \Delta Q$. Most of the error was due to incomplete tracer
 371 mixing and larger errors in 2010 were attributed to higher variability in flow and flow paths. The
 372 mass recoveries showed that the percent of mass loss changed significantly from 2008 to 2010.
 373 In 2008, the mean percent mass losses for individual sub-reaches were sequentially -2.8, -12.9, -
 374 18.1, -18.8, and -4.7%. In 2010, the mean percent mass losses were -69.0, -0.2, -8.3, -62.0, -7.6%
 375 for the same sub-reaches.

376 Mean residence times estimated from the 2008 and 2010 tracer studies show an increase
 377 for all sub-reaches containing beaver dams (Table 4). The biggest change was observed in sub-
 378 reach 2 where beaver dam 4, with the largest pond area, was located (Fig. 1). The second greatest
 379 increase occurred in sub-reach 5 where a series of dams and ponds covered approximately 50%
 380 of the sub-reach length. The increase in sub-reach scale residence times translates into an overall
 381 reach scale increase of 62 minutes or 230%. The residence time of unrecovered mass was not
 382 included in mean residence time estimates.

383

384 **3.3 Beaver Dam Scale Responses**

385 The spatial and temporal temperature differences observed between individual beaver
 386 dams from a two-day period show that each dam influences the system differently throughout
 387 each day (Fig. 9). A comparison of absolute temperatures above and below individual beaver
 388 dams, where a positive change represents net warming and negative change represents net
 389 cooling below the beaver dam, illustrates a general downstream warming trend which
 390 cumulatively propagated downstream below beaver dam 8 (SI Fig. 3). Although, the temperature
 391 increase for each dam was generally within the accuracy of the temperature sensor (+/- 0.2°C),
 392 the cumulative impact of multiple dams showed more significant downstream warming.

393 Based on the data shown within Fig. 9, daily ranges (daily maximum minus daily
 394 minimum values) of temperature differences below and above each beaver dam (ΔT) provide
 395 additional information regarding the spatial variability among individual dams within each day
 396 (Fig. 10A). However, when looking at 24-hour moving averages (Fig. 10B), ΔT values fall
 397 within the accuracy of the sensors and highlight the importance of the temporal scale (frequency)
 398 of measurements when determining the impacts of beaver dams on stream systems.

399

400

401 **4. Discussion**

402 While many studies exist regarding the influence of beaver dams on the local hydrologic
 403 and temperature regimes, the majority of these studies lack sufficient field measurements across

404 appropriate spatial (beaver dam to reach scale) and temporal scales (instantaneous to continuous
 405 over a period of years) to draw meaningful conclusions (Kemp et al., 2012; Gibson and Olden,
 406 2014). Furthermore, the results are often inappropriately generalized beyond the scales of the
 407 observations. Our observations provide an opportunity to quantify the influences of beaver dams
 408 on stream flow and temperatures while demonstrating how beaver dams impact stream
 409 hydrologic and temperature regimes at different spatial and temporal scales.

410 The reach scale results of our study suggest an overall increase in ΔQ from 2008 to 2010
 411 based on changes in flow conditions due to beaver dam building activity (Fig. 2). The increases
 412 in gains during the spring can be attributed to surface and subsurface lateral inflows. However,
 413 the impacts of the beaver dams are more apparent during low flow conditions when the study
 414 reach slowly transitions from losing in 2008 to gaining in 2010 (Fig. 3). As the number of beaver
 415 dams increases, the impact on reach scale discharge is more evident. In summer and fall of 2008,
 416 the reach is in equilibrium or slightly losing water. In contrast, the reach is gaining water during
 417 these same summer and fall months of 2009. This trend continues and is more pronounced as
 418 beaver dams continue being built and the cumulative impact of multiple beaver dams results in
 419 constant gains in 2010 (Fig. 3B). While the discharge in 2010 could have been influenced by
 420 surface runoff from irrigation practices in the nearby field, irrigation usually occurs only from
 421 mid-May to mid- or late-July. Local groundwater elevations could remain elevated on this side
 422 of the stream and have a potential impact during this time, however, these influences were also
 423 present in the reach prior to colonization. Also, due to drier conditions in 2010 and water right
 424 requirements, irrigation stopped earlier than usual (likely early July, personal communication
 425 with Kelly Pitcher, Hardware Ranch operations). This suggests that the dominant hydrologic
 426 processes influencing the study reach changed over the period of three years as the trend of
 427 gaining conditions persisted past the irrigation season (Fig. 3). Groundwater elevations further
 428 illustrate the relative changes in relation to channel surface water elevations over time. Although,
 429 there is a potential for different flow paths in our study reach and head gradients do not
 430 necessarily translate into fluxes, there were notable increases in the groundwater table (Fig. 7).
 431 These changes were likely due to increased water surface elevations in the beaver ponds for
 432 consecutive years. The localized increases in groundwater elevations are further elevated each
 433 spring due to high flows, inundation of the flood plain, and general high surface water elevations
 434 throughout the reach. As the flow and surface water elevations drop throughout each summer,
 435 there are positive groundwater gradients towards the stream throughout this season and,
 436 therefore, the reach gains water. To provide a comparison, we can use baseline ΔQ and $\% \Delta Q$
 437 from the control reach just upstream for the same three-year period (Table 3). These data show
 438 that the control reach was losing water for all three years except for summer of 2008. In contrast
 439 to the beaver impacted study reach, the losing trend in the control reach is more pronounced with
 440 each year and it is at its maximum in 2010.

