

1 **A Question Driven Socio-hydrological Modeling Process**

2 **M. Garcia¹, K. Portney², and S. Islam^{1,3}**

3 [1] {Civil & Environmental Engineering Department, Tufts University, 200 College Avenue,
4 Medford, MA 02155}

5 [2] {Bush School of Government & Public Service, Texas A&M University, 4220 TAMU,
6 College Station, TX 77843}

7 [3] {The Fletcher School of Law and Diplomacy, Tufts University, 160 Packard Avenue,
8 Medford, MA 02155}

9

10 Correspondence to: M. Garcia (margaret.garcia@tufts.edu)

11

12 **Abstract**

13 Human and hydrological systems are coupled: human activity impacts the hydrological cycle
14 and hydrological conditions can, but do not always, trigger changes in human systems.
15 Traditional modeling approaches with no feedback between hydrological and human systems
16 typically cannot offer insight into how different patterns of natural variability or human induced
17 changes may propagate through this coupled system. Modeling of coupled human–hydrological
18 systems, also called socio-hydrological systems, recognizes the potential for humans to
19 transform hydrological systems and for hydrological conditions to influence human behavior.
20 However, this coupling introduces new challenges and existing literature does not offer clear
21 guidance regarding model conceptualization. There are no universally accepted laws of human
22 behavior as there are for the physical systems; further a shared understanding of important
23 processes within the field is often used to develop hydrological models, but there is no such
24 consensus on the relevant processes in socio-hydrological systems. Here we present a question
25 driven process to address these challenges. Such an approach allows modeling structure, scope,
26 and detail to remain contingent on and adaptive to the question context. We demonstrate the
27 utility of this process by revisiting a classic question in water resources engineering on reservoir
28 operation rules: what is the impact of reservoir operation policy on the reliability of water supply
29 for a growing city? Our example model couples hydrological and human systems by linking the
30 rate of demand decreases to the past reliability to compare standard operating policy (SOP) with
31 hedging policy (HP). The model shows that reservoir storage acts both as a buffer for variability

1 and as a delay triggering oscillations around a sustainable level of demand. HP reduces the
2 threshold for action thereby decreasing the delay and the oscillation effect. As a result, per capita
3 demand decreases during periods of water stress are more frequent but less drastic and the
4 additive effect of small adjustments decreases the tendency of the system to overshoot available
5 supplies. This distinction between the two policies was not apparent using a traditional non-
6 coupled model.

7

8 **1 Introduction**

9 Humans both respond to and ignore changes in environmental conditions. While humans depend
10 on the natural hydrological cycle to supply water for both personal and economic health
11 (Falkenmark, 1977), they also depend on an array of other natural and human resources to
12 maintain and grow communities. At times water availability can act as the limiting constraint,
13 locally preventing or stalling the expansion of human activity. For example, water availability
14 and variability constrained agricultural development in the Tarim River Basin in Western China
15 before major water storage and transport infrastructure was constructed (Liu et al., 2014). At
16 other times the water related risks rise in the background, disconnected from decision making,
17 while other priorities prevail. For instance, the level of the Aral Sea has continued to decline for
18 decades imposing significant costs on adjacent communities but no coordinated effort to stop the
19 decline emerged (Micklin, 2007). At still other times public policy decisions may work to
20 exacerbate water problems, as when decisions are made to keep municipal water prices
21 artificially low or when “senior water rights” encourage water usage in the face of shortages
22 (Chong & Sunding, 2006; Hughes et al., 2013; Mini et al., 2014).

23 Human and hydrological systems are coupled. Many impacts of human activity on the
24 hydrological system are now well documented (Tong & Chen, 2002; Wissmar et al., 2004;
25 Vörösmarty et al., 2010; Vahmani & Hogue, 2014) and there is increasing evidence that how
26 and when humans respond individually and collectively to hydrological change has important
27 implications for water resources planning, management, and policy (Srinivasan et al., 2010; Di
28 Baldassarre et al., 2013; Elshafei et al., 2014). These observations have prompted a call to treat
29 humans as an endogenous component of the water cycle (Wagener et al., 2010; Sivapalan et al.,
30 2012). Representing water systems as coupled human–hydrological systems or socio-
31 hydrological systems with two-way feedbacks allows new research questions and potentially
32 transformative insights to emerge.

1 Traditional modeling approaches assume that there is no feedback between hydrological and
2 human systems and, therefore, cannot provide insights into how different patterns of natural
3 variability or human induced change may propagate through the coupled system. Over short
4 timescales, such as a year, many human and hydrological variables can be considered constant
5 and their couplings may be ignored (Srinivasan, 2015). However, water resources infrastructure
6 decisions have impacts on longer (decadal to century) timescales; therefore, there is a need for
7 an approach that can handle not only long term variability and non-stationarity in the driving
8 variables (e.g., precipitation, temperature, population) but also addresses how these changes can
9 propagate through the coupled system, affecting the structure and properties of the coupled
10 system (Sivapalan et al., 2012; Thompson et al., 2013). Dynamic modeling of socio-
11 hydrological systems recognizes the potential for humans to transform hydrological systems and
12 for hydrological conditions to influence human behavior. While human behavior is usually
13 incorporated into a model through scenarios, scenarios cannot include two-way feedback.
14 Building human effects of human behavior into a simulation model can enable testing of
15 feedback cycles and can illuminate the impact of feedback and path dependencies that are not
16 easily identifiable in scenario based modeling.

17 Coupled modeling, on the other hand, introduces new challenges. First, it is not possible to
18 exhaustively model complex systems such as the coupled human–hydrological system (Sterman,
19 2000; Schlüter et al., 2014). Bounds must be set to develop an effective model but researchers
20 are challenged to objectively define the scope of coupled modeling studies. Second, by
21 definition coupled models cross disciplines and modelers are unable to point to the theoretical
22 framework of any single discipline to defend the relevant scope (Srinivasan, 2015). At the same
23 time researchers must balance the scope and level of detail in order to create a parsimonious and
24 communicable model. Finally, critical assessment of models is more challenging when the
25 theories, empirical methods and vocabulary drawn upon to create and communicate a model
26 span disciplinary boundaries (Schlüter et al., 2014). At the same time, critique is needed to move
27 the field forward as the science is new and lacks established protocols. Transparency of the
28 model aims, the development process, conceptual framework and assumptions are thus
29 particularly important. A structured but flexible modeling process can address these challenges
30 by encouraging modelers to clearly define model objectives, document reasoning behind choices
31 of scale, scope and detail, and take a broad view of potentially influential system processes.

32 In this paper we present a question driven process for modeling socio-hydrological systems that
33 builds on current modeling tools from both domains and allows the flexibility for exploration.
34 We demonstrate this process by revisiting a classic question in water resources engineering on

1 reservoir operation rules: the tradeoff between standard operating policy (SOP) and hedging
2 policy (HP). Under SOP, demand is fulfilled unless available supply drops below demand; under
3 HP, water releases are reduced in anticipation of a deficit to decrease the risk a large shortfall
4 (Cancelliere et al., 1998). We add to this classic question a linkage between supply reliability
5 and demand. As this question has been asked by numerous researchers before, it offers an
6 excellent opportunity to test the utility of our proposed modeling framework using a
7 hypothetical municipality called Sunshine City as a case study.

8

9 **2 Modeling Socio-Hydrological Systems**

10 Modeling the interactions between human and hydrological systems exacerbates challenges
11 found in modeling purely hydrological systems including setting the model boundary,
12 determining the relevant processes and relationships, and clearly communicating model framing
13 and assumptions. Common approaches to hydrological modeling are reviewed to put socio-
14 hydrological modeling in the context of hydrological modeling practice. Next, modeling
15 approaches used in system dynamics and social-ecological systems science, both of which
16 address coupled systems, are described. Then, socio-hydrological modeling approaches are
17 reviewed and gaps identified. While no one approach is directly transferrable to socio-
18 hydrological systems, practices from hydrological modeling, along with those from integrative
19 disciplines, serve as a baseline for comparison and inform our socio-hydrological modeling
20 process. We then present our recommendations for socio-hydrological model conceptualization.

21 **2.1 Modeling Hydrological Systems**

22 In hydrology the basic steps of model development are: (a) data collection and analysis; (b)
23 conceptual model development; (c) translation of the conceptual model to a mathematical
24 model; (d) model calibration and (e) model validation (Blöschl and Sivapalan, 1995). While the
25 basic steps of model development are generally accepted, in practice approaches diverge,
26 particularly in conceptual model development. In hydrology Wheater et al. (1993), identified
27 four commonly used modeling approaches: physics-based, concept-based (also called
28 conceptual), data driven and hybrid data-conceptual. Physics-based models represent a system
29 by linking small-scale hydrological processes (Sivapalan et al., 2003). Concept-based models
30 use prior knowledge to specify the influential processes and determine the structure. Data driven
31 models are derived primarily from observations and do not specify the response mechanism.
32 Hybrid data-conceptual models use data and prior knowledge to infer model structure (Wheater
33 et al., 1993; Sivapalan et al., 2003).

1 Modeling purpose typically determines the modeling approach. Environmental models may be
2 developed to formulate and test theories or to make predictions (Beven, 2002). Physics-based
3 models can be used to test theories about small-scale processes or to predict catchment response
4 by scaling up these processes. Concept-based models hypothesize the important elements and
5 processes and their structure of interaction to answer a question or predict a certain property,
6 although hypotheses are often not explicitly stated and tested (Wheater et al., 1993). A reliance
7 on prior knowledge limits the applicability of concept-based modeling in fields lacking
8 consensus on both the presence and relevance of feedback processes. Data driven models are
9 effective in prediction. While they have potential for hypothesis testing, a focus on black box
10 input-output models limits insight into system processes and the ability to extrapolate beyond
11 observed data (Sivapalan et al., 2003). Hybrid data-conceptual models use data and other
12 knowledge to generate and test hypotheses about the structure of the system (Wheater et al.,
13 1993; Young, 2003). As socio-hydrology is a new area of research, prior knowledge alone is
14 insufficient and the focus is on modeling to enhance understanding through hypothesis
15 generation and testing; hybrid data-conceptual modeling tactics aimed at enhancing
16 understanding therefore inform our proposed process.

17 **2.2 Modeling Coupled Systems**

18 While coupling of natural and human systems is in its infancy in hydrology, there is a strong
19 tradition of studying coupled systems in the fields of system dynamics and social-ecological
20 systems. These fields have developed approaches to understand and model complex systems and
21 can inform a socio-hydrological modeling process. First, in both fields the research question or
22 problem drives modeling decisions. Much of the work to date on socio-hydrological systems is
23 exploratory and aims to explain evidence of system coupling seen in case data. Developing a
24 model to answer a question or solve a problem allows a more structured and defensible
25 framework to support the modeling decisions and provides a benchmark for model validation
26 (Sterman, 2000; Hinkel et al., 2015). For example, Jones et al (2002), in modeling the sawmill
27 industry in the Northeastern United States, focus on understanding if the system has the
28 structural potential to overshoot sustainable yield. While the resulting model is a significant
29 simplification of a complex system, the reason for inclusion of tree growth dynamics, mill
30 capacity and lumber prices and the exclusion of other variables is clear. Second, system
31 dynamics and social-ecological systems science use multiple data sources, both quantitative and
32 qualitative, to specify and parameterize model relationships. Omitting influential relationships or
33 decision points due to lack of quantitative data results in a greater error than their incorrect
34 specification (Forrester, 1992). Third, system dynamics focuses on developing a dynamic

1 hypothesis that explains the system behavior of interest in terms of feedback processes
2 (Sterman, 2000). Finally, social-ecological systems science has found that the use of frameworks
3 as part of a structured model development process can aid transparency and comparability across
4 models (Schlüter et al., 2014).

5 **2.3 Progress and Gaps in Socio-Hydrological Modeling**

6 Several research teams have operationalized the concepts of socio-hydrology using approaches
7 ranging from simple generic models to contextual data-driven models. Di Baldassarre et al.
8 (2013) developed a simple generic model to explore the dynamics of human-flood interactions
9 for the purpose of showing that human responses to floods can exacerbate flooding problems.
10 Viglione et al. (2014) extended this work to test the impact of collective memory, risk-taking
11 attitude and trust in risk reduction measures on human-flood dynamics. Kandasamy et al. (2014)
12 analyzed the past one hundred years of development in the Murrumbidgee river basin in eastern
13 Australia and built a simple model of the transition from the dominance of agricultural
14 development goals, through a slow realization of adverse environmental impacts, to emergence
15 of serious ecological restoration efforts. Elshafei et al. (2014) proposed a conceptual socio-
16 hydrological model for agricultural catchments and applied it to the Murrumbidgee and the Lake
17 Toolibin basins; they then built upon this conceptual model to construct a detailed semi-
18 distributed model of the Lake Toolibin basin (Elshafei et al., 2015). Srinivasan and collaborators
19 analyzed water security in the city of Chennai, India. By modeling the feedback between
20 household level coping mechanisms and regional scale stressors, the team explained the
21 counterintuitive effects of policy responses such as the observation that reduced groundwater
22 recharge caused by fixing leaky pipelines decreased household's ability to use wells to cope
23 with water system interruptions (Srinivasan et al., 2010; Srinivasan et al., 2013).

24 Researchers have also addressed the methodological questions of how to frame and model socio-
25 hydrological systems. Blair and Buytaert (2015), provide a detailed review of the model types
26 and modeling methods used in socio-hydrology and those that may have utility in the field.
27 Sivapalan and Blösch (2015) offer guidance on framing and modeling socio-hydrological
28 systems from stating framing assumptions to model validation techniques and highlight the
29 specific challenges of scale interactions found in these coupled systems. Elshafei et al. (2014)
30 and Liu et al. (2014) detailed the development of conceptual models, giving readers insight into
31 the framing of their case study work.

32 These methodological advances have begun to address the many challenges of translating the
33 concept of feedback between human and hydrological systems into actionable science. However,

1 obstacles remain; principally, expanding the scope of modeling to include societal systems and
2 human decision making exacerbates the challenges of setting the model boundary and process
3 detail, and of evaluating those choices. The source of this challenge is twofold. First, there are
4 fundamental differences between natural and social systems. The laws governing physical,
5 chemical and biological systems such as conservation of mass and energy are broadly applicable
6 across contexts; the relevance of rules influencing social systems varies by context. Second, the
7 modeling of coupled human–hydrological systems is new intellectual territory. At this
8 intersection the norms and unstated assumptions instilled by disciplinary training must be
9 actively questioned and examined within a transparent model development, testing, and
10 validation process.