441 When considering the smaller spatial scales (sub-reach, beaver dam) there is great
 442 variability in terms of losses and gains that are not fully understood from the reach scale
 443 observations in the study reach with beaver dams (Fig. 7 and 8, Table 4). This variability is due

444 to many different mechanisms occurring in and around beaver dams, including groundwater-
445 surface water exchanges (Lautz and Siegel, 2006; Janzen and Westbrook, 2011). However, the
446 sub-reach scale variability in this study (Fig. 8) was primarily due to high crest dams forcing
447 year round overbank flow. Much of the overbank flow was either returned to the main channel
448 through side channels or was diverted to the off-channel beaver ponds. These changes in
449 flowpaths influenced the mass recovery in our tracer study in 2010 and the highest mass loss
450 occurred in sub-reaches with big beaver dams and multiple side channels. The window of
451 detection for the tracer experiment (i.e., the time over which the tracer is measurable) varies as a
452 function of stream characteristics such as transient storage zone dimensions and exchange rates,
453 and stream velocity and discharge (Harvey et al., 2000). In turn, it dictates which subsurface
454 exchange flow paths are captured within tracer break through curves (e.g., Ward et al., 2013).
455 Because the changes to the study reach between years influenced the window of detection and
456 the reported mass recoveries, our conclusions are primarily based on the net changes to flow
457 ($\% \Delta Q$) that are less sensitive to a changing window of detection.

458 The dynamic activity of beaver, through construction and maintenance of dams, and
459 natural seasonal changes in flow led to a diverse range of hydrologic responses resulting in the
460 spatial and temporal variability of gains and losses through the study reach. The dilution gaging
461 results show that at the two points in time we sampled, sub-reach 2 transitioned from gaining to
462 losing (Fig. 8). However, if groundwater and channel surface water elevation data are aggregated
463 over a year, the same reach was shown to be dominantly gaining over the study period (Fig. 7).
464 These differing results from dilution gaging and groundwater levels highlight the importance of
465 temporal scales and repeated measurements considered in this present work. They also indicate
466 that without this consideration, the differences between measurement techniques can lead to
467 contradicting conclusions as discussed within Schmadel et al. (2014). It is also important to note
468 that the positive head gradients on river left (in a downstream direction) shown in Figure SI 2
469 illustrate why sub-reach 5 is gaining water as shown in Figure 7. However, it is also likely losing
470 water on river right. Sub-reach 6 is gaining water due to both the main and side channels meeting
471 again (Fig. 1, Fig. 8).

472 Our temperature results demonstrate the considerable spatial and temporal variability in
473 stream temperature caused by beaver dams. We captured the warming effect at the reach scale
474 over a period of three years (Fig. 4 and 5). However, the data at this scale do not portray the
475 thermal heterogeneity illustrated by the beaver dam scale temperatures (Fig. 9 and 10). Similarly,
476 the temporal scale is of importance when determining impacts of beaver dams. For example, the
477 5-minute temperature data captured temperature fluctuations during the day that may play an
478 important role in fish habitat management and restoration (Fig. 6C-D). This daily variability
479 would not be captured if only daily averages or instantaneous measurements were recorded. The
480 lag times in peak temperatures from 2008 to 2010 (more apparent at shorter temporal scales (e.g.,
481 SI Fig. 4) are likely due to different flow conditions, air temperatures, solar radiation,
482 precipitation, and channel morphology.

483 To understand the significance of simultaneously considering the spatial and temporal
484 scale of measurements, Fig. 9-10 illustrate the temperature variability for five beaver dams while
485 providing a comparison between the dams. Individual beaver dams introduce more variability
486 than that observed at the reach scale with warming and/or cooling effects during different times
487 of the day. These individual responses are likely due to the diverse beaver dam morphology, size
488 of the beaver dam, and size of the beaver pond (Fuller and Peckarsky, 2011; McGraw, 1987).
489 However, considering a longer temporal scale, the temperature variability associated with a 24-
490 hour moving average falls within a measurement error (+/- 0.2°C) (Fig. 10B).

491 With the transition from a losing to gaining reach, one might expect a decrease in
492 temperature during the summer due to the addition of colder groundwater. However, we
493 observed increased warming over the study reach. Based on this expectation that a gaining reach
494 should be cooling, it is important to discuss the different heat transfer mechanisms influencing
495 instream temperature responses. It is well established that surface heat fluxes (shortwave
496 radiation, incoming and outgoing longwave radiation, conduction/convection, and
497 evaporation/condensation) and bed processes (bed conduction, groundwater/ hyporheic
498 exchanges) are the primary factors dictating stream temperature responses (e.g. (Cardenas et al.,
499 2014; Evans et al., 1998; Moore et al., 2005; Neilson et al., 2010a; Neilson et al., 2010b;
500 Sinokrot and Stefan, 1993; Webb and Zhang, 1997; Westhoff et al., 2007; Younus et al., 2000).
501 When considering the transition between pre and post-beaver colonization, the doubling of the
502 channel surface area is critical because surface heat fluxes are scaled with the area (Neilson et
503 al., 2010a). The influence of these fluxes on temperature is also dependent on the difference in
504 the volume of water in the channel and the residence time within the study reach. Based on the
505 observed temperature increases, the doubling of the surface area (Fig. 1, Table 3) and the tripling
506 of the residence time (Table 4) negate the buffering effects of an almost quadrupled main
507 channel water volume (Table 3) and the cooling effects associated with groundwater inflows. As
508 found within other prior studies, the general downstream warming is due primarily to influences
509 of solar radiation (Cook, 1940; Evans et al., 1998; Johnson, 2004; Webb and Zhang, 1997).
510 Regardless of the larger scale downstream trends, it is critical to consider smaller scale thermal
511 heterogeneity. To illustrate the thermal heterogeneity and complexity of flow paths resulting
512 from beaver colonization, a thermal image of surface stream temperature in May 2012 shows
513 that temperatures range from 11°C to 18°C along the study reach (SI Fig. 5C). It is most
514 important to note the difference in the temperature ranges in areas with and without beaver
515 ponds. Such thermal heterogeneity is typically overlooked or averaged out when larger scale
516 (e.g., reach scale) measurements are collected. From a stream restoration point of view, when
517 beavers are used to restore riparian areas (Albert and Trimble, 2000; Barrett, 1999; Shields Jr. et
518 al., 1995) and/or enhance fish habitat (Billman et al., 2013; Pollock et al., 2004), small spatial
519 scales (e.g., sub-reach, beaver dam, and even microhabitat units) are key for understanding the
520 influences on the aquatic ecosystem (e.g., Billman et al., 2013; Westbrook et al., 2011). Spatial
521 heterogeneity (patchiness) and spatial patterns in heterogeneity change with spatial scale (Cooper
522 et al., 1997). Since most of the ecological interactions in heterogeneous streams happen in

523 conditions that are different from mean conditions, they cannot be captured with point
524 measurements, or with models that focus on understanding average conditions (Brentall et al.,
525 2003, Grünbaum, 2012). This highlights the need to concentrate on variables and processes that
526 capture spatial patchiness at different spatial scales in stream ecosystems.

527 This study emphasizes the need to understand the variability in flow and temperatures at
528 different spatial and temporal scales. Furthermore, these data begin to provide an explanation as
529 to why the current literature provides inconsistent information regarding the influences of beaver
530 colonization. Although it is difficult to make any generalizations about the hydrologic and
531 thermal impacts of beaver dams (e.g., beaver dams increase temperature), we measured an
532 increased variability in flow and temperature that have been qualitatively discussed in previous
533 studies. Our quantification of the variability across different spatial and temporal scales provides
534 a context for better interpreting the inconsistent information found in the literature. In a given
535 locality or under specific circumstances, we contend that the patterns of increasing variability in
536 flows and temperatures should create and maintain more heterogeneous habitat that has a greater
537 probability of providing multiple niches and supporting greater biodiversity. We believe that this
538 observed hydrologic and thermal variability is an important and more generalizable attribute of
539 beaver dams. Variability in temperature, flow properties, and the associated increase in
540 microhabitat complexity are often restoration goals. However, if beaver is being considered as a
541 restoration tool (e.g., Utah Beaver Management Plan), the importance of further understanding
542 and predicting their impacts on stream systems at different spatial and temporal scales is a
543 necessity. Based on these findings, future efforts in understanding the impacts of beaver dams
544 on hydrologic and temperature regimes should begin by identifying the spatial and temporal
545 scales of data required to address specific questions and/or restoration goals. Ultimately, more
546 quantitative field and modeling studies are needed to fully understand impacts of beaver on
547 stream ecosystems for the potential use of beaver as a restoration tool.

548

549

550 **5. Conclusion**

551 This study quantifies the impacts of beaver on hydrologic and temperature regimes, and
552 highlights the importance of understanding the spatial and temporal scales of those impacts.
553 Based on the flow and temperature data collected over period of pre- and post-beaver
554 colonization, we found a general increase in stream discharge and stream temperatures at the
555 reach scale. The reach transitioned from slightly losing in 2008 (pre-beaver colonization period)
556 to gaining in 2010 (post-beaver, second year into beaver colonization). Similarly, we observed a
557 downstream warming effect over the 3-year study period. We found that the reach scale
558 hydrologic and temperature changes do not reflect the variability captured at smaller sub-reach
559 and beaver dam scales. For example, temperature measurements at finer temporal scales (5- to
560 10-minute records throughout each day) revealed significant within-day variability at smaller
561 spatial scales that was not captured at the reach scale. Our most important and likely transferable
562 findings are with regards to the increase in hydrologic and thermal variability that beaver dams