11 There are no universally accepted laws of human behavior as there are for the physical and
12 biological sciences (Loucks, 2015). While institutions (formal and informal rules) influence
13 behavior, the impact of institutions on the state of the system depends on whether people follow
14 the rules (Schlager and Heikkila, 2011). Additionally, these rules are not static. In response to
15 outcomes of past decisions or changing conditions, actors change both the rules that shape the
16 options available for practical decisions and the rules governing the collective choice process
17 through which these operation rules are made (McGinnis, 2011). Further, water policy decisions
18 are not made in isolation of other policy decisions. Decisions are interlinked as the same actors
19 may interact with and get affected differently depending on the contexts (McGinnis, 2011b). The
20 outcome of a related policy decision may alter the choices available to actors or the resources
21 available to address the current problem. The state of the hydrological system, particularly
22 extreme events, can spark institutional changes; yet, other factors such as political support and
23 financial resources as well as the preparedness of policy entrepreneurs also play a role (Crow,
24 2010; Hughes et al., 2013). Given this complexity, Pahl-Wostl et al. (2007) argue that
25 recognizing the unpredictability of policy making and social learning would greatly improve the
26 conceptualization of water management. Nevertheless, some dynamics persist across time and
27 space; water management regimes persist for decades or centuries and some transitions in
28 different locations share characteristics (Elshafei et al., 2014; Kandasamy et al., 2014; Liu et al.,
29 2014). Further, modeling is a useful tool to gain insight into the impacts of these dynamics
30 (Thompson et al., 2013; Sivapalan and Blöschl, 2015). However, complex systems such as
31 socio-hydrological systems cannot be modeled exhaustively (Sterman, 2000; Schlüter et al.,
32 2014). Rather model conceptualization must balance sufficient process representation and
33 parsimony (Young et al., 1996; Ostrom, 2007).

1 Model conceptualization is based on general assumptions about how a system works. Often
2 these assumptions are implicit and not challenged by others within the same research community
3 (Kuhn, 1996). This works well when research stays within the bounds of the existing methods,
4 theories and goals of one's research community; when working in new intellectual territory,
5 research community norms cannot be relied upon to guide assumptions. Further disciplinary
6 training is highly successful at teaching these community norms and researchers working on
7 interdisciplinary projects must actively question the framing assumptions they bring to the
8 project (Lélé and Norgaard, 2005; McConnell et al., 2009). By its integrative nature socio-
9 hydrological modeling crosses disciplines and modelers are unable to point to the theoretical
10 framework of any single discipline to make simplifying assumptions (Srinivasan, 2015). In
11 absence of research community norms, we must return to modeling fundamentals. Models are
12 simplifications of real systems that, in a strict sense, cannot be validated but the acceptability of
13 model assumptions for the question at hand can be assessed (Sterman, 2000). Careful
14 articulation of the research questions links the assessment of important variables and
15 mechanisms to the question context. This allows critique to focus on the acceptability of these
16 choices relative to model goals and enables critical assessment of the range of applicability of
17 identified processes through case and model comparison.

18 The recent Water Resources Research Debate Series offers an excellent illustration of this point.
19 Di Baldassarre et al. (2015) catalyze the debate by presenting a generic model of human flood
20 interaction. This model incorporates both the “levee effect” in which periods of infrequent
21 flooding (sometimes caused by flood protection infrastructure) increase the tendency for people
22 to settle in the floodplain and the “adaptation effect” in which the occurrence of flooding leads
23 to an adaptive response. In the model they link flood frequency and adaptive action through a
24 social memory variable which increases with the occurrence of floods and decays slowly
25 overtime; flood occurrence directly triggers levee heightening in technological societies and
26 indirectly, through the social memory, decreases floodplain population density (Di Baldassarre
27 et al., 2015).

28 In the debate this modeling approach is both commended as an impressive innovation and
29 critiqued for its simplification of social dynamics (Gober and Wheater 2015; Loucks 2015;
30 Sivapalan 2015; Troy et al., 2015). Gober and Wheater (2015), note that while social or
31 collective memory is an important factor in flood resilience it does not determine flood
32 response; flood awareness may or may not result in an adaptive response based on the way
33 individuals, the media and institutions process the flood threat, the social capacity for adaptation
34 and the preparedness of policy entrepreneurs, among other factors. Loucks (2015) observes that

1 data on past behavior is not necessarily an indicator of future behavior and suggests that
2 observing stakeholder responses to simulated water management situations may offer additional
3 insight. Troy et al. (2015) and Di Baldassarre (2015) et al. note that the human flood interaction
4 model presented represents a hypothesis of system dynamics which allows exploration and that
5 simple stylized models enable generalization across space and time. In sum the debate presents
6 different perspectives on the acceptability of the modeling assumptions.

7 A close look at how the debate authors critique and commend the human flood interaction model
8 illustrates that the acceptability of modeling assumptions hinges upon the model's intended use.
9 For example, Gober and Wheater (2015) critique the simplicity of social memory as a proxy for
10 social system dynamics but acknowledge the utility of the model in clarifying the tradeoffs of
11 different approaches to meet water management goals. As we can never have comprehensive
12 representation of a complex and coupled human and hydrological system, we need transparency
13 of the abstracting assumptions and their motivation. This is not a new insight; however, a
14 question driven modeling process allows the flexibility and transparency needed to examine the
15 acceptability of model assumptions while acknowledging the role of context and the potential
16 for surprise.

17 **2.4 A Question Driven Modeling Process**

18 Our proposed process begins with a research question. The research question is then used to
19 identify the key outcome metric(s). A dynamic hypothesis is developed to explain the behavior
20 of the outcome metric over time; a framework can be used to guide and communicate the
21 development of the dynamic hypothesis. Remaining model processes are then specified
22 according to established theory.

23 As emphasized by both system dynamics and social-ecological systems researchers, the research
24 question drives the process of system abstraction. One way to think about this process of
25 abstraction is through the lens of forward and backward reasoning. Schlueter et al. (2014)
26 introduced the idea of forward and backward reasoning to develop conceptual models of social-
27 ecological systems. In a backward-reasoning approach, the question is first used to identify
28 indicators or outcome metrics; next, the analysis proceeds to identify the relevant processes and
29 then the variables and their relationships, as seen in Fig. 1 (Schlueter et al., 2014). These three
30 pieces then form the basis for the conceptual model. In contrast, a forward reasoning approach
31 begins with the identification of variables and relationships and then proceeds toward outcomes.
32 Forward reasoning is most successful when there is expert knowledge of the system and
33 backward reasoning is useful primarily when prior knowledge is insufficient (Arocha et al.,

1 1993). As few researchers have expert knowledge of all domains involved in socio-hydrological
2 modeling and data is often sparse, a backward reasoning approach is here used to conceptualize
3 a socio-hydrological model. Additionally, this outcome oriented approach will focus the scope
4 of the model on the question relevant variables and processes.

5 The research question helps to define the outcome metric(s) of interest; however, determining
6 the relevant processes and variables requires further analysis. One tool to identify influential
7 processes and variables is the dynamic hypothesis. A dynamic hypothesis is a working theory,
8 informed by data, of how the system behavior in question arose (Sterman, 2000). It is dynamic
9 in nature because it explains changes in behavior over time in terms of the structure of the
10 system (Stave, 2003). The dynamic hypothesis could encompass the entire socio-hydrological
11 model, but in practice many processes within a model will be based on established theory such
12 as rain-fall runoff or evaporation processes. The intent is to focus the dynamic hypothesis on a
13 novel theory explaining observed behavior. Stating the dynamic hypothesis clarifies which
14 portion of the model is being tested.

15 A framework can aid the development of the dynamic hypotheses and the communication of the
16 reasoning behind it. The use of frameworks enhances the transparency of model development by
17 clearly communicating the modeler's broad understanding of a system. Socio-hydrological
18 modelers can develop their own framework (Elshafei et al., 2014) or draw on existing
19 frameworks that address coupled human–hydrological systems such as the Social-Ecological
20 Systems (SES) Framework, the Management Transition Framework, or the integrated Structure-
21 Actor-Water framework (Ostrom, 2007; Pahl-Wostl et al., 2010; Hale et al., 2015).

22 To illustrate how a framework may be used in model conceptualization we will focus on the
23 SES framework. The SES framework is a nested conceptual map that partitions the attributes of
24 a social-ecological system into four broad classes: 1) resource system, 2) resource units, 3)
25 actors, and 4) the governance system (McGinnis and Ostrom, 2014). Each of the four top tier
26 variables has a series of second tier (and potentially higher tier) variables; for example, storage
27 characteristics and equilibrium properties are second tier attributes of the resource system
28 (Ostrom, 2009). The SES framework prescribes a set of elements and general relationships to
29 consider when studying coupled social and ecological systems (Ostrom, 2011). The variables
30 defined in the SES framework, were found to impact the interactions and outcomes of social-
31 ecological systems in a wide range of empirical studies (Ostrom, 2007). In addition to specifying
32 candidate variables, the SES framework specifies broad process relationships (Schlüter et al.,
33 2014). At the broadest level SES specifies that the state of the resource system, governance

1 system, resource unit properties and actor characteristics influence interactions and are
2 subsequently influenced by the outcomes of those interactions. To operationalize the SES
3 framework for model conceptualization one must move down a level to assess the relevance of
4 the tier two variables against case data and background knowledge. This review aims to check
5 the dynamic hypothesis against a broader view of coupled system dynamics and to inform
6 determination of remain model processes.

7 The following case presents the development of a socio-hydrological (coupled) and a traditional
8 (non-coupled) model to illustrate this process. While this process is developed to study real
9 world cases a hypothetical case is used here for simplicity, brevity, and proof of concept.

10

11 **3 Sunshine City: A Case Study of Reservoir Operations**

12 Sunshine City is located in a growing region in a semi-arid climate. The region is politically
13 stable, technologically developed, with a market economy governed by a representative
14 democracy. Sunshine City draws its water supply from the Blue River, a large river which it
15 shares with downstream neighbors. The water users must maintain a minimum flow in the Blue
16 River for ecological health. Sunshine City can draw up to 25% of the annual flow of the Blue
17 River in any given year. A simple prediction of the year's flow is made by assuming that the
18 flow will be equal to the previous year's flow; the resulting errors are corrected by adjusting the
19 next year's withdrawal.

20 The city Water Utility is responsible for diverting, treating and transporting water to city
21 residents and businesses. It is also tasked with making infrastructure investment decisions,
22 setting water prices. Water users receive plentiful supply at cost and there have been no
23 shortages in recent years. While located in a semi-arid environment, the large size of Sunshine
24 City's Blue River water availability and allocation created a comfortable buffer. The city Water
25 Utility is also responsible for setting water efficiency codes and other conservation rules. The
26 current building code includes only basic efficiencies required by the national government. The
27 Blue River, along with other regional sources, is fully allocated making future augmentation of
28 supplies unlikely. See Table 1 below for a summary of key characteristics of Sunshine City.

29 Along with the rest of the region, Sunshine City's population, and its water demand, has grown
30 rapidly over the past few years. Managers at the Water Utility are concerned they will no longer
31 be able to meet its reliability targets as demands rise and have added a reservoir to increase
32 future reliability. They now must decide how to operate the reservoir and are considering two
33 options: Standard Operating Policy (SOP) and Hedging Policy (HP). The selected operating

1 policy must satisfy downstream user rights and maintain minimum ecological flows. In addition
2 to meeting the legal requirements, the Water Utility managers are concerned with finding a
3 policy that will enable the city to provide the most reliable water supply throughout the lifetime
4 of the reservoir (50 to 100 years). From experience they have observed that both water price and
5 reliability affect demand. A key puzzle that emerges for water managers from this experience is:

6 *How do operational rules governing use of water storage influence long term*
7 *water supply reliability when consumers make water usage decisions based on*
8 *both price and reliability?*

9 As the question implies, the Water Utility managers have a working hypothesis relating demand
10 change with water shortages. Therefore, along with the research question the following dynamic
11 hypothesis is considered:

12 H: the occurrence of water shortages increases the tendency of users to adopt
13 water conservation technologies and to make long term behavioral changes. HP
14 triggers shortages sooner than SOP thus triggering earlier decreases in demand.

15 **3.1 Background**

16 The decision of how much water to release for use each time period is deceptively complex due
17 to the uncertainty of future streamflows and the nonlinear benefits of released water (Shih &
18 ReVelle, 1994; Draper & Lund, 2004). In making release decisions, water utilities must fulfill
19 their mandate to maintain a reliable water supply in a fiscally efficient manner. Reliability is the
20 probability that the system is in a satisfactory state (Hashimoto, Stedinger & Loucks, 1982). In
21 this case, a satisfactory system state is one in which all demands on the system can be met. The
22 definition of an unsatisfactory state is more nuanced. Water shortages have a number of
23 characteristics that are important to water management including frequency, maximum shortage
24 in a given time period, and length of shortage period (Cancelliere et al., 1998). Long term
25 reliability here refers to the projected reliability over several decades. The timeframe used for
26 long term projections varies between locations and utilities (i.e. Boston uses a 25 year
27 timeframe, Denver uses a 40 year timeframe, and Las Vegas uses a 50 year timeframe) and a 50
28 year timeframe is used here (MWRA, 2003; SNWA, 2009; Denver Water, 2015).

29 Two operational policies, SOP and HP, are commonly used to address this decision problem.
30 Under SOP, demand is always fulfilled unless available supply drops below demand; under HP,
31 water releases are limited in anticipation of an expected deficit (Cancelliere et al., 1998).
32 Hedging is used as a way to decrease the risk of a large shortfall by imposing conservation while

1 stored water remains available. Figures 2 and 3 illustrate SOP and HP respectively. For this
2 simple experiment only linear hedging, where K_P is the slope of the release function, is tested.

3 The traditional argument for hedging is that it is economical to allow a small deficit in the
4 current time period in order to decrease the probability of a more severe shortage in a future time
5 periods (Bower et al., 1962). This argument holds true if the loss function associated with a
6 water shortage is nonlinear and convex; in other words that a severe shortage has a larger impact
7 than the sum of several smaller shortages (Shih & ReVelle, 1994). Gal (1979) showed that the
8 water shortage loss function is convex, thereby proving the utility of hedging as a drought
9 management strategy. Other researchers have shown that hedging effectively reduces the
10 maximum magnitude of water shortages and increases total utility over time (Shih & ReVelle,
11 1994; Cancelliere et al., 1998). More recent work by Draper & Lund (2004) and You & Cai
12 (2008) confirms previous findings and demonstrates the continued relevance reservoir operation
13 policy selection.

14 Researchers and water system managers have for decades sought improved policies for reservoir
15 operation during drought periods (Bower et al., 1962; Shih & ReVelle, 1994; You & Cai, 2008).
16 We add to this classic question the observation that water shortages influence both household
17 conservation technology adoption rates and water use behavior. In agreement with Giacomoni,
18 et al. (2013), we hypothesize that the occurrence of water shortages increases the tendency of
19 users to adopt water conservation technologies and to make long term behavioral changes.
20 Household water conservation technologies include low flow faucets, shower heads and toilets,
21 climatically appropriate landscaping, greywater recycling and rainwater harvesting systems
22 (Schuetze & Santiago-Fandiño, 2013). The adoption rates of these technologies are influenced
23 by a number of factors including price, incentive programs, education campaigns and peer
24 adoption (Campbell et al., 2004; Kenney et al., 2008). A review of studies in the U.S., Australia
25 and U.K. showed that the installation of conservation technologies results in indoor water
26 savings of 9 to 12% for fixture retrofits and 35 to 50% for comprehensive appliance
27 replacements (Inman & Jeffrey, 2006). In some cases offsetting behavior reduces these potential
28 gains; however, even with offsetting, the adoption of conservation technologies still results in
29 lower per capita demands (Geller et al., 1983; Fielding et al., 2012). Water use behavior
30 encompasses the choices that individuals make related to water use ranging from length of
31 showers and frequency of running the dishwasher to timing of lawn watering and frequency of
32 car washing. Water use behavior is shaped by knowledge of the water system, awareness of
33 conservation options and their effectiveness, and consumer's attitudes toward conservation
34 (Frick et al., 2004; Willis et al., 2011). Changes to water use behavior can be prompted by price

1 increases, education campaigns, conservation regulations, and weather (Campbell et al., 2004;
2 Kenney et al., 2008; Olsmtead & Stavins, 2009).