563 produce. We captured natural variability of hydrologic and thermal processes at the sub-reach
564 scale prior to beaver dam influences and show how this variability increased after beaver
565 colonization. While some sub-reaches showed gaining trends from 2008 to 2010, some began
566 losing due to flow being rerouted by dam construction. In addition, daily stream temperature
567 variability increased from 2008 to 2010. Furthermore, these data illustrate the influence of
568 individual beaver dams that can cumulatively contribute to the downstream warming and/or
569 cooling. Such hydrologic and temperature variability would be lost if only reach scale
570 measurements were collected. In the context of ecosystem impacts and potentially using beaver
571 as a restoration tool, where habitat heterogeneity and increased system resilience is achieved
572 through higher rates of biodiversity, we argue that quantifying the range and increase in
573 variability may be far more important than measuring a minor and often inconsistent change in
574 mean conditions.

575

576 **Acknowledgments**

577 This research was primarily funded by the Utah Water Research Laboratory and partially
578 supported by National Science Foundation EPSCoR Grant IIA 1208732 awarded to Utah State
579 University as part of the State of Utah EPSCoR Research Infrastructure Improvement Award.
580 Any opinions, findings, and conclusions or recommendations expressed are those of the authors
581 and do not necessarily reflect the views of the National Science Foundation. The authors would
582 additionally like to thank the Utah Division of Wildlife Resources for facilitating this research
583 and the numerous field crew members for their help with data collection. In addition, the authors
584 would like to thank reviewers for comments on an earlier draft of the manuscript.

585

586

587 **References**

588 Albert, S., and Trimble, T.: Beavers are partners in riparian restoration on the Zuni Indian Reservation, *Ecol.*
589 *Restor.*, 18, 87-92, doi:10.3368/er.18.2.87, 2000.

590 Andersen, D. C., Shafroth, P.B., Pritekel, C.M. and O'Neill, M.W.: Managed flood effects on beaver pond
591 habitat in a desert riverine ecosystem, Bill Williams River, Arizona USA, *Wetlands*, 31(2), 195-206,
592 doi:10.1007/s13157-011-0154-y 2011.

593 Barrett, K. R.: Ecological Engineering in Water Resources, *Water International*, 24, 182-188,
594 doi:10.1080/02508069908692160, 1999.

595 Beschta, L. R., Bilby, E. R., Brown, W. G., Holtby, L. B., and Hofstra, D. T.: Stream temperature and
596 aquatic habitat: fisheries and forestry interactions, E.O. Salo and T.W. Cundy (eds), *Streamside*
597 *Management: Forestry and Fishery Interactions*. University of Washington, Institute of Forest Resources,
598 Seattle, WA, 191-232, 1987.

599 Billman, E., Kreitzer, J., Creighton, J. C., Habit, E., McMillan, B., and Belk, M.: Habitat enhancement and
600 native fish conservation: can enhancement of channel complexity promote the coexistence of native and
601 introduced fishes?, *Environ. Biol. Fishes*, 96, 555-566, doi:10.1007/s10641-012-0041-2, 2013.

602 Brentnall, S. J., Richards, K. J., Brindley, J., Murphy, E.: Plankton patchiness and its effect on larger-scale
603 productivity, *Journal of Plankton Research*, 25, 121-140, doi: 10.1093/plankt/25.2.121, 2003.

604 Briggs, M. A., Lautz, L. K., and McKenzie, J. M.: A comparison of fibre-optic distributed temperature
 605 sensing to traditional methods of evaluating groundwater inflow to streams, *Hydrological Processes*, 26,
 606 1277-1290, doi:10.1002/Hyp.8200, 2012.

607 Burns, D. A., and McDonnell, J. J.: Effects of a beaver pond on runoff processes: comparison of two
 608 headwater catchments, *Journal of Hydrology*, 205, 248-264, doi:10.1016/S0022-1694(98)00081-X, 1998.

609 Cardenas, M. B., Doering, M., Rivas, D. S., Galdeano, C., Neilson, B. T., and Robinson, C. T.: Analysis of
 610 the temperature dynamics of a proglacial river using time-lapse thermal imaging and energy balance
 611 modeling, *Journal of Hydrology*, 519, Part B, 1963-1973, doi:10.1016/j.jhydrol.2014.09.079, 2014.

612 Cey, E. E., Rudolph, D. L., Parkin, G. W., and Aravena, R.: Quantifying groundwater discharge to a small
 613 perennial stream in southern Ontario, Canada, *Journal of Hydrology*, 210, 21-37, doi:10.1016/S0022-
 614 1694(98)00172-3, 1998.

615 Cook, D. B.: Beaver-Trout Relations, *J. Mammal.*, 21, 397-401, doi:10.2307/1374874, 1940.

616 Cooper, S. D., Barmuta, L., Sarnelle, O., Kratz, K., Diehl, S.: Quantifying spatial heterogeneity in streams,
 617 *Journal of the North American Benthological Society*, 16, 174-188, ISSN 0887-3593, 1997.

618 Evans, E., McGregor, G. R., and Petts, G. E.: River energy budgets with special reference to river bed
 619 processes, *Hydrological processes*, 12, 575-595, 1998.

620 Fanelli, R. M., and Lautz, L. K.: Patterns of water, heat, and solute flux through streambeds around small
 621 dams, *Ground Water*, 46, 671-687, doi:10.1111/j.1745-6584.2008.00461.x, 2008.

622 Fuller, M. R., and Peckarsky, B. L.: Ecosystem engineering by beavers affects mayfly life histories,
 623 *Freshwat. Biol.*, 56, 969-979, doi:10.1111/j.1365-2427.2010.02548.x, 2011.

624 Gibson, P. P., and Olden, J. D.: Ecology, management, and conservation implications of North American
 625 beaver (*Castor canadensis*) in dryland streams, *Aquat. Conserv.*, 24, 391-409, doi:10.1002/aqc.2432, 2014.

626 Gooseff, M. N., and McGlynn, B. L.: A stream tracer technique employing ionic tracers and specific
 627 conductance data applied to the Maimai catchment, New Zealand, *Hydrological Processes*, 19, 2491-
 628 2506, doi:10.1002/hyp.5685, 2005.

629 Grünbaum, D.: The logic of ecological patchiness, *Interface Focus*, doi: 10.1098/rsfs.2011.0084,
 630 2012. Gurnell, A. M.: The hydrogeomorphological effects of beaver dam-building activity, *Prog Phys
 631 Geogr*, 22, 167-189, 1998.

632 Harvey, J. W., and Wagner, B. J.: Quantifying hydrologic interactions between streams and their subsurface
 633 hyporheic zones, In *Streams and Ground Waters*, Edited by Jones, J. B. and Mulholland, P. J., Section
 634 One, Academic Press, San Diego, California, 2000.

635 Hill, A. R., and Duval, T. P.: Beaver dams along an agricultural stream in southern Ontario, Canada: their
 636 impact on riparian zone hydrology and nitrogen chemistry, *Hydrological Processes*, 23, 1324-1336,
 637 doi:10.1002/Hyp.7249, 2009.

638 Janzen, K., and Westbrook, C. J.: Hyporheic Flows Along a Channelled Peatland: Influence of Beaver
 639 Dams, *Canadian Water Resources Journal*, 36, 331-347, doi:10.4296/cwrj3604846, 2011.

640 Johnson, S. L.: Factors influencing stream temperatures in small streams: substrate effects and a shading
 641 experiment, *Can. J. Fish. Aquat. Sci.*, 61, 913-923, 2004.

642 Kemp, P. S., Worthington, T. A., Langford, T. E. L., Tree, A. R. J., and Gaywood, M. J.: Qualitative and
 643 quantitative effects of reintroduced beavers on stream fish, *Fish Fish.*, 13, 158-181, doi:10.1111/j.1467-
 644 2979.2011.00421.x, 2012.

645 Kilpatrick, A. F., and Cobb, D. E.: Measurement of Discharge Using Tracers, *Techniques of Water-
 646 Resources Investigations*, Book 3, Chapter A16, 52, US Geological Survey, Alexandria, VA, 1985.

647 Lautz, L. K., and Siegel, D. I.: Modeling surface and ground water mixing in the hyporheic zone using
 648 MODFLOW and MT3D, *Advances in Water Resources*, 29, 1618-1633,
 649 doi:10.1016/j.advwatres.2005.12.003, 2006.

650 Margolis, B. E., Castro, M. S., and Raesly, R. L.: The impact of beaver impoundments on the water
 651 chemistry of two Appalachian streams, *Can. J. Fish. Aquat. Sci.*, 58, 2271-2283, doi:10.1139/cjfas-58-11-
 652 2271, 2001.

653 McGraw, M.: Effect of Beaver Dams on Hyporheos Patterns, in: Ecology of streams and rivers, edited by:
 654 Hendricks, W., University of Michigan, Bivilogical Station, University of Michigan, Ann Harbor, MI,
 655 1987.

656 McRae, G., and Edwards, C. J.: Thermal Characteristics of Wisconsin Headwater Streams Occupied by
 657 Beaver: Implications for Brook Trout Habitat, *Trans. Am. Fish. Soc.*, 123, 641-656, doi:10.1577/1548-
 658 8659(1994)123<0641:TCOWHS>2.3.CO;2, 1994.

659 Meentemeyer, R. K., and Butler, D. R.: Hydrogeomorphic effects of beaver dams on Glacier National Park,
 660 Montana, *Physical Geography*, 20, 436-446, doi:10.1080/02723646.1999.10642688, 1999.

661 Merck, M. F., and Neilson, B. T.: Modeling in-pool temperature variability in a beaded arctic stream,
 662 *Hydrological Processes*, 26 (25), 3921-3933, doi: 10.1002/hyp.8419, 2012.