3 As a city begins to experience a water shortage, the water utility may implement water
4 restrictions, price increases, incentive programs or education campaigns to influence consumer
5 behavior. While staff within the water utility or city may have planned these measures before,
6 the occurrence of a water shortage event, particularly if it aligns with other driving forces, offers
7 a window of opportunity to implement sustainable water management practices (Jones &
8 Baumgartner, 2005; Hughes et al., 2013). In addition, water users are more likely to respond to
9 these measures with changes in their water use behavior and/or adoption of conservation
10 technologies during shortages. Baldassare and Katz (1992) examined the relationship between
11 the perception of risk to personal well-being from an environmental threat and adoption of
12 environmental practices with a personal cost (financial or otherwise). They found that the
13 perceived level of environmental threat is a better predictor for individual environmental action,
14 including water conservation, than demographic variables or political factors. Illustrating this
15 effect, Mankad and Tapsuwan (2011) found that adoption of alternative water technologies, such
16 as on-site treatment and reuse, is increased by the perception of risk from water scarcity.

17 Evidence of individual level behavior change can also be seen in the results of a 2013 national
18 water policy survey conducted by the Institute for Science, Technology and Public Policy at
19 Texas A&M University. The survey sampled over 3,000 adults from across the United States
20 about their attitudes and actions related to a variety of water resources and public policy issues.
21 Included in the survey were questions that asked respondents how recently, if ever, they
22 personally experienced a water shortage and which, if any, household efficiency upgrade or
23 behavioral change actions their household had taken in the past year. Efficiency upgrade options
24 offered included low-flow shower heads, low-flush toilets and changes to landscaping;
25 behavioral options given included shorter showers, less frequent dishwasher or washing machine
26 use, less frequent car washing and changes to yard watering (ISTPP, 2013). As seen in Table 3,
27 respondents who had recently experienced a water shortage were more likely to have made
28 efficiency investments and to have changed their water use behavior. This finding is
29 corroborated by a recent survey of Colorado residents. Of the 72% of respondents reporting
30 increased attention to water issues, the most cited reason for the increase (26% of respondents)
31 was a recent drought or dry year (BBC Research, 2013). Other reasons cited by an additional
32 25% of respondents including news coverage, water quantity issues and population growth may
33 also be related water shortage concerns or experiences.

1 The increased receptivity of the public to water conservation measures and the increased
2 willingness of water users to go along with these measures during shortage events combine to
3 drive changes in per capita demands. The combined effect of these two drivers was
4 demonstrated in a study of the Arlington, TX water supply system (Giacomoni, et al., 2013;
5 Kanta & Zechman, 2014). Additional examples of city and regional scale drought response
6 leading to long term demand decreases include the droughts of 1987-1991 and the mid-2000s in
7 California and of 1982-1983 and 1997-2009 in Australia (Zilberman et al., 1992; Turrel, 1998;
8 Sivapalan et al., 2012; Hughes et al., 2013). It is often difficult to separate the relative effects of
9 the multiple price and non-price approaches applied by water utilities during droughts (Olmstead
10 & Stavins, 2009). The point is, however, that the response generally points to lower per capita
11 water demands.

12 One example of lasting water use reductions after a shortage is the 1987 to 1992 drought in Los
13 Angeles, California. An extensive public awareness and education campaign sparked both
14 behavioral changes and the adoption of efficient fixtures such as low-flow shower heads and
15 toilets and increasing block pricing introduced after the drought helped maintain conservation
16 gains (LADWP, 2010). Evidence of the lasting effect can be seen in Fig. 4. Per capita water
17 demands do not return to 1990 levels after the drought ends in 1992. Note that the data below
18 also contains a counter example. The 1976 to 1977 drought caused a sharp drop in water
19 consumption in Los Angeles, however, consumption quickly returned to pre-drought levels
20 when the rainfall returned in 1978. While the 1976 to 1977 drought was more intense than any
21 year in the 1987 to 1992 drought, the long duration of the later drought caused deeper draw
22 downs in the city's water reserves ultimately prompting transformative action (LADWP, 2010).
23 This may indicate that the impact of the 1976–1977 drought was below the threshold for
24 significant action or that other priorities dominated public attention and resources at the time. In
25 sum, the Los Angeles case serves both to illustrate that hydrological change can prompt long
26 term changes in water demands and as a reminder that multiple factors influence water demands
27 and hydrological events will not always dominate.

28 **3.2 Model Development**

29 The Sunshine City water managers want to understand how the operational rules governing use
30 of water storage influence long term water supply reliability when consumers make water usage
31 decisions based on price and reliability. A model can help the managers gain insight into system
32 behavior by computing the consequences of reservoir operation policy choice over time and
33 under different conditions. As described in the background section, many supply side and

1 demand side factors affect water system reliability. However, not all variables and processes are
2 relevant for a given question. A question driven modeling process uses the question to determine
3 model boundary and scope rather than beginning with a prior understanding of the important
4 variables and processes. A question driven process is here used to determine the appropriate
5 level of system abstraction for the Sunshine City reservoir operations model.

6 From the research question it is clear that **reliability** is the outcome metric of interest and that
7 the model must test for the hypothesized link between demand changes and reliability.
8 Reliability, as defined above, is the percent of time that all demands can be met. The SES
9 Framework is used to guide the selection of processes and variables, including the dynamic
10 hypothesis. Given this wide range, the framework was then compared against the variables and
11 processes found to be influential in urban water management and socio-hydrological studies
12 (Brezonik and Stadelmann, 2002; Abrishamchi et al., 2005; Padowski and Jawitz, 2012;
13 Srinivasan et al., 2013; Dawadi and Ahmad, 2013; Elshafei et al., 2014; Gober et al., 2014; Liu
14 et al., 2014; Pande et al., 2013; van Emmerik et al., 2014). Based on this evaluation two second
15 tier variables were added to the framework: land use to the resource system characteristics and
16 water demand to interactions; other variables were modified to reflect the language typically
17 used in the water sciences (i.e. supply in place of harvesting). See Table 2 for urban water
18 specific modification of the SES framework.

19 We then assess the relevance of the tier two variables against case data and background
20 knowledge (summarized in Sections 3.0 and 3.1 respectively) by beginning with the outcome
21 metric, reliability. Within the framework reliability is an outcome variable, specifically a social
22 performance metric, and it is the direct result of water supply and water demand interaction
23 processes. Water supply encompasses the set of utility level decisions on reservoir withdrawals
24 and discharges. As detailed in the case description, these decisions are shaped by the selected
25 reservoir operating policy, streamflow, the existing environmental flow and downstream
26 allocation requirements, reservoir capacity, water in storage, and water demands. Streamflow is
27 a stochastic process that is a function of many climatic, hydraulic and land surface parameters.
28 However, given the driving question and the assumption that the city represents only a small
29 portion of the overall watershed, a simple statistical representation is sufficient and streamflow
30 is assumed independent of other model variables.

31 Total water demand is a function of both population and per capita demand. As described in the
32 background section, per capita water demand changes over time in response to household level
33 decisions to adopt more water efficient technologies and water use behavior change made by

1 individuals in each time interval; these decisions may be influenced by conservation policies. As
2 conditions change water users reassess the situation and, if they choose to act, decide between
3 available options such as investment in efficient technology, changing water use behavior and,
4 in extreme cases, relocation. Therefore, per capita demand is a function of price and historic
5 water reliability as well as available technologies, and water user's perception of the water
6 system. Since the focus of the question is on system wide reliability individual level decisions
7 can be modeled in the aggregate as total demand, which is also influenced by population.
8 Population increases in proportion to the current population, as regional economic growth is the
9 predominate driver of migration trends. However, in extreme cases, perceptions of resource
10 limitations can also influence growth rates. The SES variables used in the conceptual model are
11 highlighted in Table 2 and the resulting processes are summarized in Fig. 5.

12 Only a subset of the variables and processes articulated in the SES framework are included in
13 the conceptual model; other variables and processes were considered but not included. For
14 example, economic development drives increasing per capita water demands in many
15 developing regions but the relationship between economic growth and water demands in highly
16 developed regions is weaker due to the increased cost of supply expansion and greater pressure
17 for environmental protection (Gleick, 2000). The income elasticity of water can lead to
18 increased water demands if rates do not change proportionally (Dalhuisen et al., 2003); here
19 prices are assumed to keep pace with inflation. Given this assumption, and the focus on a city in
20 a developed region, economic development likely plays a minor role. Similarly group decision
21 making and planning processes such as public forums, voting and elections can shape the
22 responses to reliability changes over time. This model aims to answer a question about the
23 impact of a policy not the ease or likelihood of its implementation. Once the policy is
24 established through whatever process that is used, the question here focuses on its efficacy.
25 Therefore, group decision making processes need not be included.

26 In addition to determining the appropriate level of detail of the conceptual model, we must
27 determine which variables change in response to forces outside the model scope (exogenous
28 variables), which variables must be modeled endogenously (state variables) and which can be
29 considered constants (parameters). Again the nature of the question along with the temporal and
30 spatial scale informs these distinctions. Variables such as stored water volume, per capita water
31 demand, shortage awareness will clearly change over the 50 year study period. The population
32 of the city is also expected to change over the study period. Under average hydrological
33 conditions the population growth rate is expected to be driven predominately by regional
34 economic forces exogenous to the system; however, under extreme conditions water supply

1 reliability can influence the growth rate. Therefore, population is considered a state variable.
2 Streamflow characteristics may change over the 50 year time scale in response to watershed
3 wide land use changes and global scale climatic changes. Streamflow properties are first
4 considered stationary parameters in order to understand the impact of the selected operating
5 policy in isolation from land use and climate change. Climate scenarios or feedbacks between
6 population and land use can be introduced in future applications of the model to test their impact
7 on system performance. Reservoir operating policy, summarized as the hedging slope, K_P , is
8 considered a parameter in the model. Alternate values of parameter K_P are tested but held
9 constant during the study period to understand the long term impacts of selecting a given policy.
10 Reservoir properties such as capacity and slope are also held constant to hone in on the effect of
11 operating policy. See Table 4 and Table 5 for a summary of variable types. From these model
12 relationships, general equations are developed by drawing from established theory, empirical
13 findings and working hypotheses.

14 Streamflow, Q , is modeled using a first order autoregressive model, parameterized by mean (μ_H ,
15 $\text{km}^3\text{yr}^{-1}$), standard deviation (σ_H , $\text{km}^3\text{yr}^{-1}$), and lag one autocorrelation (ρ_H). The final term, a_t , is
16 a normally distributed random variable with a mean zero and a standard deviation of one.

$$17 \quad Q_t = \rho_H(Q_{t-1} - \mu_H) + \sigma_H(1 - p_H^2)^{0.5} a_t + \mu_H \quad (1)$$

18 At each time step the amount of water in storage, V , in the reservoir is specified by a water
19 balance equation where W is water withdrawal (km^3), η_H (km yr^{-1}) is evaporation, A is area
20 (km^2), Q_D (km^3) is downstream demand and Q_E (km^3) is the required environmental flow.

$$21 \quad \frac{dV}{dt} = Q_t - W_t - \eta_H A_t - Q_D - Q_E \quad (2)$$

22 Population is the predominant driver of demand in the model. Population (P) changes according
23 to average birth (δ_B , yr^{-1}), death (δ_D , yr^{-1}), emigration (δ_E , yr^{-1}) and immigration (δ_I , yr^{-1}) rates.
24 However, immigration is dampened and emigration accelerated by high values of perceived
25 shortage risk, as would be expected at extreme levels of resource uncertainty (Sterman, 2000).
26 The logistic growth equation, which simulates the slowing of growth as the resource carrying
27 capacity of the system is approached, serves as the basis for the population function. While the
28 logistic function is commonly used to model resource constrained population growth, the direct
29 application of this function would be inappropriate for two reasons. First, an urban water system
30 is an open system; resources are imported into the system at a cost and people enter and exit the
31 system in response to reductions in reliability and other motivating factors. Second, individuals
32 making migration decisions may not be aware of incremental changes in water shortage risk;

1 rather, perceptions of water stress drive the damping effect on net migration. Finally, only at
 2 high levels does shortage perception influence population dynamics. To capture the effect of the
 3 open system logistic damping is applied only to immigration driven population changes when
 4 shortage perception crosses a threshold, τ_P . To account for the perception impact the shortage
 5 awareness variable, M , is used in place of the ratio of population to carrying capacity typically
 6 used; this modification links the damping effect to perceived shortage risk.

$$7 \quad \frac{dP}{dt} = \begin{cases} P_t[\delta_B - \delta_D + \delta_I - \delta_E] & \text{for } M_t < \tau_P \\ P_t[(\delta_B - \delta_D) + \delta_I(1 - M_t) - \delta_E(M_t)] & \text{for } M_t \geq \tau_P \end{cases} \quad (3)$$

8 Water withdrawals, W , are determined by the reservoir operating policy in use. As there is only
 9 one source, water withdrawn is equivalent to the quantity supplied. The predicted streamflow for
 10 the coming year is $0.25*Q_{t-1}$, accounting for both downstream demands and environmental flow
 11 requirements. Under SOP, K_P is equal to one which sets withdrawals equal to total demand, DP
 12 (per capita demand multiplied by population), unless the stored water is insufficient to meet
 13 demands. Under HP, withdrawals are slowly decreased once a pre-determined threshold, K_PDP ,
 14 has been passed. For both policies excess water is spilled when stored water exceeds capacity,
 15 V_{MAX} .

$$16 \quad W_t = \begin{cases} V_t + 0.25Q_{t-1} - V_{Max} & \text{for } V_t + 0.25Q_{t-1} \geq D_tP_t + V_{Max} \\ D_tP_t & \text{for } D_tP_t + V_{Max} > V_t + 0.25Q_{t-1} \geq K_P D_tP_t \\ \frac{V_t + 0.25Q_{t-1}}{K_P} & \text{for } K_P D_tP_t > V_t + 0.25Q_{t-1} \end{cases} \quad (4)$$

17 When the water withdrawal is less than the quantity demanded by the users, a shortage, S ,
 18 occurs.

$$19 \quad S_t = \begin{cases} D_tP_t - W_t & \text{for } D_tP_t > W_t \\ 0 & \text{otherwise} \end{cases} \quad (5)$$

20 Di Baldassarre et al. (2013) observed that in flood plain dynamics awareness of flood risk peaks
 21 after a flood event. This model extends that observation to link water shortage events to the
 22 awareness of shortage risk. The first term in the equation is the shortage impact which is a
 23 convex function of the shortage volume. The economic utility of hedging hinges on the
 24 assumption that the least costly options to manage demand will be undertaken first. As both
 25 water utilities and water users have a variety of demand management and conservation options
 26 available and both tend to use options from most to least cost-effective, a convex shortage loss is
 27 also applicable to the water users (Draper & Lund, 2004). It is here assumed that the

1 contribution of an event to shortage awareness is proportional to the shortage cost. At high
 2 levels of perceived shortage risk only a large shortage will lead to a significant increase in
 3 perceived risk. The adaptation cost is multiplied by one minus the current shortage awareness to
 4 account for this effect. The second term in the equation incorporates the decay of shortage, μ_s
 5 (yr^{-1}), awareness and its relevance to decision making that occurs over time (Di Baldassarre et
 6 al., 2013).

$$7 \frac{dM}{dt} = \left(\frac{s_t}{D_t P_t} \right)^2 (1 - M_t) - \mu_s M_t \quad (6)$$

8 Historically, in developed regions per capita water demands have decreased over time as
 9 technology improved and as water use practices have changed. As described above, this
 10 decrease is not constant but rather is accelerated by shocks to the system. To capture this effect
 11 there are two portions to the demand change equation: shock stimulated logistic decay with a
 12 maximum rate of α (yr^{-1}) and a background decay rate, β (yr^{-1}). Per capita water demand
 13 decrease accelerates in a time interval if water users are motivated by recent personal experience
 14 with water shortage (i.e. $M > 0$). As a certain amount of water is required for basic health and
 15 hygiene, there is ultimately a floor to water efficiencies, specified here as D_{\min} ($\text{km}^3 \text{yr}^{-1}$).
 16 Reductions in per capita water usage become more challenging as this floor is approached; a
 17 logistic decay function is used to capture this effect. When no recent shortages have occurred
 18 (i.e. $M = 0$), there is still a slow decrease in per capita water demands. This background rate, β ,
 19 of demand decrease is driven by both the replacement of obsolete fixtures with modern water
 20 efficient fixtures and the addition of new more efficient building stock. This background rate is
 21 similarly slowed as the limit is approached; this effect is incorporated by using a percentage
 22 based background rate. Note that price is not explicitly included in this formulation of demand.
 23 As stated above, because price and non-price measures are often implemented in concert it is
 24 difficult to separate the impacts of these two approaches, and in this case unnecessary.

$$25 \frac{dD}{dt} = -D_t \left[M_t \alpha \left(1 - \frac{D_{\min}}{D_t} \right) + \beta \right] \quad (7)$$

26 As a comparison, a non-coupled model was developed. In this model population and demand
 27 changes are no longer modeled endogenously. The shortage awareness variable is removed as it
 28 no longer drives population and demand changes. Instead the model assumes that population
 29 growth is constant at 3% and that per capita demands decrease by 0.5% annually. While these
 30 assumptions may be unrealistic they are not uncommon. Utility water management plans
 31 typically present one population and one demand projection. Reservoir storage, water

1 withdrawals, and shortages are computed according to the equations described above. A full list
2 of model variables and parameters can be found in Table 4 and Table 5, respectively.

3 **3.3 Results**

4 The model was run for SOP ($K_P = 1$) and three levels of HP where level one ($K_P = 1.5$) is the
5 least conservative, level two ($K_P = 2$) is slightly more conservative and level three ($K_P = 3$) is the
6 most conservative hedging rule tested. Three trials were conducted with a constant parameter set
7 to understand the system variation driven by the stochastic streamflow sequence and to test if the
8 relationship hypothesized was influential across hydrological conditions. For each trial
9 streamflow, reservoir storage, shortage awareness, per capita demand, population and total
10 demand were recorded and plotted. As a comparison, each trial was also run in the non-coupled
11 model in which demand and population changes are exogenous.

12 In the first trial, shown in Fig. 6a, there were two sustained droughts in the study period: from
13 years 5 to 11 and then from years 33 to 37. Higher than average flows in the years preceding the
14 first drought allowed the utility to build up stored water as seen in Fig. 6b. The storage acts as a
15 buffer and the impacts are not passed along to the water users until year 18 under SOP. Under
16 HP the impacts, as well as water users' shortage awareness, increase in years 15, 13 and 12
17 based on the level of the hedging rule (slope of K_P) applied, as shown in Fig. 6c. The impact of
18 this rising shortage awareness on per capita water demands is seen in the acceleration of the
19 decline in demands in Fig. 6d. This demand decrease is driven by city level policy changes such
20 as price increases and voluntary restrictions in combination with increased willingness to
21 conserve. The impacts of this decrease on individual water users will depend on their socio-
22 economic characteristics as well as the particular policies implemented. While the aggregation
23 hides this heterogeneity it should be considered in the interpretation of these results. The
24 increased shortage awareness also has a small dampening effect on population growth during
25 and directly after the first drought, Fig. 6e. Changes to both per capita demands and population
26 result in total demand changes (see Fig. 6f). After the first drought the system begins to recover
27 under each of the three hedging policies as evidenced by the slow increase in reservoir storage.
28 However, as streamflows fluctuate around average streamflow and total demands now surpass
29 the average allocation reservoir storage does not recover when no hedging restrictions are
30 imposed. Several years of above average flow ending in year 29 drive further recovery. The
31 second prolonged drought has the most pronounced effect under the SOP scenario. Shortage
32 impacts are drastic driving further per capita demand decreases and a temporary decline in

1 population.. A slight population decrease is also seen under level one hedging but the results
2 demonstrate that all hedging strategies dampen the effect.

3 In the second trial there are two brief droughts in the beginning of the study period, beginning in
4 years 4 and 10, as seen in Fig. 7a. Under SOP and the first two hedging policies there is no
5 change in operation for the first drought and the reservoir is drawn down to compensate as seen
6 in Fig. 7a-b. Only under level three HP are supplies restricted triggering an increase in shortage
7 awareness and a subsequent decrease in per capita demands, as found in Fig. 7c, and d. When
8 the prolonged drought begins in year 20, the four scenarios have very different starting points.
9 Under SOP, there is less than 0.5 km³ of water in storage and total annual demands are
10 approximately 0.65 km³. In contrast, under level three HP there is 1.4 km³ of water in storage
11 and total annual demands are just under 0.6 km³. Predictably the impacts of the drought are both
12 delayed and softened under HP. As the drought is quite severe, all scenarios result in a
13 contraction of population. However, the rate of decrease and total population decrease is
14 lowered by the use of HP.

15 In the third and final trial there is no significant low flow period until year 36 of the simulation
16 when a moderate drought event occurs, as shown in Fig. 8a. Earlier in the simulation minor
17 fluctuations in streamflow only trigger an acceleration of per capita demand declines under level
18 three HP, as seen in Fig. 8c-d. A moderate drought begins in year 36. However, the reservoir
19 levels drop and shortage awareness rise starting before year 20, as seen in Fig. 8b and c. Then
20 when the drought occurs the impacts are far greater than in the comparably moderate drought in
21 trial 1 because a prolonged period of steady water supply enabled population growth and placed
22 little pressure on the population to reduce demands. In the SOP scenario, the system was in
23 shortage before the drought occurred and total demands peaked in year 30 at 0.82 km³. The
24 subsequent drought exacerbated an existing problem and accelerated changes already in motion.

25 Fig. 9 presents results of the non-coupled model simulation. While the control model was also
26 run for all three trials, the results of only trial three are included here for brevity. In the non-
27 coupled model, HP decreases water withdrawals as reservoir levels drop and small shortages are
28 seen early in the study period, as seen in Fig. 9 b-c. In the second half of the study period
29 significant shortages are observed, as in Fig. 9c. However, inspection of the streamflow
30 sequence reveals no severe low flow periods indicating that the shortages are driven by
31 increasing demands, as in Fig. 9a. As expected changes to per capita demands, population, and
32 total demands are gradual and consistent across the operating policy scenarios, found in Fig. 9e-
33 f.

1

2 **4 Discussion**

3 The proposed question driven modeling process has three aims: to broaden researcher's view of
4 the system, to connect modeling assumptions to the model's purpose and to increase the
5 transparency of these assumptions. A socio-hydrological model was developed to examine the
6 difference in long term reliability between two reservoir operating policies, SOP and HP. This
7 question focused the conceptual model on processes influencing reliability at the city scale over
8 the 50 year planning period. As part of the conceptual model development, the SES framework
9 was used to check framing assumptions. The wide range of candidate variables included in the
10 SES framework was reviewed against case data and background information. The model's
11 intended use then informed decisions of which processes to include in the model, which
12 processes were endogenous to the system and which variables could be held constant. The point
13 here is not that the logic presented by the modeler using this process is unfailing but that it is
14 clear and can inform debate. The questions raised about both the functional form of model
15 relationships and the variables excluded during the manuscript review process indicate that some
16 transparency was achieved. However, the reader is in the best position to judge success on this
17 third aim.

18 A socio-hydrological model of the Sunshine City water system was developed using the
19 question driven modeling process and compared to a non-coupled model. The non-coupled
20 model included assumes that both population growth and per capita demand change can be
21 considered exogenous to the system. Both models show, as prior studies demonstrated, that by
22 making small reductions early on HP reduces the chance of severe shortages. The socio-
23 hydrological model also demonstrates that in the HP scenarios the moderate low flow events
24 trigger an acceleration of per capita demand decrease that shifts the trajectory of water demands
25 and in some instances slows the rate of population growth. In contrast, SOP delays impacts to
26 the water consumers and therefore delays the shift to lower per capita demands. When extreme
27 shortage events, such as a deep or prolonged drought occur, the impacts to the system are far
28 more abrupt in the SOP scenario because per capita demands and population are higher than in
29 hedging scenarios and there is less stored water available to act as a buffer. When we compare
30 SOP and HP using a socio-hydrological model we see that HP decreases the magnitude of the
31 oscillations in demand and population. Hedging reduces the threshold for action thereby
32 decreasing the delay and the oscillation effect. This distinction between the two policies was not
33 apparent when using a traditional non-coupled model. The significance of this observation is
34 that a decrease in oscillation means a decrease in the magnitude of the contractions in population

1 and per capita water demands required to maintain sustainability of the system. It is these abrupt
2 changes in water usage and population that water utilities and cities truly want to avoid as they
3 would hamper economic growth and decrease quality of life.

4 Examining the structure of the system can explain the differences in system response to SOP and
5 HP. As seen in Fig. 5, there are one positive and two negative feedback loops in the system.
6 Positive feedback loops, such as population in this model, exhibit exponential growth behavior
7 but there are few truly exponential growth systems in nature and through interaction with other
8 feedback loops most systems ultimately reach a limit (Sterman, 2000). Negative feedback loops
9 generate goal seeking behavior. In its simplest form a negative feedback loop produces a slow
10 approach to a limit or goal akin to an exponential decay function. In this case, the goal of the
11 system is to match total demand with average supply. The fact that supply is driven by
12 streamflow, a stochastic variable, adds noise to the system. Even if streamflow is correctly
13 characterized with stationary statistics, as is assumed here, the variability challenges the
14 management of the system. Reservoir storage helps utilities manage this variability by providing
15 a buffer but it also acts as a delay. The delay between a change in the state of the system and
16 action taken in response allows the system to overshoot its goal value before corrective action is
17 taken, leading to oscillation around goal values. While water storage decreases the impact of a
18 drought, changes to water consumption patterns are required to address demand driven
19 shortages. Water storage simultaneously buffers variability and delays water user response by
20 delaying impact. There are parallels between the feedback identified in this urban water supply
21 system and the feedback identified by Elshafei et al. (2014) and Di Baldassarre (2013) in
22 agricultural water management and human flood interactions respectively. Broadly the three
23 systems display the balance between the interaction between opposing forces, in this case
24 articulated as positive and negative feedback loops.

25 The case of Sunshine City is simplified and perhaps simplistic. The limited number of available
26 options for action constrains the system and shapes the observed behavior. In many cases water
27 utilities have a portfolio of supply, storage and demand management policies to minimize
28 shortages. Additionally, operating policies often shift in response to changing conditions.
29 However, in this case no supply side projects are considered and the reservoir operating policy is
30 assumed constant throughout the duration of the study period. As there are physical and legal
31 limits to available supplies the first constraint reflects the reality of some systems. Constant
32 operational policy is a less realistic constraint but can offer new insights by illustrating the
33 limitations of maintaining a given policy and the conditions in which policy change would be

1 beneficial. Despite these drawbacks a simple hypothetical model is justified here to clearly
2 illustrate the proposed modeling process.

3 There are several limitations to the hypothetical case of Sunshine City. First, the hypothetical
4 nature of the case precludes hypothesis testing. Therefore, an important extension of this work
5 will be to apply the modeling process presented here on a real case to fully test the resulting
6 model against historical observations before generating projections. Second, only one set of
7 parameters and functions was presented. Future extensions to this work on reservoir policy
8 selection will test the impact of parameter and function selection through sensitivity analysis.
9 Finally, we gain limited understanding of the potential of the model development process by
10 addressing only one research question. We can further test the ability of the modeling process to
11 generate new insights by developing different models in response to different questions. In this
12 case, the narrow scope of the driving question leads to a model that just scratches the surface of
13 socio-hydrological modeling as evidenced by the narrow range of societal variables and
14 processes included. For example, this model does not address the ability of the water utility or
15 city to adopt or implement HP. HP impacts water users in the short term. These impacts would
16 likely generate a mix of reactions from water users and stakeholders making it impossible to
17 ignore politics when considering the feasibility of HP. However, the question driving this model
18 asks about the impact of a policy choice on the long term reliability of the system not the
19 feasibility of its implementation. A hypothesis addressing the feasibility of implementation
20 would lead to a very different model structure.

21 While there is significant room for improvement, there are inherent limitations to any approach
22 that models human behavior. The human capacity to exercise free will, to think creatively and to
23 innovate means that human actions, particularly under conditions not previously experienced,
24 are fundamentally unpredictable. Further, as stated above we can never fully capture the
25 complexity of the socio-hydrological system in a model. Instead we propose a modeling process
26 that focuses socio-hydrological model conceptualization on answering questions and solving
27 problems. By using model purpose to drive our modeling decisions we provide justification for
28 simplifying assumptions and a basis for model evaluation.

29

30 **5 Conclusions**

31 Human and water systems are coupled. The feedbacks between these two subsystems can be, but
32 are not always, strong and fast enough to warrant consideration in water planning and
33 management. Traditional, non-coupled, modeling techniques assume that there are no significant

1 feedbacks between human and hydrological systems. They therefore offer no insights into how
2 changes in one part of the system may affect another. Dynamic socio-hydrologic modeling
3 recognizes and aims to understand the potential for feedbacks between human and hydrological
4 systems. By building human dynamics into a systems model, socio-hydrological modeling
5 enables testing of hypothesized feedback cycles and can illuminate the way changes propagate
6 through the coupled system.