663 Moore, R. D., Sutherland, P., Gomi, T., and Dhakal, A.: Thermal regime of a headwater stream within a
 664 clear-cut, coastal British Columbia, Canada, *Hydrological Processes*, 19, 2591-2608,
 665 doi:10.1002/hyp.5733, 2005.

666 Neilson, B. T., Stevens, D. K., Chapra, S. C., and Bandaragoda, C.: Data collection methodology for
 667 dynamic tmperature model testing and corroboration, *Hydrological Processes*, 23 (20), 2902, doi:
 668 10.1002/hyp.7381, 2009.

669 Neilson, B. T., Chapra, S. C., Stevens, D. K., and Bandaragoda, C.: Two-zone transient storage modeling
 670 using temperature and solute data with multiobjective calibration: 1. Temperature, *Water Resources
 671 Research*, 46, W12520, doi:10.1029/2009WR008756, 2010a.

672 Neilson, B. T., Stevens, D. K., Chapra, S. C., and Bandaragoda, C.: Two-zone transient storage modeling
 673 using temperature and solute data with multiobjective calibration: 2. Temperature and solute, *Water
 674 Resources Research*, 46, W12521, doi:10.1029/2009WR008759, 2010b.

675 Nyssen, J., Pontzele, J., and Billi, P.: Effect of beaver dams on the hydrology of small mountain streams:
 676 Example from the Chevral in the Ourthe Orientale basin, Ardennes, Belgium, *Journal of Hydrology*, 402,
 677 92-102, doi:10.1016/j.jhydrol.2011.03.008, 2011.

678 Payn, R. A., Gooseff, M. N., McGlynn, B. L., Bencala, K. E., and Wondzell, S. M.: Channel water balance
 679 and exchange with subsurface flow along a mountain headwater stream in Montana, United States, *Water
 680 Resources Research*, 45, W11427, doi:10.1029/2008wr007644, 2009.

681 Pollock, M. M., Pess, G. R., Beechie, T. J., and Montgomery, D. R.: The Importance of Beaver Ponds to
 682 Coho Salmon Production in the Stillaguamish River Basin, Washington, USA, *N. Am. J. Fish. Manage.*,
 683 24, 749-760, doi:10.1577/M03-156.1, 2004.

684 Pollock, M. M., Beechie, T. J., and Jordan, C. E.: Geomorphic changes upstream of beaver dams in Bridge
 685 Creek, an incised stream channel in the interior Columbia River basin, eastern Oregon, *Earth Surface
 686 Processes and Landforms*, 32, 1174-1185, doi:10.1002/esp.1553, 2007.

687 Rantz, S. E.: Measurement and Computation of Streamflow: Computation of Discharge, US. Geological
 688 Survey, *Water Supply Paper*, Report 2175, Denver, 2, 285-631, 1982.

689 Rosell, F., Bozsér, O., Collen, P., and Parker, H.: Ecological impact of beavers *Castor fiber* and *Castor
 690 canadensis* and their ability to modify ecosystems, *Mamm. Rev.*, 35, 248-276, doi:10.1111/j.1365-
 691 2907.2005.00067.x, 2005.

692 Salyer, J. C.: Preliminary report on the beaver-trout investigation, *American Game*, 24(1), 6-15, 1935.

693 Schmadel, N. M., Neilson, B. T., and Stevens, D. K.: Approaches to estimate uncertainty in longitudinal
 694 channel water balances, *Journal of Hydrology*, 394, 357-369, doi:10.1016/j.jhydrol.2010.09.011, 2010.

695 Schmadel, N. M., Neilson, B. T., and Kasahara, T.: Deducing the spatial variability of exchange within a
 696 longitudinal channel water balance, *Hydrological Processes*, 28, 3088-3103, doi:10.1002/hyp.9854, 2014.

697 Shetter, D. S., and Whalls, M. J.: Effect of Impoundment on Water Temperatures of Fuller Creek,
 698 Montmorency County, Michigan, *The Journal of Wildlife Management*, 19, 47-54, doi:10.2307/3797551,
 699 1955.

700 Shields Jr., F., Cooper, C., and Knight, S.: Experiment in Stream Restoration, *Journal of Hydraulic
 701 Engineering*, 121, 494-502, doi:10.1061/(ASCE)0733-9429(1995)121:6(494), 1995.

702 Sinokrot, B. A., and Stefan, H. G.: Stream temperature dynamics: Measurements and modeling, *Water
 703 Resources Research*, 29, 2299-2312, doi:10.1029/93WR00540, 1993.

704 Snow, C. J.: Impact of Beaver Ponds on Stream Temperature and on Solar Radiation Penetration in Water,
705 thesis, Utah State University, Logan, Utah, 2014.

706 Talabere, A. G.: Influence of water temperature and beaver ponds on Lahontan cutthroat trout in a high-
707 desert stream, southeastern Oregon, Oregon State University, Corvalis, OR, 44 leaves, 2002.