7 Recent work examining a range of socio-hydrological systems demonstrates the potential of this
8 approach. However, there are significant challenges to modeling socio-hydrological systems.
9 First, there are no widely accepted laws of human systems as there are for physical or chemical
10 systems. Second, common disciplinary assumptions must be questioned due to the integrative
11 nature of socio-hydrology. Transparency of the model development process and assumptions
12 can facilitate the replication and critique needed to move this young field forward. We assess the
13 progress and gaps in socio-hydrological modeling and draw lessons from adjacent fields of
14 study, hydrology, social-ecological systems science and system dynamics, to inform a question
15 driven model development process. We then illustrate this process by applying it to the
16 hypothetical case of a growing city exploring two alternate reservoir operation rules.

17 By revisiting the classic question of reservoir operation policy, we demonstrate the utility of a
18 socio-hydrological modeling process in generating new insights into the impacts of management
19 practices over decades. This socio-hydrological model shows that HP offers an advantage not
20 detected by traditional simulation models: it decreases the magnitude of the oscillation effect
21 inherent in goal seeking systems with delays. Through this example we identify one class of
22 question, the impact of reservoir management policy selection over several decades, for which
23 socio-hydrological modeling offers advantages over traditional modeling. The model developed,
24 and the resulting insights, are contingent upon the question context. The dynamics identified
25 here may be more broadly applicable but this is for future cases and models to assess.

26

27 **Acknowledgements**

28 We would like to thanks Brian Fath, Wei Liu, and Arnold Vedlitz for reviewing an early version
29 of this paper. We would also like to thank the two reviewers for their careful reading and
30 thoughtful comments. Financial support for this research comes from the NSF Water Diplomacy
31 IGERT grant (0966093).

32

2 **References**

3 Abrishamchi, A., Tajrishi, M.: Inter-basin water transfer in Iran. In: Water Conservation, Reuse,
4 and Recycling, Proceeding of an Iranian American workshop. The National Academies Press,
5 Washington, DC, 252–271, 2005.

6 Arocha, J. F., Patel, V. L., & Patel, Y. C.: Hypothesis generation and the coordination of theory
7 and evidence in novice diagnostic reasoning. *Med. Decis. Making*, 13, 198–211, 1993.

8 Baldassare, M., & Katz, C.: The Personal Threat of Environmental Problems as Predictor of
9 Environmental Practices. *Environ. Behav.*, 24, 602–616, 1992.

10 BBC Research: Public Opinions, Attitudes, and Awareness Regarding Water in Colorado. Final
11 Report Prepared for the Colorado Water Conservation Board. Available at:
12 http://www.bbcresearch.com/images/Final_Report_072213_web.pdf, 2013.

13 Beven, K.: Towards a coherent philosophy for modelling the environment. *P. Roy. Soc. A-Math. Phy.*, 458, 2465–2484. doi:10.1098/rspa.2002.0986, 2002.

15 Blair, P., & Buytaert, W.: Modelling socio-hydrological systems: a review of concepts,
16 approaches and applications. *Hydrol. Earth Syst. Sci. Disc.*, 12, 8761–8851. doi:10.5194/hessd-
17 12-8761-2015, 2015.

18 Blöschl, G., & Sivapalan, M.: Scale issues in hydrological modelling: A review. *Hydrol.*
19 *Process.*, 9, 251–290. doi:10.1002/hyp.3360090305, 1995.

20 Bower, B.T., Hufschmidt, M.M., and Reedy, W.W.: Operating procedures: Their role in the
21 design of water-resources systems by simulation analyses, in *Design of Water-Resource*
22 *Systems*, Harvard Univ. Press, Cambridge, MA, 443–458, 1962.

23 Brezonik, P. L., & Stadelmann, T. H.: Analysis and predictive models of stormwater runoff
24 volumes, loads, and pollutant concentrations from watersheds in the Twin Cities metropolitan
25 area, Minnesota, USA. *Water Res.*, 36, 1743–1757, 2002.

26 Campbell, H. E., Johnson, R. M., & Larson, E. H.: Prices, devices, people, or rules: The relative
27 effectiveness of policy instruments in water conservation. *Review of Policy Research*, 21, 637–
28 662, 2004.

29 Cancelliere, A., Ancarani, A., & Rossi, G.: Susceptibility of Water Supply Reservoirs to
30 Drought Conditions. *J. Hydrol. Eng.*, 3, 140–148, 1998.

1 Chong, H., & Sunding, D.: Water Markets and Trading. *Annu. Rev. Env. Resour.*, 31(1), 239–
2 264. doi:10.1146/annurev.energy.31.020105.100323, 2006.

3 Crow, D. A.: Policy Entrepreneurs, Issue Experts, and Water Rights Policy Change in Colorado.
4 *Rev. Policy Research*, 27, 299–315, doi:10.1111/j.1541-1338.2010.00443.x, 2010.

5 Dalhuisen, J. M., Florax, R. J. G. M., de Groot, H. L. F., & Nijkamp, P.: Price and Income
6 Elasticities of Residential Water Demand: A Meta-Analysis. *Land Econ.*, 79, 292–308.
7 doi:10.2307/3146872, 2003.

8 Dawadi, S., & Ahmad, S.: Evaluating the impact of demand-side management on water
9 resources under changing climatic conditions and increasing population. *J. Environ. Manage.*,
10 114, 261–75. doi:10.1016/j.jenvman.2012.10.015, 2013.

11 Denver Water: Long-range Planning. Available at:
12 <http://www.denverwater.org/SupplyPlanning/Planning/>, 2015.

13 Di Baldassarre, G., Viglione, a., Carr, G., Kuil, L., Salinas, J. L., & Blöschl, G.: Socio-
14 hydrology: conceptualizing human-flood interactions. *Hydrol. Earth Syst. Sci.*, 10, 4515–4536,
15 2013.

16 Di Baldassarre, G., Viglione, A., Carr, G., Kuil, L., Yan, K., Brandimarte, L., & Blöschl, G.:
17 Debates—Perspectives on socio-hydrology: Capturing feedbacks between physical and social
18 processes. *Water Resour. Res.*, 51, WR016416, doi:10.1002/2014WR016416, 2015

19 Draper, A. J., & Lund, J. R.: Optimal Hedging and Carryover Storage Value. *J. Water Res. Pl-*
20 *ASCE*, 130, 83–87, 2004.

21 Elshafei, Y., Sivapalan, M., Tonts, M., & Hipsey, M. R.: A prototype framework for models of
22 socio-hydrology: identification of key feedback loops and parameterisation approach. *Hydrol.*
23 *Earth Syst. Sci.*, 18, 2141–2166, 2014.

24 Elshafei, Y., Coletti, J. Z., Sivapalan, M., & Hipsey, M. R.: A model of the socio-hydrologic
25 dynamics in a semiarid catchment: Isolating feedbacks in the coupled human-hydrology system.
26 *Water Resour. Res.*, 6, WR017048, doi:10.1002/2015WR017048, 2015

27 Falkenmark, M.: Water and Mankind - Complex System of Mutual Interaction. *Ambio*, 6, 3–9,
28 1977.

29 Fielding, K. S., Russell, S., Spinks, A., & Mankad, A.: Determinants of household water
30 conservation: The role of demographic, infrastructure, behavior, and psychosocial variables.
31 *Water Resour Res.*, 48, 2012.

1 Forrester, J. W.: Policies, decisions, and information sources for modeling. *Eur. J. Oper. Res.*,
2 59, 42–63, 1992.

3 Frick, J., Kaiser, F. G., & Wilson, M.: Environmental knowledge and conservation behavior:
4 Exploring prevalence and structure in a representative sample. *Pers. Indiv. Differ.*, 37, 1597–
5 1613, 2004.

6 Gal, S.: Optimal management of a multireservoir water supply system. *Water Resour Res.*, 15,
7 737, 1979.

8 Geller, E. S., Erickson, J. B., & Buttram, B. A.: Attempts to promote residential water
9 conservation with educational, behavioral and engineering strategies. *Popul. Environ.*, 6, 96–
10 112, 1983.

11 Giacomoni, M. H., Kanta, L., & Zechman, E. M.: Complex Adaptive Systems Approach to
12 Simulate the Sustainability of Water Resources and Urbanization. *J. Am. Water Resour. As.*,
13 139, 554–564, 2013.

14 Gleick, P. H.: A Look at Twenty-first Century Water Resources Development. *Water Int.*, 25,
15 127–138, doi:10.1080/02508060008686804, 2000.

16 Gober, P., White, D. D., Quay, R., Sampson, D. a., & Kirkwood, C. W.: Socio-hydrology
17 modelling for an uncertain future, with examples from the USA and Canada. *Geol. Soc. Spec.
18 Publ.*, 408, SP408-2, 2014.

19 Gober, P., & Wheater, H. S.: Debates—Perspectives on socio-hydrology: Modeling flood risk as
20 a public policy problem. *Water Resour. Res.*, 51, WR016945, doi:10.1002/2015WR016945,
21 2015.

22 Hashimoto, T., Stedinger, J. R., & Loucks, D. P.: Reliability, Resiliency, and Vulnerability
23 Criteria For Water Resource System Evaluation. *Water Resour. Res.*, 18(1), 14–20, 1982.

24 Hale, R. L., Armstrong, A., Baker, M. A., Bedingfield, S., Betts, D., Buahin, C., Buchert, M.,
25 Crowl, T., Dupont, R.R., Ehleringer, J.R, Endter-wada, J., Flint, C., Grant, J., Hinnens, S.,
26 Jeffery, S., Jackson-smith, D., Jones, A. S., Licon, C., Null, S. E.: iSAW: Integrating Structure,
27 Actors, and Water to Study Socio-Hydro- Ecological Systems. *Earth's Future*, 2015.

28 Hinkel, J., Schleuter, M., & Cox, M.: A diagnostic procedure for applying the social-ecological
29 systems framework in diverse cases. *Ecol. Soc.*, 20, 2015.

1 Hughes, S., Pincetl, S., & Boone, C.: Triple exposure: Regulatory, climatic, and political drivers
2 of water management changes in the city of Los Angeles. *Cities*, 32, 51–59.
3 doi:10.1016/j.cities.2013.02.007, 2013.

4 Inman, D., & Jeffrey, P.: A review of residential water conservation tool performance and
5 influences on implementation effectiveness. *Urban Water J.*, 3(3), 127–143, 2006.

6 ISTPP: National Public Water Survey. Institute for Science, Technology and Public Policy,
7 Bush School of Government and Public Service, Texas A&M University, 2013.

8 Jones, Bryan D., & Baumgartner, Frank R.: The politics of attention. Chicago: University of
9 Chicago Press, Chicago, IL, 2005.

10 Jones, A., Seville, D., & Meadows, D.: Resource sustainability in commodity systems: the
11 sawmill industry in the Northern Forest. *Syst. Dynam. Rev.*, 18(2), 171–204.
12 doi:10.1002/sdr.238, 2002.

13 Kandasamy, J., Sounthararajah, D., Sivabalan, P., Chanan, a., Vigneswaran, S., & Sivapalan,
14 M.: Socio-hydrologic drivers of the Pendulum Swing between agriculture development and
15 environmental health: a case study from Murrumbidgee River Basin, Australia. *Hydrol. Earth
16 Syst. Sci.*, 10, 7197–7233, 2014.

17 Kanta, L., & Zechman, E.: Complex Adaptive Systems Framework to Assess Supply-Side and
18 Demand-Side Management for Urban Water Resources. *J. Water Res. Pl-ASCE*, 140, 75–85,
19 2014.

20 Kenney, D. S., Goemans, C., Klein, R., Lowrey, J., & Reidy, K.: Residential water demand
21 management: Lessons from Aurora, Colorado. *J. Am. Water Resour. As.*, 44, 192–207, 2008.

22 Kuhn, T. S.: The Structure of Scientific Revolutions (3rd ed.). Chicago: University of Chicago
23 Press, 1996.

24 Lélé, S., & Norgaard, R. B.: Practicing Interdisciplinarity. *BioScience*, 55, 967-975.
25 doi:10.1641/0006-3568(2005)055[0967:PI]2.0.CO;2, 2005.

26 Liu, Y., Tian, F., Hu, H., & Sivapalan, M.: Socio-hydrologic perspectives of the co-evolution of
27 humans and water in the Tarim River basin, Western China: the Taiji–Tire model. *Hydrol. Earth
28 Syst. Sci.*, 18, 1289–1303, doi:10.5194/hess-18-1289-2014, 2014.

29 Los Angeles Department of Water and Power [LADWP]: Urban water management plan 2010.
30 Los Angeles, CA, 2010.

1 Loucks, D. P.: Debates—Perspectives on socio-hydrology: Simulating hydrologic-human
2 interactions. *Water Resour. Res.*, 51, WR017002, 10.1002/2015WR017002, 2015

3 Mankad, A., & Tapsuwan, S.: Review of socio-economic drivers of community acceptance and
4 adoption of decentralised water systems. *J. Environ. Manage.*, 92(3), 380–91.
5 doi:10.1016/j.jenvman.2010.10.03, 2011.

6 Massachusetts Water Resources Authority [MWRA]: Summary of MWRA Demand
7 Management Program. Available at:
8 <http://www.mwra.state.ma.us/harbor/pdf/demandreport03.pdf>, 2003.

9 McConnell, W. J., Millington, J. D. A., Reo, N. J., Alberti, M., Asbjornsen, H., Baker, L. A.,
10 Brozović, N., Drinkwater, L. E., Scott, A., Fragoso, J., Holland, D. S., Jantz, C. A., Kohler, T.
11 A., Herbert, D., Maschner, G., Monticino, M., Podestá, G., Pontius, R. G., Redman, C. L.,
12 Sailor, D., Urquhart, G., & Liu, J.: Research on Coupled Human and Natural Systems
13 (CHANS): Approach, Challenges, and Strategies. *Bulletin of the Ecological Society of America*,
14 Meeting Reports, 218–228, 2009.

15 McGinnis, M.: Networks of adjacent action situations in polycentric governance. *Policy Stud. J.*,
16 39, 51–78. doi:10.1111/j.1541-0072.2010.00396.x/full, 2011.

17 McGinnis, M.: An Introduction to IAD and the Language of the Ostrom Workshop: A Simple
18 Guide to a Complex Framework. *Policy Stud. J.*, 39, 169–183. doi:10.1111/j.1541-
19 0072.2010.00401.x, 2011b.

20 McGinnis, M. D., & Ostrom, E.: Social-ecological system framework: initial changes and
21 continuing challenges. *Ecol. Soc.*, 19, 2014.

22 Micklin, P.: The Aral Sea Disaster. *Annu. Rev. Earth Pl. Sc.*, 35, 47–72.
23 doi:10.1146/annurev.earth.35.031306.140120, 2007.

24 Mini, C., Hogue, T. S., & Pincetl, S.: Patterns and controlling factors of residential water use in
25 Los Angeles, California. *Water Policy*, 16, 1–16. doi:10.2166/wp.2014.029, 2014.

26 Olmstead, S. M., & Stavins, R. N.: Comparing price and nonprice approaches to urban water
27 conservation. *Water Resour. Res.*, 45, 2009.

28 Ostrom, E.: A diagnostic approach for going beyond panaceas. *P. Natl. Acad. Sci. USA*, 104,
29 15181–15187, 2007.

30 Ostrom, E.: A general framework for analyzing sustainability of social-ecological systems.
31 *Science*, 325, 419–22. doi:10.1126/science.1172133, 2009.

1 Ostrom, E.: Background on the Institutional Analysis and. Policy. Stud. J., 39, 7–27, 2011.

2 Pahl-Wostl, C., Craps, M., Dewulf, A., Mostert, E., Tabara, D., & Taillieu, T.: Social Learning
3 and Water Resources Management. Ecol. Soc., 12, 2007.

4 Pahl-Wostl, C., Holtz, G., Kastens, B., and Knieper, C.: Analyzing complex water governance
5 regimes: the Management and Transition Framework. Environ. Sci. Policy, 13, 571–581, 2010.

6 Padowski, J. C., & Jawitz, J. W.: Water availability and vulnerability of 225 large cities in the
7 United States. Water Resour Res, 48, 2012.

8 Pande, S., ErtSEN, M., & Sivapalan, M.: Endogenous change: On cooperation and water
9 availability in two ancient societies. Hydrol. Earth Syst. Sci., 18, 1745-1760, 2014.

10 Schlager, E., & Heikkila, T.: Left High and Dry? Climate Change, Common-Pool Resource
11 Theory, and the Adaptability of Western Water Compacts. Public Admin. Rev., 71, 461–470,
12 doi/10.1111/j.1540-6210.2011.02367.x, 2011.

13 Schuetze, T., & Santiago-Fandiño, V.: Quantitative Assessment of Water Use Efficiency in
14 Urban and Domestic Buildings. Water, 5, 1172–1193, 2013.

15 Schlüter , M., Hinkel, J., Bots, P., & Arlinghaus, R.: Application of the SES Framework for
16 Model-based Analysis of the Dynamics of Social-Ecological Systems. Ecol. Soc., 19, 2014.

17 Shih, J., & Revelle, C.: Water-Supply Operations During Drought: Continuous Hedging Rule. J.
18 Water Res. Pl-ASCE, 120, 613–629, 1994.

19 Sivapalan, M., Bloschl, G., Zhang, L., & Vertessy, R.: Downward approach to hydrological
20 prediction. Hydrol. Process., 17, 2101–2111. doi:10.1002/hyp.1425, 2003.

21 Sivapalan, M., Savenije, H. H. G., and Blöschl, G.: Socio-hydrology: A new science of people
22 and water. Hydrol. Process., 26, 1270–1276, 2012.

23 Sivapalan, M., & Blöschl, G.: Time scale interactions and the coevolution of humans and water.
24 Water Resour. Res., 51, WR017896. doi:10.1002/2015WR017896, 2015.

25 Sivapalan, M.: Debates—Perspectives on socio-hydrology: Changing water systems and the
26 “tyranny of small problems”—Socio-hydrology. Water Resour. Res., 51, WR017080,
27 doi:10.1002/2015WR017080, 2015.

28 Southern Nevada Water Authority [SNWA]: Water Resources Management Plan. Available at:
29 http://www.snwa.com/assets/pdf/wr_plan.pdf, 2009.

1 Srinivasan, V., Gorelick, S. M., & Goulder, L.: Sustainable urban water supply in south India:
2 Desalination, efficiency improvement, or rainwater harvesting? *Water Resour Res.*, 46, 2010.

3 Srinivasan, V., Seto, K. C., Emerson, R., & Gorelick, S. M.: The impact of urbanization on
4 water vulnerability: A coupled human–environment system approach for Chennai, India. *Global*
5 *Environ. Chang.*, 23, 229–239. doi:10.1016/j.gloenvcha.2012.10.002, 2013.

6 Srinivasan, V.: Reimagining the past – use of counterfactual trajectories in socio-hydrological
7 modelling: the case of Chennai, India. *Hydrol. Earth Syst. Sci.*, 19, 785–801. doi:10.5194/hess-
8 19-785-2015, 2015.

9 Stave, K.A.: A system dynamics model to facilitate public understanding of water management
10 options in Las Vegas, Nevada. *J. Environ. Manage.*, 67, 303–313. doi:10.1016/S0301-
11 4797(02)00205-0, 2003.

12 Sterman, J.: *Business Dynamics: Systems Thinking and Modeling for a Complex World*. Irwin
13 McGraw—Hill, Boston, 2000.

14 Thompson, S. E., Sivapalan, M., Harman, C. J., Srinivasan, V., Hipsey, M. R., Reed, P.,
15 Montanari, A., Blöschl, G.: Developing predictive insight into changing water systems: use-
16 inspired hydrologic science for the Anthropocene. *Hydrol. Earth Syst. Sci.*, 17, 5013–5039,
17 2013.

18 Tong, S. T., & Chen, W.: Modeling the relationship between land use and surface water quality.
19 *J. Environ. Manage.*, 66, 377-393, 2002.

20 Troy, T. J., Pavao-Zuckerman, M., & Evans, T. P.: Debates—Perspectives on socio-hydrology:
21 Socio-hydrologic modeling: Tradeoffs, hypothesis testing, and validation. *Water Resour. Res.*,
22 51, WR017046. doi:10.1002/2015WR017046, 2015.

23 Turrel, H.: Hydro-logic? Reform in water resources management in developed countries with
24 major agricultural water use - Lessons for developing nations. Overseas Development Institute,
25 London, 1998.

26 Vahmani, P., & Hogue, T. S.: Incorporating an urban irrigation module into the Noah Land
27 surface model coupled with an urban canopy model. *J. Hydrometeorol.*, 15, 1440-1456, 2014.

28 van Emmerik, T. H. M., Li, Z., Sivapalan, M., Pande, S., Kandasamy, J., Savenije, H. H. G.,
29 Chanan, A., & Vigneswaran, S.: Socio-hydrologic modeling to understand and mediate the
30 competition for water between agriculture development and environmental health:

1 Murrumbidgee River basin, Australia. *Hydrol. Earth Syst. Sci.*, 18, 4239–4259.

2 doi:10.5194/hess-18-4239-2014, 2014.

3 Viglione, A., Baldassarre, G. Di, Brandimarte, L., Kuil, L., Carr, G., Salinas, J. L., Scolobig, A.

4 & Blöschl, G.: Insights from socio-hydrology modelling on dealing with flood risk – roles of

5 collective memory, risk-taking attitude and trust. *J. Hydrol.*, 518, 71-82,

6 doi:10.1016/j.jhydrol.2014.01.018, 2014.

7 Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P.,

8 Glidden, S., Bunn, S.E., Sullivan, C.A., Lierman, C.R., Davies, P. M.: Global threats to human

9 water security and river biodiversity. *Nature*, 467, 555–561. doi:10.1038/nature09549, 2010.

10 Wagener, T., Sivapalan, M., Troch, P. a., McGlynn, B. L., Harman, C. J., Gupta, H. V., Wilson,

11 J. S.: The future of hydrology: An evolving science for a changing world. *Water Resour. Res.*,

12 46, W05301, 2010.

13 Wheater, H.S., Jakeman A.J., and Beven, K.J.: Progress and Directions in Rainfall-Runoff

14 Modeling, in: *Modeling Change in Environmental Systems*, John Wiley and Sons, New York,

15 101-132, 1993.

16 Willis, R. M., Stewart, R. a., Panuwatwanich, K., Williams, P. R., & Hollingsworth, A. L.:

17 Quantifying the influence of environmental and water conservation attitudes on household end

18 use water consumption. *J. Environ. Manage.*, 92, 1996–2009, 2011.

19 Wissmar, R. C., Timm, R. K., & Logsdon, M. G.: Effects of changing forest and impervious

20 land covers on discharge characteristics of watersheds. *Environ. Manage.*, 34, 91-98, 2004.

21 You, J. Y., & Cai, X.: Hedging rule for reservoir operations: 1. A theoretical analysis. *Water*

22 *Resour Res*, 44, 1–9, 2008.

23 Young, P., Parkinson, S., & Lees, M.: Simplicity out of complexity in environmental modelling:

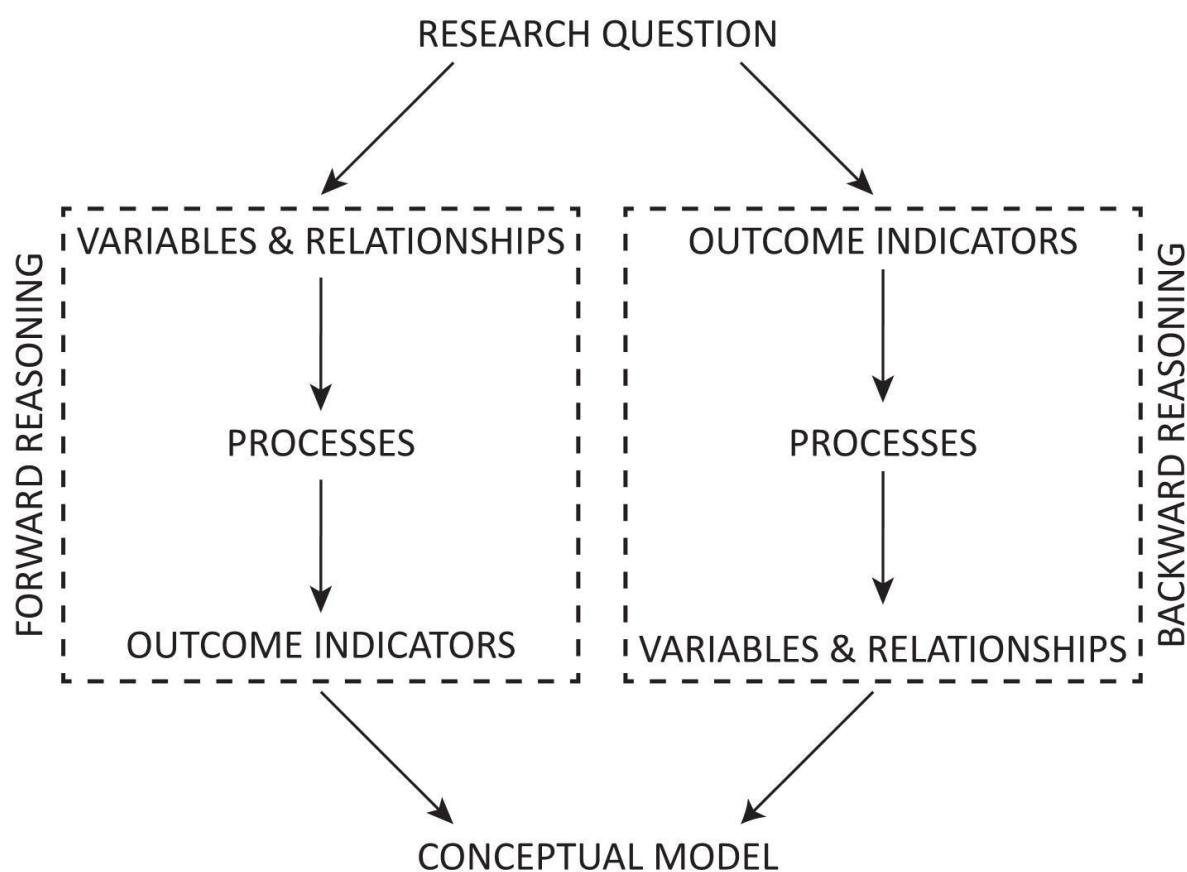
24 Occam’s razor revisited. *J. Appl. Stat.*, 23, 165-210, doi:10.1080/02664769624206, 1996.

25 Young, P.: Top-down and data-based mechanistic modelling of rainfall-flow dynamics at the

26 catchment scale. *Hydrol. Process.*, 17, 2195–2217. doi:10.1002/hyp.1328, 2003.

27 Zilberman, D.; Dinar, A.; MacDougall, N.; Khanna, M.; Brown, C.; Castillo, F.: Individual and

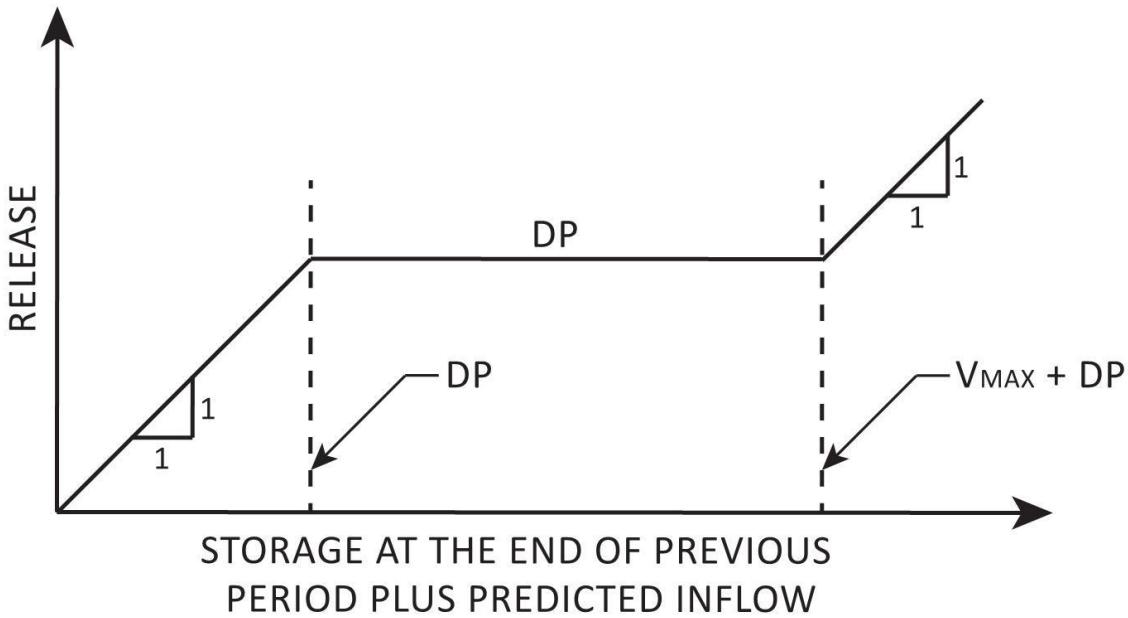
28 institutional responses to the drought: The case of California agriculture. ERS Staff Paper. US