708 Ward, A. S., Payn, R. A., Gooseff, M. N, McGlynn, B. L., Bencala, K. E., Kelleher, C. A., Wondzell, S. M.,
709 and Wagener, T.: Variations in surface water-ground water interactions along a headwater mountain
710 stream: Comparison between transient storage and water balance analyses, Water Resources Research,
711 49, 3359-3374, doi: 10.1002/wrcr.20148, 2013.

712 Webb, B., and Zhang, Y.: Spatial and seasonal variability in the components of the river heat budget,
713 Hydrological Processes, 11, 79-101, 1997.

714 Westbrook, C. J., Cooper, D. J., and Baker, B. W.: Beaver Assisted River Valley Formation, River Res.
715 Appl., 27, 247-256, doi:10.1002/Rra.1359, 2011.

716 Westhoff, M., Savenije, H., Luxemburg, W., Stelling, G., Van de Giesen, N., Selker, J., Pfister, L., and
717 Uhlenbrook, S.: A distributed stream temperature model using high resolution temperature observations,
718 Hydrol. Earth Syst.Sci., 11, 1469-1480, doi:10.5194/hess-11-1469-2007, 2007.

719 White, D. S.: Biological Relationships to Convective Flow Patterns within Stream Beds, Hydrobiologia,
720 196, 149-158, doi:10.1007/Bf00006106, 1990.

721 Younus, M., Hondzo, M., and Engel, B.: Stream temperature dynamics in upland agricultural watersheds, J.
722 Environ. Eng., 126, 518-526, 2000.

723 Zellweger, G. W.: Testing and comparison of four ionic tracers to measure stream flow loss by multiple
724 tracer injection, Hydrological Processes, 8, 155-165, doi:10.1002/hyp.3360080206, 1994.

725 Utah Division of Wildlife Resources: Utah Beaver Management Plan 2010-2020. In DWR Publication 09-
726 29, Utah Division of Wildlife Resources, Salt Lake City, Utah, 2010.

727

728 *Table 1.*

		Temporal Scale		Spatial Scale		
		Measurement Type	Measurement Time	Reach	Sub-reach	Beaver Dam
Discharge	Instantaneous		2008*	X		
	Instantaneous		2010*	X		
Temperature	Continuous		2008-2010	X		
	Instantaneous		2008	X		
	Instantaneous		2010	X		
Ground Water Levels	Continuous		Sept-Oct 2010	X		
	Continuous		2008-2010	X		
	Instantaneous		2008	X	X	
		2009		X	X	
		2011		X	X	

729 *Based on flows calculated from dilution gaging

730

731 *Table 2.*

Beaver Dam	Distance From Beaver Dam (m)			Description (for period September 2 to October 15)	
	Temperature Sensor	Temperature			
		Upstream	Downstream		
3	15	9		Upstream sensor was initially in the flowing water near the transition to the ponded area, later in slowly flowing water, downstream sensor is at the boundary of flowing water and ponded water from BD4	
4	60	49		Upstream sensor is same as BD3 downstream, downstream sensor is in a flowing well mixed portion of the channel	
5	81	21		Upstream sensor is in flowing water near the transition to the ponded area, downstream sensor is same as BD7 above	
7	47	9		Upstream sensor is in flowing water near the transition to the ponded area, downstream sensor is same as BD8 above	
8	8	6		Upstream sensor is in flowing water near the transition to the ponded area, downstream sensor is in flowing well mixed portion of the channel	

732

733 *Table 3.*

		2008	2009	2010
Study Reach (with beaver dams)	$\Delta Q (L s^{-1})$	-5.60	51.20	81.20
	% ΔQ	-4.40	13.20	53.10
	$\Delta T (^{\circ}C)$	0.22	0.17	0.43
	% ΔT	2.10	1.10	4.40
	Flowing Water Area (m^2)	1776	-	1211
	Ponded Water Area (m^2)	0	-	2830
	Water Volume (m^3)	636 *	-	2449 *
Control Reach (no beaver dams)	$\Delta Q (L s^{-1})$	-24.30	-55.90	-92.50
	% ΔQ	-7.70	-19.80	-42.50

734 735 * The water volume is an estimate from a one-dimensional model where pre- and post-beaver dams flow conditions were captured. The 2010 volume includes only main channel water without any side channels or off-channel beaver ponds.

736

737

738 *Table 4.*

Sub-reach	Stream distance (m)	Stream length (m)	2008		2010	
			Mean residence time (min)	Beaver Dam	Mean residence time (min)	
2	692 to 877	185	8	3, 4	36	
3	877 to 995	118	4		5	
4	995 to 1087	92	4.5	5	15	
5	1087 to 1235	148	6.5	7, 8	29	
6	1235 to 1291	56	4		4	
Total (min)			27		89	

739

740 Figure 1. Aerial image from 2006 (pre-beaver period) and beaver dams constructed between
741 2009 and 2010. The main beaver dams are numbered from 1 to 10 from upstream to downstream
742 and the time of dam construction is noted in the table. The study reach was further divided into 6
743 sub-reaches. The spatial scales investigated are illustrated below the map. The most downstream
744 beaver dam and beaver pond are located in the old channel but overlap in the Beaver Dam Scale
745 schematic in this figure. The 2006 channel is outlined in black while flowing and ponded water
746 area from 2010 are represented by different shades of blue.