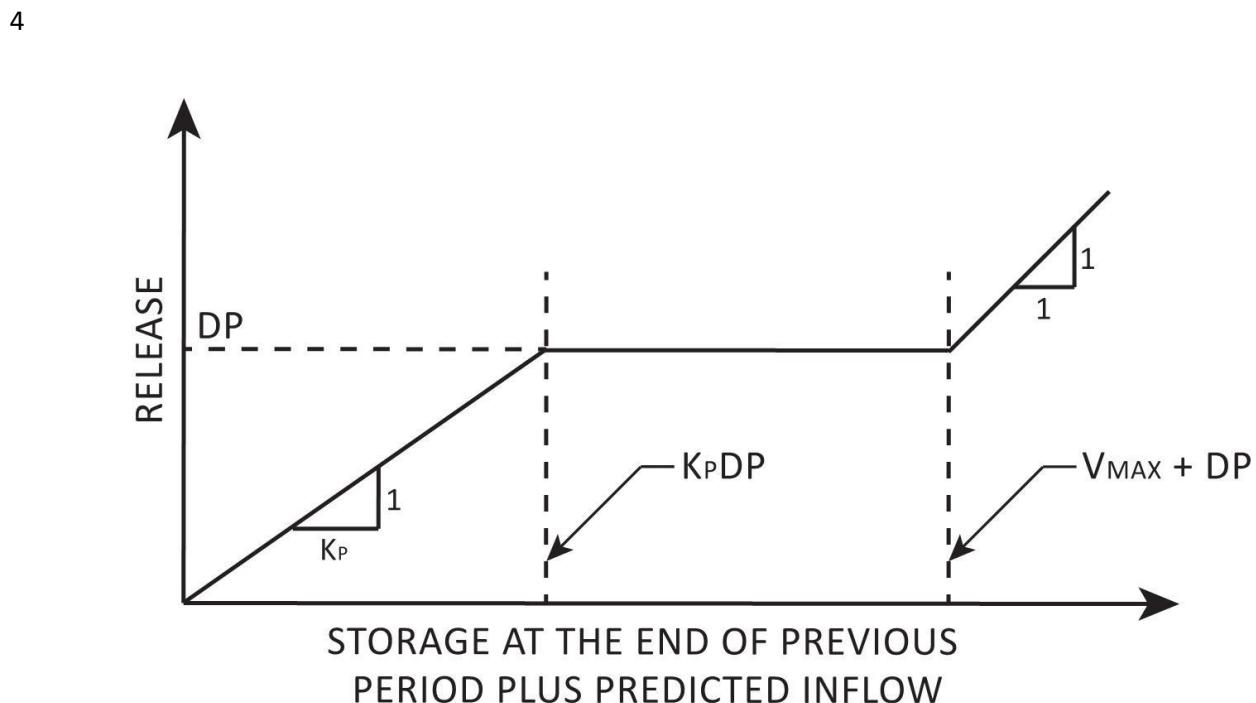

29 Department of Agriculture, Washington, D.C., 1992.

30

1 **Table 1: Summary of Sunshine City Properties**

Sunshine City Properties		
Variable	Value	Units
Blue River mean flow	2	km ³ yr ⁻¹
Blue River variance	0.5	km ³ yr ⁻¹
Blue River Lag 1 Autocorrelation	0.6	-
Average evaporation rate	1	m yr ⁻¹
Population	1,000,000	people
Average annual growth rate	3	%
Per capita water usage	400	m ³ yr ⁻¹
Water price	0.25	\$ m ⁻³
Reservoir capacity	0.2	km ³
Reservoir slope	0.1	-


2


3

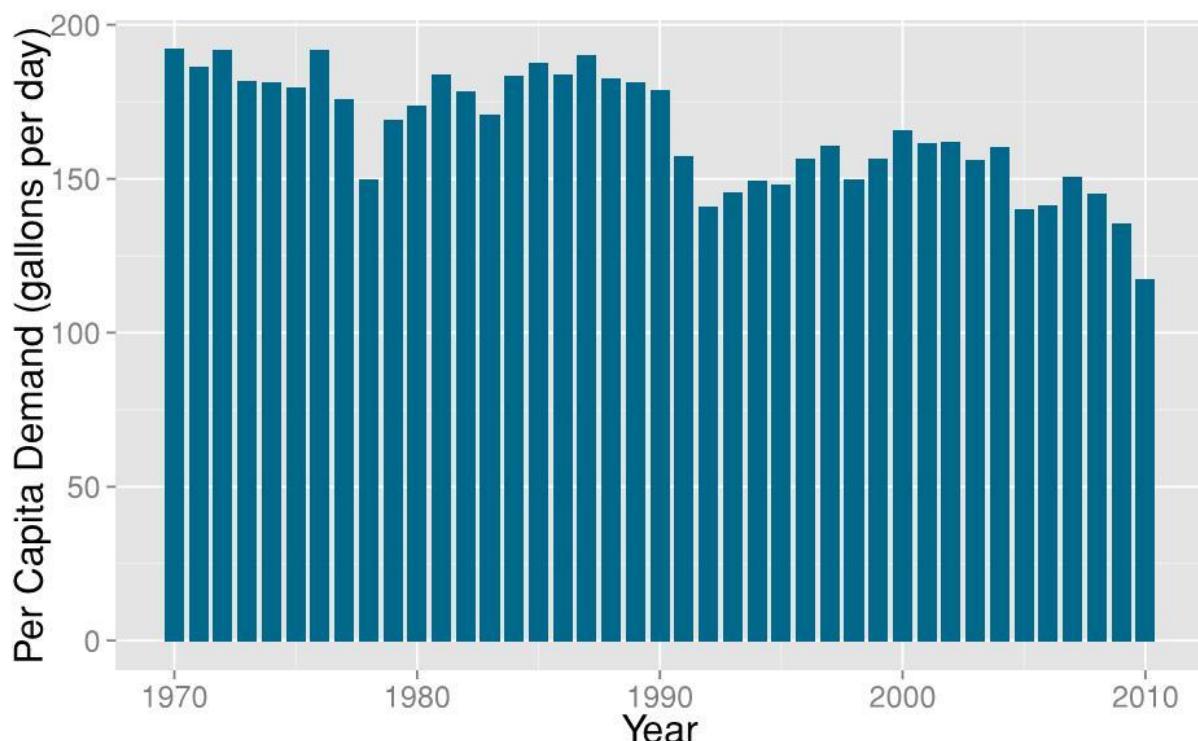
4 **Figure 1: Backward Reasoning Process (adapted from: Schlüter et al., 2014)**

5

1
2 **Figure 2: Standard Operating Policy, where D is per capita demand, P is population and V_{MAX} is reservoir**
3 **capacity (Adapted from Shih & ReVelle, 1994)**

5
6 **Figure 3: Hedging Policy, where K_P is hedging release function slope (Adapted from Shih & ReVelle, 1994)**
7

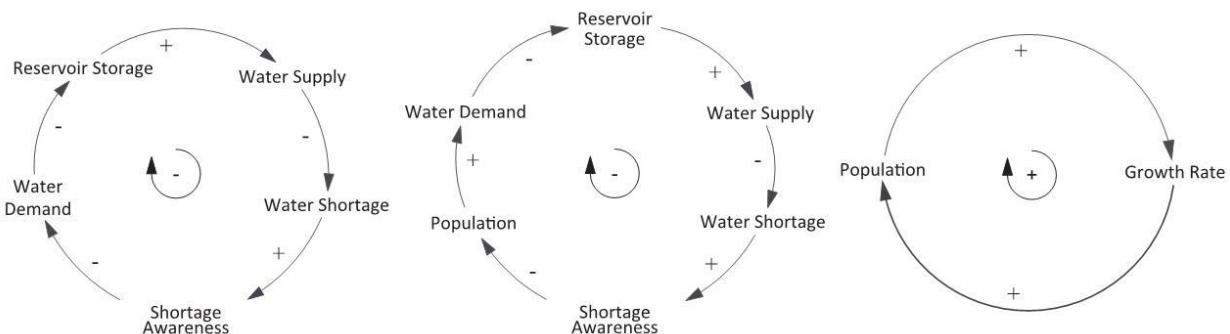
1 **Table 2: SES Framework, Modified for Urban Water Systems**


First Tier Var.	Second Tier Variables	Third Tier Variables (Examples)
Socio, economic & political settings	S1 – Economic development S2 – Demographic trends S3 – Political stability S4 – Other governance systems S5 – Markets S6 – Media organizations S7 – Technology	Per capita income Rapid growth Frequency of government turnover Related regulations Regional water markets Media diversity Infrastructure, Communications
Resource Systems	RS1 – Type of water resource RS2 – Clarity of system boundaries RS3 – Size of resource system RS4 – Human-constructed facilities RS5 – Productivity of system Catchment Land Use RS6 – Equilibrium properties RS7 – Predictability of system dynamics RS8 – Storage characteristics RS9 – Location	Surface water, groundwater Groundwater-surface water interactions Watershed or aquifer size Type, Capacity, Condition Urbanization, Reforestation Mean streamflow, Sustainable yield Data availability, historic variability Natural/built, Volume
Governance Systems	GS1 – Government organizations GS2 – Nongovernment organizations GS3 – Network structure GS4 – Property Water-rights systems GS5 – Operational-choice rules GS6 – Collective-choice rules GS7 – Constitutional-choice rules GS8 – Monitoring and sanctioning rules	Public utilities, Regulatory agencies Advocacy groups, Private Utilities Hierarchy of organizations Prior appropriation, Beneficial use Water use restrictions, Operator protocol Deliberation rules, Position rules Boundary rules, Scope rules Enforcement responsibility
Resource Units	RU1 – Resource unit mobility Interbasin Connectivity RU2 – Growth or replacement rate RU3 – Interaction among resource units RU4 – Economic value RU5 – Number of units Quantity RU6 – Distinctive characteristics RU7 – Spatial and temporal distribution	Infrastructure, Surface-groundwater interactions Water pricing, Presence of markets Volume in storage, Current flow rate Water quality, Potential for public health impacts Seasonal cycles, Inter-annual cycles
Actors	A1 – Number of relevant actors A2 – Socioeconomic attributes A3 – History or past experiences A4 – Location A5 – Leadership/entrepreneurship A6 – Norms (trust-reciprocity)/social capital A7 – Knowledge of SES/mental models A8 – Importance of resource (dependence) A9 – Technologies available A10 – Values	Education level, Income, Ethnicity Extreme events, Government intervention Presence of strong leadership Trust in local government Memory, Mental models Availability of alternative sources Communication technologies, Efficiency technologies Preservation of cultural practices
Action situations: Interactions -> Outcomes	I1 – Harvesting Water Supply I2 – Information sharing I3 – Deliberation processes I4 – Conflicts I5 – Investment activities I6 – Lobbying activities I7 – Self-organizing activities I8 – Networking activities I9 – Monitoring activities I10 – Water Demand O1 – Social performance measures O2 – Ecological performance measures O3 – Externalities to other SESs	Withdrawal, transport, treatment, distribution Public meetings, Word of mouth Ballot initiatives, Board votes, Public meetings Resource allocation conflicts, Payment conflicts Infrastructure construction, Conservation technology Contacting representatives Formation of NGOs Online forums Sampling, Inspections, Self-policing Indoor/Outdoor, Residential/Commercial/Industrial Efficiency, Equity, Accountability Sustainability, Minimum flows Ecosystem impacts
Related Ecosystems	ECO1 – Climate patterns ECO2 – Pollution patterns ECO3 – Flows into and out of focal SES	El Nino Impacts, Climate change projections Urban runoff, Upstream discharges Upstream impacts, Downstream rights

Note: Variables removed or replaced are crossed out, variables added are in italic, variables key to the conceptual model are in bold. Examples of third tier variables are given for clarification.

1 **Table 3: Household Conservation Action by Shortage Experience (ISTPP, 2013)**

Last Experienced a Water Shortage	% of Households, over the past year, that have		
	Invested in Efficient Fixtures or Landscapes	Changed Water Use Behavior	Taken No Action
Within a Year	56%	88%	11%
1 to 2 years ago	52%	87%	11%
2 to 5 years ago	51%	78%	17%
6 to 9 years ago	50%	79%	18%
10 or more years ago	42%	74%	24%
Never Experienced	36%	66%	31%

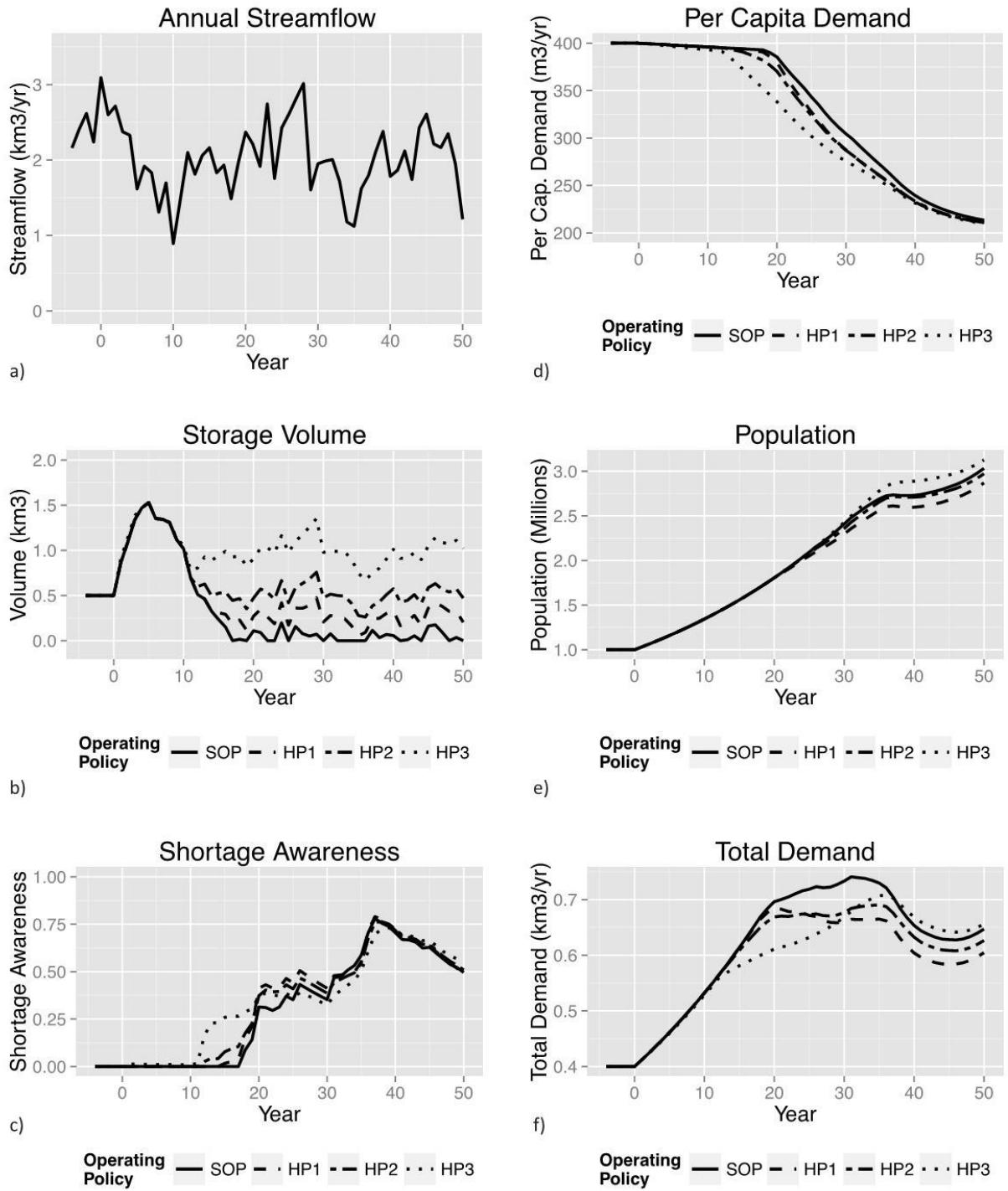

2

3

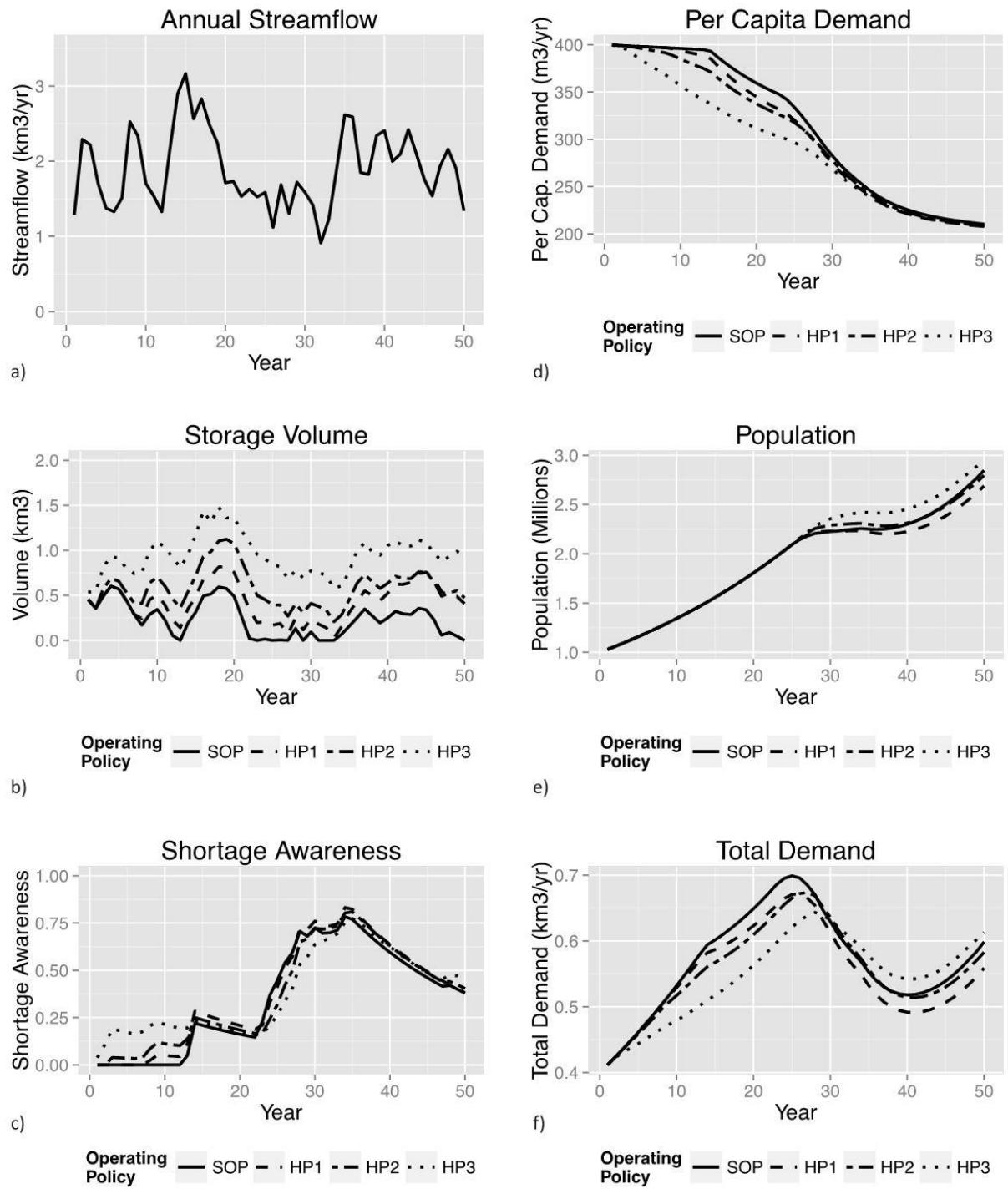
4 **Figure 4: Historical City of Los Angeles Water Use (LADWP, 2010)**

5

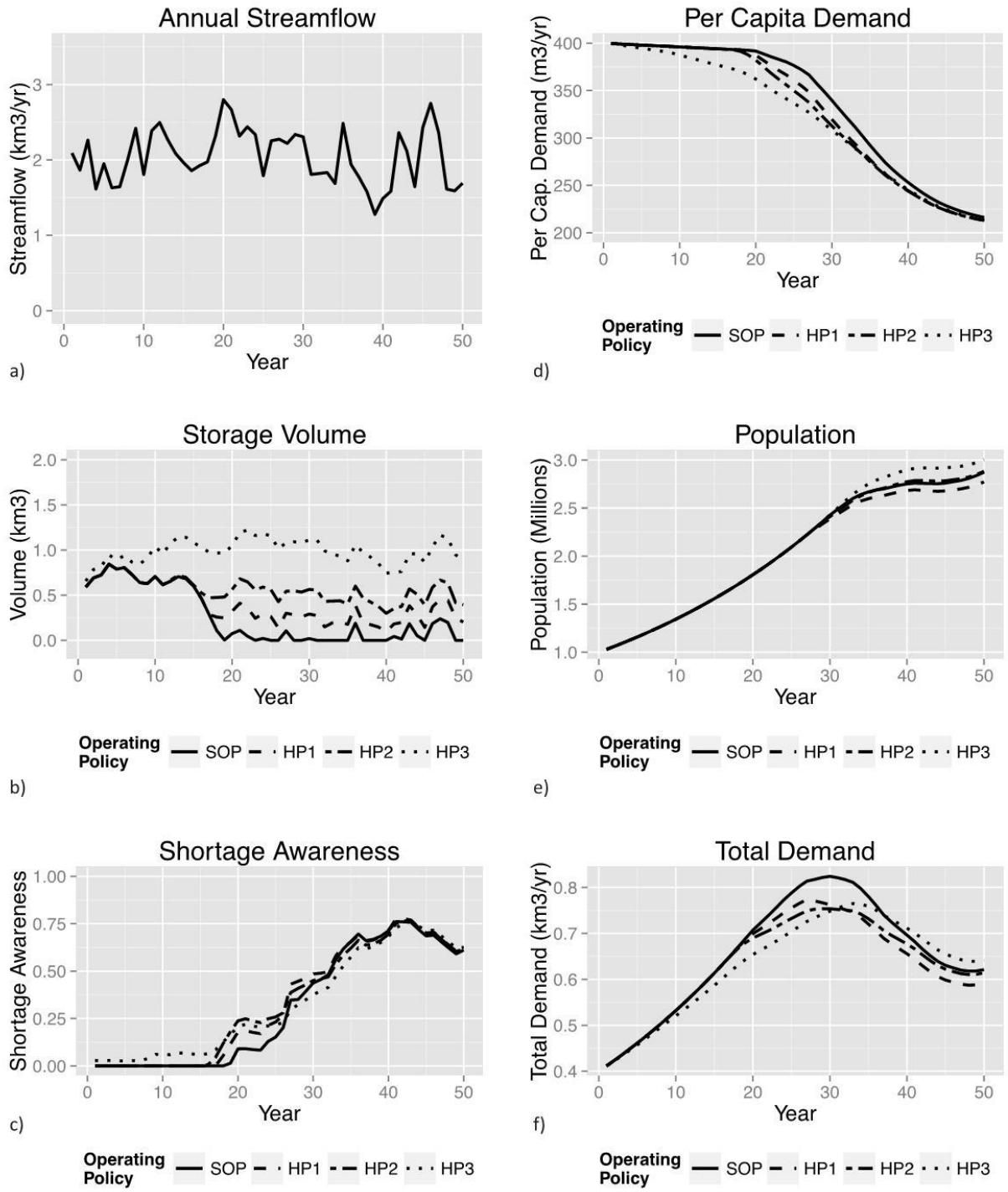
1


2 **Table 4: State and Exogenous Model Variables**

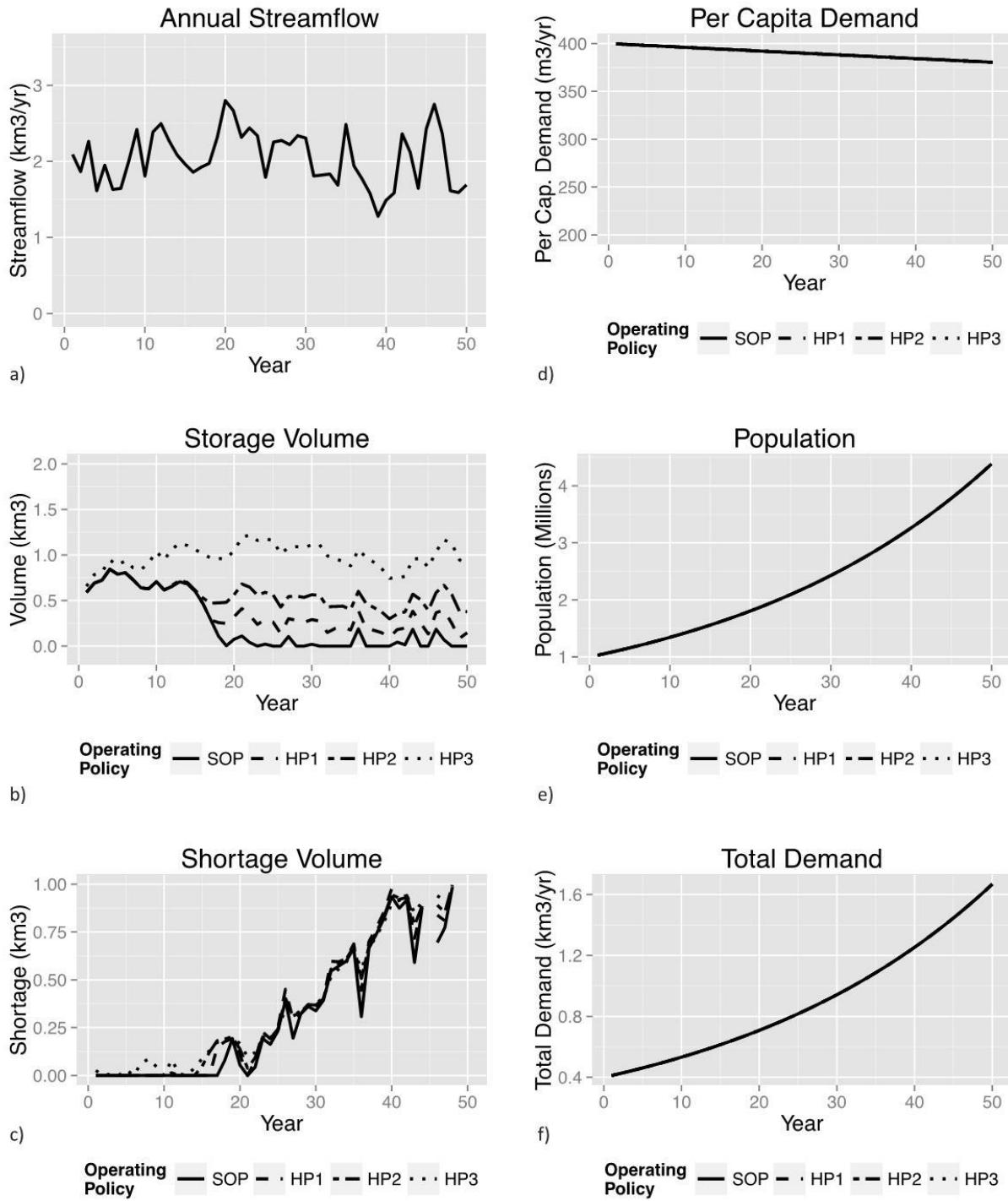
Variable	Description	Units	Equation	Variable Type
Q	Streamflow	$\text{km}^3 \text{yr}^{-1}$	1	Exogenous
V	Reservoir Storage Volume	km^3	2	State
P	Population	persons	3	State
W	Withdrawal	$\text{km}^3 \text{yr}^{-1}$	4	State
S	Shortage Magnitude	$\text{km}^3 \text{yr}^{-1}$	5	State
M	Shortage Awareness		6	State
D	Per capita demand	$\text{m}^3 \text{yr}^{-1}$	7	State


3

4 **Table 5: Model Parameters**


Parameters	Description	Value	Units	Equation
μ_H	Mean streamflow	2.0	$\text{km}^3 \text{yr}^{-1}$	1
σ_H	Standard deviation of streamflow	0.5	$\text{km}^3 \text{yr}^{-1}$	1
ρ_H	Streamflow lag one autocorrelation	0.6	-	1
η_H	Evaporation rate	0.001	km yr^{-1}	2
Q_D	Downstream allocation	0.50Q	km^3	2
Q_E	Required environmental flow	0.25Q	km^3	2
σ_T	Average slope of reservoir	0.1	-	Stage-Storage curve
δ_I	Regional birth rate	0.01	yr^{-1}	3
δ_E	Regional death rate	0.01	yr^{-1}	3
δ_I	Regional immigration rate	0.03	yr^{-1}	3
δ_E	Regional emigration rate	0.03	yr^{-1}	3
τ_P	Threshold	0.4	-	3
V_{MAX}	Reservoir Capacity	2.0	km^3	4
K_P	Hedging slope	variable	-	5
μ_S	Awareness loss rate	0.05	yr^{-1}	6
α_D	Fractional efficiency adoption rate	0.15	-	7
β_D	Background efficiency rate	0.0001	-	7
D_{MIN}	Minimum water demand	200	$\text{m}^3 \text{yr}^{-1}$	7

1
2 **Figure 6: Model Results, Trial 1:** (a) annual streamflow, (b) reservoir storage volume, (c) public shortage
3 awareness, (d) per capita demand, (e) annual city population, (f) total demand.


1
2 **Figure 7: Model Results, Trial 2:** (a) annual streamflow, (b) reservoir storage volume, (c) public shortage
3 awareness, (d) per capita demand, (e) annual city population, (f) total demand.

1

2 **Figure 8: Model Results, Trial 3:** (a) annual streamflow, (b) reservoir storage volume, (c) public shortage

3 awareness, (d) per capita demand, (e) annual city population, (f) total demand.

1
2 **Figure 9: Non-coupled Model Results, Trial 3:** (a) annual streamflow, (b) reservoir storage volume, (c)
3 shortage volume (demand – supply), (d) per capita demand, (e) annual city population, (f) total demand.