747

748 Figure 2. Daily average discharge estimated from continuous pressure transducer records
749 spanning 2008-2010 (A-C). The black dashed line represents upstream, inflow conditions at
750 PT515 and the red solid line represents downstream, outflow conditions at PT1252. The
751 individual 95% confidence intervals around discharge estimates are represented by grey shading.
752 Note that the inflow bounds are very small and are therefore, not visible in the figure.

753

754 Figure 3. A) Change in discharge over the study reach calculated from daily average flows where
755 ΔQ is the discharge at outflow (PT1252) minus the upstream discharge at inflow (PT515).
756 Positive values represent increases in discharge and negative values represent decreases in
757 discharge. B) $\% \Delta Q$ is the percent change relative to the discharge at inflow (PT515). The 95%
758 confidence interval in three different shades of grey correspond with each individual year.
759 Arrows represent time of individual beaver dam construction. Blue and red arrows correspond
760 with year 2009 and 2010, respectively, while the arrow size is proportional to size of the dam.

761

762 Figure 4. Average daily temperature (absolute) representing reach scale responses at inflow
763 (PT515, black dashed line) and outflow (PT1252, red solid line) during 2008 (A), 2009 (B), and
764 2010 (C). Average daily air temperature (D) and average daily solar radiation (E) show similar
765 weather patterns for all three years.

766

767 Figure 5. A) Reach scale change in temperature (ΔT) calculated from temperatures at the reach
768 outflow (PT1252) minus the temperature at the reach inflow (PT515). B) $\% \Delta T$ is the percent
769 change relative to the temperature at the inflow location (PT515). Positive values represent
770 warming throughout the reach and negative values represent cooling relative to the upstream
771 inflow temperature at PT515. Arrows represent time of individual beaver dam construction. Blue
772 and red arrows correspond with year 2009 and 2010, respectively, while the arrow size is
773 proportional to size of the dam.

774

775 Figure 6. Change in discharge (ΔQ) and temperature (ΔT) over the study reach from 2008 to
776 2010. This five day period in July illustrates variability over shorter temporal scales. The $\% \Delta Q$
777 and $\% \Delta T$ are relative to the discharge and temperature at the upstream inflow location (PT515).
778 The $\% \Delta Q$ were averaged over a one hour interval, while the $\% \Delta T$ represents 5-minute
779 temperature values.

780

781 Figure 7. Groundwater elevations grouped by individual sub-reaches and shown with channel
782 water surface elevations. The groundwater elevations were measured four times in 2008, five
783 times in 2009, and four times in 2011. The water surface elevation in the channel represents the
784 average yearly value for each sub-reach. There is a gradual increase in groundwater elevation
785 and channel water surface elevation in all sub-reaches over the years.

786

787 Figure 8. Sub-reach stream discharge (Q) estimates for 2008 and 2010 representing longitudinal
788 flow variability before and after beaver colonization. $\% \Delta Q$ is calculated from flow at the end of
789 the sub-reach minus the flow at the beginning of the sub-reach relative to the upstream value.

790

791 Figure 9. Spatial variability in stream temperature throughout individual beaver dams (BD).
792 Temperature differences (ΔT) were calculated based on 10-minute temperature records from
793 locations downstream and upstream of the beaver dam and pond. These data illustrate that there
794 is a time lag between air temperature and stream temperature and that there can be measurable
795 differences in temperatures at the beaver dam spatial scale that vary diurnally. It further shows
796 the variability in temperature differences between the dams.

797

798 Figure 10. A) Daily range of temperature differences (ΔT) (downstream temperature minus
799 upstream temperature) of each beaver dam (BD) based on 10-minute temperature records.
800 Beaver dam 7 and 8 were considered to be one complex. The air temperature (blue line) and
801 stream temperature at the inflow (PT515, black dashed line) illustrate the diurnal patterns. B)
802 24-hour moving average of ΔT .

803

804 Table 1. Discharge, temperature and ground water level observations made at different spatial
805 and temporal scales throughout the study reach.

806 Table 2. Distance for temperature sensors located above and below individual beaver dams (BD)
807 during September 2 to October 15, 2010 (Fig. 1).

808 Table 3. Annual change in flow (ΔQ) and annual percent net change ($\% \Delta Q$) for the study reach
809 impacted by beaver dams (shown in Fig. 1) and for an adjacent, upstream control reach with no
810 beaver dams present. Change in stream temperature (ΔT), percent change ($\% \Delta T$), and area of
811 flowing water and ponded water area for the study reach impacted by beaver dams is listed as
812 well. Change in flow and temperature and their percentages (ΔQ , $\% \Delta Q$, ΔT , $\% \Delta T$) were
813 calculated as an average of daily Δ values for each year (Fig. 3 and Fig. 5).

814 Table 4. Sub-reach scale mean residence times for 2008 and 2010.